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Abstract

A solution method for the computation of steady Euler flows in one-
dimension is presented. The approach is to combine the solution of the
governing equations in a Lagrangian reference frame with an algorithm to
remap the computational mesh. The aim is to retain the accuracy inherent
with Lagrangian schemes and to avoid grid tangling and distortion scenarios.

The Lagrangian phase consists of a finite volume scheme which employs
an approximate Riemann solver to evaluate intercell numerical fluxes. The
HLLC and Roe Riemann solvers are considered. The Rezoning phase is
simply an advection algorithm. Piecewise constant and piecewise linear ad-
vection schemes are investigated.

A technique is introduced to improve the resolution of the split scheme
numerical solution profile at a material interface. The premiss is to allow a
Lagrangian-type scheme at the interface to coexist with a split scheme for
regions away from the interface. The methodology permits the existence of
two non-uniform computational cells either side of the interface and sup-
presses the remap procedure at the interface. To prevent the creation of
disproportionate non-uniform cells and interaction between the interface and
a mesh boundary, the rezoning operation is augmented with a reconstruction
algorithm.

The proposed two-step Lagrange-Remap or split methods are tested on
Sod’s shock tube problem and comparisons made between the Lagrange-
Remap schemes and their Eulerian (unsplit) and pure Lagrangian counter-
parts.

The interface tracking method is tested on shock tube problems contain-
ing two different gases.
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1 Introduction

The Euler equations for one-dimensional unsteady compressible flow, in the
reference frame of a moving control volume, can be expressed in integral form
as

Q/ Udﬂ+/ AF dl = 0. (1)
N Jaw T'(1)

Q(t) is the moving control volume enclosed by its boundary I'(t), and n
denotes the outward normal to the boundary I'(#). The vector of conserved
variables U and the flux vector F are given by

p (u—i)p
U= pu and F = (u—d@)pu+p , (2)
pE (u—@)pls + up

where p is the density, u is the fluid velocity, @ is the velocity of I'(t), E is
the specific total energy, and p is the pressure. The system (1)-(2) represents
conservation of mass, momentum and energy. When & = 0, the system corre-
sponds to the Eulerian description of conservation, whereas @ = u results in
the Lagrangian form, where the control volume moves with the instantaneous
fluid velocity. The generality or arbitrariness of the description offered by
equations (1)-(2) has rewarded them with the name Arbitrary Lagrangian-
Eulerian (ALE) form of the conservation laws [5]. The set of equations is
completed by the addition of an equation of state. The ideal gas equation of
state is employed in this work and is given by

p=(y—1)pe, (3)

where e = F — %uz is the specific internal energy and ~ is a constant repre-
senting the ratio of specific heat capacities of the fluid.

This work focuses on solving the governing equations (1)-(2) in a La-
grangian reference frame. Therefore, it is assumed = = u, and the vectors U

and F take the form

p 0
U=| pu and F=1[ p |. (4)
pl up

When formulating Lagrangian methods it is necessary to combine the schemes
with an algorithm to rezone the computational mesh. This is because, as time
advances, severe grid distortion or tangling may destroy the calculations. The



Lagrangian phase can then be considered as a solution for the sound wave
related transport, and the rezoning of the grid can be viewed as the solution
for the advection related transport [6].

The presentation of the proposed solution method is divided into eight sec-
tions. Section 2 is concerned with the discretisation of the governing equa-
tions. Sections 3 and 4 respectively derive the HLLC and the Roe Riemann
solvers for the Fuler equations in a Lagrangian frame of reference. Section 5
is devoted to algorithms for rezoning of the mesh. Material interface tracking
is considered in Section 6. Numerical results are displayed and discussed in
Section 7. Finally, conclusions and proposed extensions of the work can be
found in Sections 8 and 9 respectively.

2 Discretisation of the Governing Equations

The spatial domain [0, L] is discretised into M computational cells or finite
volumes [; = [J}Z»_%,J}H_%] initially of uniform size Az; = x; 1 — ;1 =
Az = L/M, with ¢« = 0,... ,M—1. For a given cell I; the location of the
cell centre or particle position is denoted by x;. The value of the conserved
variables for cell [;, denoted by U,, are cell averaged values and are stored

at the cell centre x;. Therefore,

1 [mid
Uizmi/x " U(2) de (5)

i L
)

where U(x) is the data distribution. The temporal domain [0, 7], where T
is some output time and not a boundary, is discretised into time steps At of
variable size. A superscript is used to identify a particular time level. Figure
(1) is an @ — t diagram of the computational mesh.

The governing equations (1) and (4) are discretised via the finite volume
formula

urttQrtt —urn
L A N ) ) 6
At < 2—|—5 =3 ? ( )

where At is the time step from time " to time t"*!, Q7 is the cell volume at

time ", and F._1 is the numerical flux across cell boundary x. 1. From a
) i—3 Y 2

practical point of view, and according to the explicit approach, equation (6)
can be rewritten in the more convenient form

o A
Ui-HZW(Ui —I_Q_? Fi—;—_FH—;—})' (7)
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Figure 1: 2 — ¢ diagram of the computational mesh

In order to preserve conservation, the volume for cell I; is updated by
discretising the one-dimensional geometric conservation law (GCL)

bl —/ w0 dl = 0 (8)

in the following manner
Qitt —Qr . .
SR SRS g

Here :i;i_;_ is the grid velocity normal to the boundary Tt Therefore, since
i = u (Lagrangian reference frame), the volume is explicity updated via

] (e (10)

where wu,_1 is the fluid velocity normal to the boundary T 1. Equivalently,

Ot = — () et (11)

At U1 is the location of boundary Tt at time ¢!,

where 277
-3



Time integration of particle position x; is performed according to an es-
timate of the displacement of the centre of volume of cell I,

n 1 n n
et = 0 A0 <$z o + <9i—;—zi—;_ ‘|‘9i+;—zi+%>> ; (12)
where z,_1 = @, 1At is the additional cell volume created by normal dis-

2 2
placement of the boundary «” ,, (G, 1 is the outward normal velocity to the
=3 2
boundary z? ,), giit = (28 1 + ui_%At/Z) is the position of the centre of
2 2

Zists and AQ); = 2}20 Zisly is the total change in cell I; volume over time
interval At [1].

This calculation can be viewed as a weighted average of the positions of
the centres of the individual volumes which make-up the cell volume at time
1"t The weights are equal to the value of the individual volumes.

In order to advance the flow solution at a particle using equation (7)
the numerical flux vector is required on each of the boundaries of the cell.
Each numerical flux is obtained by calculating an approximate solution to
the Riemann problem that exists at the respective boundary. The two Rie-
mann solvers used in this work are the HLLC and the Roe schemes. Both
are described in detail in the following two sections.

Control of the time step size is achieved, prior to each time step, by
selecting At such that none of the waves resulting from a Riemann problem
at a cell boundary transverse more than half a cell width of the Eulerian
mesh. The time step At from time level {" to t"*! is thus calculated using
the formula

C.Az?
At = ;;7 (13)
where Cyp = 0.5 and S}, is an upper bound on the wave speeds present

throughout the domain at time level n. There are various ways of estimating

S and for the time-dependent, one-dimensional Euler equations a reliable

choice is given by

max

S = max {|ul| +al'} 1 =0,..., M, (14)

where a' = ,/ 7;%5 is the local sound speed approximation [12].

7

However, equation (14) can lead to an underestimate of S} For ex-

max"*

ample, assume shock-tube data in which the flow is stationary at time ¢°.



Un-
derestimating the value of 5], results in a choice of At that is too large
and instabilities may develop from the beginning of the computations. To

circumvent this problem the C.s constant in (13) is reduced to 0.1 for the

Here u? = 0 and the sound speed is the only contribution to S7

max”

first 5 time steps of the simulation.

3 The HLLC Solver

The HLLC scheme [13] is a modification of the HLL Riemann solver of
Harten, Lax and van Leer [3]. In the HLL scheme the full Riemann prob-
lem is reduced to an approximate solution in which the wave configuration
consists of two waves separating three constant states. The two waves repre-
sent the two non-linear discontinuities in the exact Riemann solution. In the
HLLC solver, the missing contact wave is restored. Thus the approximate
Riemann solution for the HLLC scheme consists of four constant states sep-
arated by three waves. Here, the essential features of HLLC are derived for
the Lagrangian frame following the approach suggested by G.Ball [1].

Figure 2 is an x — ¢t diagram of the resulting wave structure for two adja-
cent cells [; and [;11, on a Lagrangian one-dimensional grid, with piecewise

constant data states Uy = U} and Ug = U7,
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Figure 2: Schematic of approximate Riemann solution in Lagrangian control volume

ABC.



The cell particles and their movements are indicated by the lines A— A and
C' — (. The interface between the two relevant cells, which by definition is the
contact wave of the Riemann problem, has position through time indicated
by the line B — B. The * superscript denotes the wave-processed states i.e
the data states that are created due to the passage of three waves emerging
from the origin of the initial discontinuity. Sz, S*, and Sgr are respectively
the speed estimates for the left, contact and right waves.

It is required to calculate a numerical flux across the line B — B, that is
across the cell interface, over time interval At.

Applying conservation of U on A — B over the time interval At gives

A
(7“’ Cw A4 SLAt> UL+ (—biAl) + ALSUS (1)

A
- 7"”UL +AIF;, — AIFS

= (Sp —ur)Up + (5" = 5) Uy =F; —F, (16)
= F; +(5"=5)U; =Fp + (ur — 51) Ug (17)
= FEZFL‘I'UE <SL—S*> - U;g (SL—UL) (18)

Similarly, conservation of U on B — (' over the time interval At yields

FE—I—(S*—SR)UE:FR—I-(UR—SR)UR (19)
= Fp=Fr+U5;(S"—-5.) -~ Ur(Sg — ugr) (20)

The wave processed states and the corresponding lagrangian fluxes take
the form

Pk 0
UIX" = pzf uzf and FIX" — p?{ 9 (2 1 )
P U Pl

where K = L, R and 5" = u} = uj = u* = w; 1 is an approximation of
the fluid velocity normal to the boundary Tipt. T%herefore, by substitution
of these quantities into (17) and (19), and by consideration of the individual
rows of these vector equations, it can be shown that

(SK - UK)
o= ek T K 22
p[& pI (S](_S*) ( )
(SK - UK)
W = preai LG 23
p[& uIX pI (S]{ _ S*) ( )
p} = PK +pPK (UK - SK) (UK - S*) ) (24)



and

* ok (SL - UL) * * PK
B = pp———= | By — UK 5. —aa/)|
Pl = pr (5 — 5 | + (5" —ug) | 5™+ prc (Si — uk) (25)

for K = L, R. The intercell numerical flux is then calculated via averaging
of equations (18) and (20)

Fy, = (F +F5) /2, (26)
where the U%,, K = L, R, vector in (18) and (20) are obtained using equa-
tions (22), (23) and (25).
Following the original approach suggested by Toro et. al. [12], the wave
speed estimates, Sp, S*and Sk, are acquired from

SLZUL—anL, S*:u*, SRZUR—I-CLRQR, (27)

where ay,, ap are the local sound speeds in the undisturbed fluid, and ¢, for
K = L, R, is a parameter defined by

Hg <1
K = \/1 + W‘H (Hg — 1) otherwise (28)

Here Hx = p*/pr, and p* and u* are estimates for the wave processed presure

and velocity. If the K wave is a rarefraction then the speed Sk corresponds
to the characteristic speed of the head of the rarefraction. If the wave is a
shock then Sg corresponds to an approximation to the true shock speed; the
wave relations used are exact but the pressure ratio across the discontinuity
is approximated, because the value of p* is an estimate.

In this work, values for p* and u* are calculated using the adaptive/hybrid
approach proposed by Toro [12], which is based on his exact Riemann solver.
The method is described algorithmically below:

o The initial approximation for the pressure is evaluated using

5+ pm) = 5 (r = un) 7, (29)

where @ = (ar, + ar) /2 and p = (pr + pr) /2.

e
Ping =

o If Pl > Pmin and piyy < Pmax, and @ = pmax/Pmin < 2, Where ppin, =
min (pr, pr) and pmax = max (pr, pr), then

p* = max (tolerance, pi ) , (30)
po o~ lwtun)  (pr=pi) (31)
2 2ap



o If pI\ < Pmin, suggesting that the 2 non-linear waves in the exact
solution to the Riemann problem are rarefraction waves, then
ClL-I-ClR—%(uR—uL)]Z
b

a_L_|_a_R
r7 PR

o Else the 2 non-linear waves in the exact solution of the Riemann prob-
lem are assumed to be shock waves, and

(32)

-1
where z = =,
2y

I gL (po)pL + 9r (po)pR - (UR - UL)

N gr (po) + gr (po) 7 (34)
. 1
wo= g (UL1‘|‘ ug) +

5 (7" = pr)gr (po) = (7" = pr) g (po)] . (35)

where
i = |2 (3)

2
AI( - m 9 (37)
(v—1) .
Br (7 n 1)pK , K =L,R, (38)
and

Po = max (Oaﬁi*nt) . (39)

The initial approximation for the pressure (29), and the velocity approx-
imation (31), were achieved by writing the governing equations in terms of
the primative variables W = (p, u, p), linearising about the constant state
W = 1 (W, + Wg), and then applying the Rankine-Hugoniot jump con-
ditions across left and right waves. The condition ) < 2 ensures that the
presure data values py, and pg are not widely different. Equations (32) to (39)
were derived by assuming the appropriate wave struction and applying exact
wave relations across the discontinuities. The 2-shock equations require the
use of the initial pressure esimation (29) since the approach does not lead to
a close form solution.

10



Second Order Accuracy For HLLC

In this work, second order accuracy for the Lagrangian HLLC Riemann solver
is achieved using the MUSCL-Hancock approach [12]. The method can be
divided into 3 stages:

Stage 1: Data Reconstruction

The piecewise constant data cell average values U are locally replaced by
piecewise linear functions in each cell [:1;2»_%, :L'H_%] according to

Ul (z)=Ul+ (z — a;) 5y, :I;E[xi_%,xﬂr%], (40)

where &; is a vector of limited first derivative approximations. The values of
U? (x) at the cell boundaries of cell I; are

Ul = ur - 2'02' and (41)
Az
Ul = U?+T$m, (42)

and are called boundary extrapolated values.
The two alternative methods used in this work for evaluating the vector
o; are described in detail in the next subsection.

Stage 2: Evolution

The boundary extrapolated values U¥ and U¥ are considered to be cell av-
erage values, and are evolved by %At using a conservative scheme in which
the numerical flux is equal to the exact flux function evaluated at the ex-
trapolated values. That is,

I L l At Ly R
U = Uf+ 2 A [F(U?) -F (UM, (43)
TR R lAt Ly R
U = UFf4 2 Axr [F (UY) —F (UH)] . (44)

Stage 3: The Riemann Problem

To calculate the intercell flux one now solves the Riemann problem with data

ULEﬁ? ; UREﬁL.

7

(45)

The generalised Riemann problem created by the piecewise linear data (40)
is ignored.

11



Evaluating the vector ;.

Two methods are considered for evaluating the vector of limited first deriva-

tive approximations, namely conserved variable slope limiting and wave-by-
wave slope limiting.

Conserved Variable Slope Limiting.

A,
The vector &; in cell I; is taken to be a function of the derivatives (—1_% )

Ax,‘_l
2
i I
an m , namely
~i = ~i 9 ) 46
2 2
where
At =U7=UL, 5 A =UL, - U (47)
Awi—% =, — X1 A:L'H_% =241 — T;. (48)

The limited derivatives are evaluated component-wise using

ag; 5
2 2

. ﬁAz % Az-l-% A’_% BAH'% A >
max O,mm A N , 1111 Ar. 1 Ax. 1 H’% - 0
-5 +5 ) Tt
. By Ay Siop PRab YA, <
min |0, max | % Y Rl N itz = 0
-5 +5 -2 Ty
(49)

where the value § = 1 reproduces a minmod-type limiter, and 5 = 2 repro-
duces a superbee-type limiter.

Equation (49) has been established by forcing equivalence of MUSCL-
type schemes with conventional flux limiter methods, for the model scalar
equation on a fixed Eulerian grid [12]. The result then being modified to
allow for the varying cell volumes associated with Lagrangian methods.

12



Wave-By-Wave Slope Limiting.

A,
The vector &; in cell I; is taken to be a function of the derivatives (A;‘_ - )

A1
and | —= |, namely
Tl

2

R e (50
! ! A:z;i_17A:1;i+; ’
where
A, =U0"-U", ; AH_l =Uz, —UY; (51)
A:z;j_l =X, — Ti_1 Al’:l_% = X1 — T (52)

The arguments A;_1 and A; 1 are then decomposed into jumps across
2

2
waves emerging from the Riemann problems with data states (U?_I,U?>

and <U?7 U?{—l);
3
_ (m)
- Z Az’+% ’ (53)

m=1

3
Ai—% = Z Afﬂ s A

(I

1 t 2 3 1 t 2 3
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Figure 3: Wave-by-wave decomposition of gradients obtained from local solutions of

Riemann problems, with cell averages as initial data.

Equation (50) can then be written as

3
~ ~(m) =3
I _— N R R 4

m=1




thus, allowing the limiting process to be applied wave-by-wave.

The limited derivatives are evaluated component-wise using

&(m) — +
! Al‘i_;7 A$Z+1
2 2
(A Al AT eal (m)
max |0, min | 1 Ay | ominl A A AH-l >0
t—5 z+2 t—3 z+2 2
: pally Al almy ey (m)
min |0, max | z— S ae o | omax | i A& AZ. 1 <0
i—% it 5 =5 +5 2
(55)

where the value § = 1 reproduces a minmod-type limiter, and 5 = 2 repro-
duces a superbee-type limiter.

Equation (55) has been established by forcing equivalence of MUSCL-
type schemes with conventional flux limiter methods, for the model scalar
equation on a fixed Eulerian grid [12]. The result then being modified to
allow for the varying cell volumes associated with Lagrangian methods.

4 The Roe Solver

The Roe solver calculates a numerical approximation to the solution of hy-
perbolic conservation laws by solving a constant coefficient linear system.
That is, a modified conservation law is computed and solved to render a nu-
merical approximation to the original problem [7]. Here, an adjustment to
the fixed grid Roe scheme is derived to adapted the scheme to a Lagrangian
reference frame [11]. The adjustment is designed to take into account mesh
movement.

Figure 4 is an o — t diagram of the resulting wave structure of the
Roe approximation for two adjacent cells [; and [;41, on a Lagrangian one-
dimensional grid, with piecewise constant states Uy = U} and Ug = U7, ;.

The cell particles and their movements are indicated by the lines A — A
and C'—C'. The interface between the two relevent cells has position through
time indicated by the line B — B. The % superscript denotes the wave-
processed states. The eigenvalues u — a, u, u + @ of the Roe Jacobian matrix
A (Up,Ug) are, respectively, the wave speed estimates for the left, contact
and right waves.

14
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Figure 4: Schematic of approximate Riemann solution in Lagrangian control volume

For a fixed grid, diagonalising the Roe linearisation for the system of non-

ABC.
linear equations allows the flux between the two adjacent cells I; and ;14
(i.e the flux across the t-axis) to be written as
1 2 . .
Fip1 (U Ur) = 5 |Fr (Un) +Fr (Ur) = > al NG+ NP
m=1
(56)
where
0
Fyx (UK) =ugUg + PK , K=LR, (57)
UK PK
the wave strengths are given by
. 1 .. i
als = oo [(on—pr) (54 @) = (prur — pruz) —ad®] . (58)
. —1 S .
O‘ﬁ); = 7@2 [(PR — L) <H — u2> + W(prur — prur) —
(prER — PLEL)] : (59)
(60)

(pr—pr) — (D +a®)
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the eigenvalues are

5‘z(zld)v =u ) 5‘1(:31) = —a, (61)
5‘z(jl)v =1u ) 5\521) =0, (62)
5\2(1:)()1)v =1u ) 5‘521) =a, (63)

and the corresponding right eigenvectors are

1 1 1
~(1) ~ ~(2) _ ~ ~(3) _ ~
e=| u-a ), el = 1%2 ;&L= ~u+fl~ . (64)
H — ta Ju H + ta

Here, u = Uiy 1 is an approximation of the fluid velocity normal to the bound-
ary 1, and

Y pPLUL + \/PRUR (65)
VPL T /PR

N Hp + /prH

g - ¥rrhr + /PRIR (66)

NN

-1
@ = (y—1) [H — 5112] : (67)
Here Hyg, K = L, R, is the total enthalpy
Ex K -
Hy = ZKIPK p 1R, (68)
PK

The tilde is used to indicate a Roe averaged value.

The flux function (56) has been written in such a way that its value, the
flux relative to a fixed grid, can be split naturately into two quantities; the
flux which is a result of advection with the flow; and the flux relative to the
flow.

Therefore, to determine the flux between the two cells I; and [,4; in a
Lagrangian frame of reference (i.e. the flux across the B — B in Figure 4),
one simply subtracts the flux resulting from advection with the flow from
equation (56)

1
Fiy1 (Up,Ur) = 5 |F1 (Ur) + Fr (Ur) — > alm ey ; (69)
m=1
where
0
Fyx (UK) - PK ) K = L7 Rv (70)
UKPK

16



and the remaining variables are given by equations (58) to (67).

It is well known that Roe’s scheme for the Euler equations on a fixed
grid permits non-physical stationary discontinuities; a sonic expansion wave
may be incorrectly approximated by a rarefraction shock. Hence, Roe’s ap-
proximate Riemann Solver in general does not satisty an entropy inequality.
However, it can be modified to eliminate these entropy violating discontinu-
ities while retaining those that satisfy the entropy law. Such an entropy fix
is not necessary in the Lagrangian case, because shock and expansion waves
move with respect to the Lagrangian reference frame [15].

Second-Order Accuracy For Roe

In this work, second-order accuracy for the Lagrangian Roe solver is achieved
using flux limiting. The method is to linearize the system of non-linear equa-
tions using Roe’s approximate Riemann solver, diagonalise, and then apply
flux-limiting to each of the resulting scalar equations [4].

Taking Godunov’s scheme to calculate the first-order flux and the Lax-
Wendroff scheme to evaluate the second-order flux, the numerical flux be-
tween cell [; and I;yq, for the corresponding fixed grid flux-limiter solver,
can be written as

1

Firt (U, Up) = 5 |Fp(Up) + Fr(Ur) -

3
At~ o
1—¢. (1 |A£m3+AE?>|>]
mz::{[ ( Ay oot 7o

e

Here, the fluxes Fy, Fg, the wave strengths <&ffl> , the eigenvalues <5\g§37 S\EZIL)

the corresponding right eigenvectors <éffl> are given by equations (58) to
(67). & = ¢(r), where

N,/ . . 1 . T(m Y(m
r = g and i’ =1+ - +sign <)\gd3 + )\l(fel)> (72)
) 2
Z-l—g

is the limiter function. Three limiter functions are considered [12], namely

17



e the minbee limiter:

0 r<9J0
dlry=<¢ r 0<r<1 | (73)
1 r>1
e the van Leer limiter:
0 r <90
o(r) = { , TS (74)
12-|—7’ r Z 0
e the superbee limiter:
0 r<90
2r 0<r < %
dry=91 321 (75)
r 1<r<2
2 r>2

Subtraction of the flux resulting from advection with the flow from equa-
tion (71) produces the required second-order accurate Lagrangian flux

1
Fi 1 (UL, Ugr) = 5|FL(UL)+Fr(Ug)—

2

I lal el }] , (76)

! . . 1 . Y (m
and i =i+ 3 + sign <A£el)> ) (77)

and the remaining variables are given by equations (58) to (67) and (73) to
(75).
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5 Rezoning

As time advances, solutions calculated using a Lagrangian scheme may be-
come less accurate or even destroyed due to mesh distortion or tangling. To
circumvent this failure the Lagrangian scheme can be combined with an al-
gorithm to rezone or remap the grid. In this work the rezoning is carried
out at each time step and the mesh is remapped back to the grid that was
generated at the initial time level.

Rezoning involves fixing the fluid and then moving the mesh through the
medium to return it to where it initial resided at the start of the Lagrangian
phase. This process can be viewed as advecting the fluid through the mesh
in pseudo time until, relative to the fluid, the mesh has been moved back to
where it began.

The actual quantities remapped are the conserved variables of mass,
momentum and internal energy (pe). It is possible to remap total energy
(p (e + %uz» and arguably this has improved energy conservation proper-
ties. However, if in the problem being considered virtually all of the energy
is kinetic energy, then subtracting this from total energy to calculate rezoned
internal energy, could, due to numerical inaccuracies, result in a physically
incorrect negative value [10].

Mesh movement within the Lagrangian phase can result in a cell’s position
and volume being altered. Figures (5) and (6) contain x — U diagrams of four
possible outcomes of the Lagrangian phase for cell I;. Diagrams (a) and (b)
show, in turn, non-uniform movement to the left and to the right. Diagrams
(¢) and (d) respectively illustrate cell contraction and expansion.

The distance traveled by the boundary i1 during the Lagrangian phase
is denoted by 5(22»_% and is calculated using the formula

o€,

1 = T
-3 — =
2 =3

= Atz 1, (78)
where At is the time increment for the Lagrangian phase, and :i;i_;_ (= ui_%)

K3

is the grid (fluid) velocity normal to the boundary Ti_L. ( Ui 1 is determined

by the chosen Riemann solver).
Cell boundaries and centers are remapped by simply returning them to
the position they held at the previous time level

_i—% = l’?_ ) (79)

[T

r, = XT:.

The overbar is used to indicate post-remap values.
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Figure 5: « — U diagrams for cell I; of non-uniform movement to the left and to the
right resulting from the Lagrangian phase.

Re-initialation of U;, required due to the rezoning of cell I; from :1;?_‘"11, :1;?_:'11
2 2
to |71, @1 = |20 4, :1;?{_4 , is performed using the conservative finite vol-
2 2 ) 2

ume formula

TT 1 n n - o
Ui = ﬁ_ <Q2 +1Ui +1 _|_ 5Q2_%F2_;_ — 5Q2—|—%F2+;—> 5 (81)
where
P
U=| pu |, (82)
pe

Q! is the volume of cell I; as a result of the Lagrange phase, 5(22»_% is given

by equation (78), and Fi_% is a vector of conserved variable averages for the

1 3 .
xt o, :1;?"'1 } The components of F,_1 correspond component-wise
~1 L

interval

to the conserved variables in the vector U. Their values are determined by
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Figure 6: « — U diagrams for cell I; of cell contraction and expansion resulting from the
Lagrangian phase.

&,_1 and are dependent on the type of data reconstruction applied in each
cell’

As discussed earlier, the rezoning phase can be viewed as an advection
process. Interpreting equation (81) in this way, the quantity 5(22»_% can be

seen as a volume flux, and the components of the vector ]?‘Z»_; can be viewed as
2

advection fluxes divided by the velocity normal to the corresponding bound-

ary. That is

=

[N

=2 (83)

7 —

o8

1
=3

[T

where F,_1 is a vector of numerical advection fluxes which are to be evalu-
2

ated. F,_1 is known as a vector of effective fluxes. Moreover, expression (78)
2

can be substituted directly into equation (81) to produce the more familiar
form of the non-linear advection equation

_ Qrtt At N N
U; = Zﬁ— (U?ﬂ + gt [FiaFiy - i’z’+§Fi+;—D : (84)
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From a practical view point the vector equation (81) can be written in
the component-wise form

M 480, L P — 60, 1 F
= _ 2 =3 2 3 (85)
pi Aot
WM L SM,_ L B — M 1
2 [ =57 i—= +5 7 s
u = — s (86)
M;
STIMITY 4 SM,_ P, — 6M 1 F
7 7 =57 i—= t57 42
€ = s s (87)

where M; = p;Ax; is the mass in cell [;, 5MZ»_% = 5(22»_%]:1’)_1, and F”, a

and F© are respectively the effective fluxes for density, velocity and internal
energy.

Two methods for evaluating the required flux values are considered, namely
the piecewise-constant, or Courant, Isaacson and Rees (CIR) scheme [2], and
the piecewise-linear advection scheme of Van Leer [14]. The effective flux for
these methods [8] are, respectively

ch ( ' o ) - a;—q if J'?Z'_% >0 (88)
SRR T e i g <0
and
ol ( ) a;—1 + QAA“;:l <A$Z’_1 — :iii_%At> if :i;i_% > ()
o \G—1,04, ;1) =
it : 0 — B <A:1;Z» n :i;i_%At> if 1 <0
(89)
where
o a.sign (41 — a;—1) if 32>0
Aai = { 0 otherwise ’ (90)
. 1
a = min §|ai+1 — a1, 2|air — ail,2|a; — a;i—q| | (91)
B = (aip1 —ai)(a; —ai-1) . (92)

For linear advection, equation (89) is monotonicity preserving.

The rezoning equations are derived by assuming a particle’s location is
at the center of a cell. However, the actual position of a particle is not re-
quired for any of the remap calculations. Therefore, since the particles are
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being remapped back to their initial position, equation (12) is made redun-
dant when rezoning is carried out at each time step. A similar observation
concerning boundary positions can be made, leaving it unnecessary for the

values :1;?_"'11, t=0,1,..., M to be calculated and stored.
2

6 Interface Tracking

The aim of this section is to present in detail a method for improving the
resolution of the numerical solution profile at a material interface. The tech-
nique, developed by the author, is designed to be used inconjuction with the
Lagrange-Remap (split) schemes discussed previously in this paper, where
the rezoning is proformed at each time step.

In the current setting of the one-dimensional compressible Euler equa-
tions, Lagrangian schemes are credited with the ability to accurately capture
moving material interfaces because they do not excessively smear the density
profile. (See for example the results of Section 7 which were generated using
Lagrangian versions of the HLLC and Roe approximate Riemann solvers).
Moreover, when using a Lagrangian scheme it is clear which equation of state
is valid in each of the computational cells in the domain.

The premiss behind the solution method is to allow a Lagrangian-type
scheme at the interface to coexist with a split scheme for regions away from
the interface. The approach is to maintain the alignment of a cell boundary
with the material interface throughout execution of the numerical scheme.
The designated boundary then moves in a Lagrangian sence, i.e with the
fluid, tracking the movement of the material interface. The alignment of the
cell boundary with the interface is ensured by, firstly, permitting the exis-
tence of two non-uniform computational cells either side of the interface, and
secondly, suppressing the remap procedure at the boundary coinciding with
the interface. To prevent the creation of disproportionate non-uniform cell
volumes and interaction between the interface and another boundary in the
domain, the remap procedure of Section 5 is augmented with a reconstruc-
tion algorithm. The volume of ‘proportionate’ non-uniform cells are chosen
by the author to be between one half and three halves of the volume of a
uniform cell.

Tracking the interface in this way avoids the complications associated
with multimaterial cells. Mulitmaterial cells do not exist at the initial time
level, and they are not created during execution of the scheme.

The solution method is now described in detail.
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The Initial Discretisation.

At an initial time ¢ = t°, a material interface is assumed to be located
at position z;,, and the computational domain is divided into M uniform
compututaional cells of size Az, as detailed in Section 2. If z;, coincides
with a cell boundary then cell averaged values of the conserved variables can
be calculated for each cell and stored at their centre.

(a)
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Figure 7: « — U diagrams illustrating initial cell merging to the right of the material
interface.

If 2;, does not initially coincide with a cell boundary, then the methodol-
ogy is to form two non-uniform computational cells either side of the intertace,
forcing x;, to be aligned with a boundary of the mesh. Then to ensure the
newly created cells are proportionate the non-uniform cell with volume less
than %Al‘ !is merged with its adjacent uniform cell. The boundary coincid-
ing with x;, is denoted iy and the cells to the left and right of Lipy_1 are
denoted [;,;_1 and I;,; respectively. A schematic of this procedure is shown
in Figures 7 and 8. Figure 7 shows the case where cell merging is required to
the left of the interface. Figure 8 demonstrates cell merging on the right of

Yf z;, is located in the exact centre of a cell, then one of the non-uniform cells is
choosen arbitrarily.
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Figure 8: z — U diagrams illustrating initial cell merging to the left of the material
interface.

the interface. It should be noted that the number of cells in the computation
domain has not been increased or decreased as a result of the reconstruction.

The Lagrangian and Remap Phases.

The Lagrangian phase of the split scheme is executed in exactly the same
way as described in earlier sections, with a Riemann problem being solved
approximately at the material interface. As with all cell boundaries, the
position of iy 1 (and hence the position of the interface) is updated via

$n+11 = l’?_; + At Ui_% ) (93)

where U1 is an approximation of the fluid velocity normal to the boundary
x,_1 resulting from the Riemann solver. Thus, the interface boundary is

expﬁicity updated by the equation

new __ _old
™t =ap "+ Atu

(94)

- 1.
wnt 5

The mesh resulting form the Lagrangian phase is remapped following
the approach described in Section 5. However, when rezoning, the the cell
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boundary which is aligned with the material interface is not remapped. The
boundary iy 1 remains where it was positioned at the end of the Lagrangian
phase. Therefore, at the end of the remap phase there continues to exists,
embedded within an otherwise uniform grid, two non-uniform cells lying
either side of the interface. Figure 9 contains x — U diagrams illustrating
the Lagrangian and amended remap phases at the interface for Uiy 1 > 0.
The overbar is used to denote post-remap values.
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Figure 9: 2 —U diagrams illustrating in (a) the Lagrangian phase and in (b) the amended
remap procedure at the material interface when Uipy 1 > 0.

Reconstruction

To prevent the creation of disproportionate non-uniform cell volumes and

interaction between the interface and another boundary of the computational

domain, the remap procedure is augmented with a reconstruction algorithm.
The reconstruction need only be applied when the inequality

int—1 int

1 3
SAr < AT AT < DAe, (95)

is compremised.
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The reconstruction process can be divide into two stages. The first stage
is the merging of the non-uniform cell with volume less than %Al‘ with its ad-
jacent non-uniform cell. The second stage involves dividing the non-uniform
cell with volume greater than %Al‘ into a smaller non-uniform cell and a uni-
form mesh cell. By definition the smaller non-uniform cell will have volume
AT; — Az > LAz, satisfying inequality (95) (i = int—1 or int according to
the value of w;,,_1 (see below)). Intuitively, the direction in which the inter-
face moves during the Lagrangian phase (indiacated by the sign of uim_%)
will determine which cells are to be merged and which are to be divided.
The result of the reconstruction will be two non-uniform cells I;,;_; and ]vint,
satisfying (95), located either side of the interface and embedded within an
uniform grid whose cells have volume Az. The inverted hat symbol is used to
indicate reconstructed quantities. The new discretization will have the same
number of computational cells as the initial discretization. By definition,

new __ _n+1 = o~
xip - xint—;— - xint—;— - xint—% . (96)

Cell Merging

It the material interface traverses the x-axis from left to right during the
It

o and

Lagangian phase (u;,;_1 > 0) then it is necessary to merge cells

I Z;"{_Il_l to form a new non-uniform cell [;,;, see Figure 10. However, if in
the Lagrangian phase the material interface progresses along the z-axis from

right to left (uim_% < 0) then it is necessary to merge cells ]ﬁ;’;z and ]ﬁ;’;l

to create a new non-uniform cell ]vim_l, see Figure 11. Cell volumes and node
positions are updated via

AZinipr = ATppr + Az, (97)
Tip " Ty 2 an
Tint+k r s ) (98)
2
where
0 uint—l > 0

The new conserved variable cell averges are evaluated using the formula

- Afint—l—kﬁmt—l—k + ASJCﬁzm-|-1-|-3k
U, = , 100
r ATinith (100)

where k is given by equation (99).
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Figure 10: = — U diagram illustrating cell reconstruction for Uipy 1 > 0.

Cell Division

It the material interface traverses the x-axis from left to right during the
Lagrangian phase (u;, 1 > 0) then cell It! must be divided into a non-
2

uniform cell I;,;_; and a uniform cell ]vint_z, see Figure 10. However, If
the material interface advances along the z-axis from right to left in the

_1 < 0) then it is necessary to divide cell I*! into a
2

Lagrangian phase (u;

wnt

non-uniform cell I;,; and a uniform cell ]val, see Figure 11. Cell volumes,
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Figure 11: = — U diagram illustrating cell reconstruction for Uiy 1 < 0.

cell boundaries and node positions are updated via

Afipiors = ATioiy — A, (101)
Adimgsr = Az, (102)
Fuga = | g an T b2l (103)
s = DRt 104
Tint—2-3k = jint_%_gk‘l’%, (105)

where k is given by equation (99).

Within the non-uniform cell to be divided, the piecewise constant data
cell average values U, 15 are locally replaced by piecewise linear functions
according to

Uinioiok (x) = Uik + (¥ — Tint—1-k) Tint—1—k » VIS [fmt_%_kafmt_%_k] )

(106)
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where 0;,;_1_) 1s a vector of limited first derivative approximations, and k is
given by equation (99). The vector ,;—1-j is taken to be a function of the

Aint—%—2k Aint—%—é}k
vectors | z=————— ) and | ;=—=— |, namely
xint—%—2k xint—%—é}k

Amt—g—zk Amt+g—4k
Oint—1—k = Oint—1—k ) (107)

— L] —
ATy 2 2k Axint+%—4k

where
th—%—Qk = Uini—1-26 — Ujni—z_apand (108)
th—%—4k = Uint—2-at — Uini—s—ak - (109)
The components of 0;,:_1_1 are evaluated using the formula
~ ~
min mod AE_)%_% AE_)%_M , (110)

— L] —
Axi—%—zk AT; S—ak

71—

where Z(»j)g_2k is the 7% (j = 1,2,3) component of Zi_%_zk, and
2

minmod (r,y) = (sign(x) + sign(y)) min [z, lyl) . (111)
sign = |i—| (112)

The values of U;,;_1_1, () at the boundaries #, ,_s_,,, &
2

int—%—2k and Ling—1 -2k

are, respectively

IT A_zn —1-
U* = Uint—l—k - %Uint—l—k ) (113)
U’ = Ui + <Ii‘m_g_2k — fmt—1—k> Oint—1—k and (114)
— AT 1—
U = Upoioi + #Uint—l—k . (115)

Redistribution of the conserved variables is then equivalent to evaluating
the area of the trapezoids which lie above the repsective cells and below
the piecewise linear function, see Figures 10 and 11. Cell averages values,
which are to be stored at the cell centre, are obtained upon division by the
corresponding volume. Therefore

. 1 ATint—1-2k jvop

Uit an = . U+ U9, 116
. ATint—1-2k 2 U+ 19 (116)

. 1 A ipi—o2—2k b

Uiniozoan = . U+ U | 117
. A ipi—o2—2k 2 ( * ) (117)

where k is given by equation (99).
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7 Numerical Results

The selected test problems are shock tube problems [9], [8]. The premiss
of the problem is a long cylindrical tube containing two mediums separated
initially by a thin membrane. The materials are assumed to be at rest, but are
held at different constant pressures and densities. At time #° the membrane
is ruptured and the problem is to determine the ensuing motion of the two
materials.

In this work, the materials either side of the membrane (and the ensuing
material interface) are ideal gases, and the ideal gas equation of state is
employed as the closure condition for the governing equations (see section
1). An ideal gas is uniquely determined by he value of 7, the ratio of specific
heat capacities of the fluid, in the equation of state.

Numerically, the initial conditions of the test consist of two constant
states separated by a discontinuity. The two states are given by

PL PR
ur, and Up (118)
PL PR

The discontinuity is initially situated at @ = 0.5. The values of v to the left
and to the right of the material interface is denoted by ~; and ~r respec-
tively. Three test problems are considered, each with an exact solution for
the one dimension time dependent Euler equations. The initial data for the
tests is given in table 1. The exact solution for each of the tests consists
of a left travelling rarefraction wave, and right travelling contact and shock
waves. The exact and numerical solutions are computed in the spatial do-
main 0 < z < 1. The numerical solution is computed with M = 100 cells,
and boundary conditions are transmissive. In the figures displaying results,
the exact solution is represented by a full line and the numerical solution is
denoted by a dotted line.

| Low [ur [pr [ | pr [ur|pr|r]
test 1 || 1.0]10011.0]141]0.125(10.0]0.1 |14
test 2 || 1.010.0[1.0]1.4]0.12510.010.111.2
test 3| 1.0]100[1.0]1.6]0.12510.010.111.2

Table 1: Initial data for the tests 1 to 3

Four sets of results are presented. Figures 12 to 20 display the results
produced using the Eulerian, or unsplit fixed grid, versions of the HLLC and
Roe schemes studied in this paper, as applied to test 1. They are included for
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compariative reasons and full details of their implimentation can be found
in the book by E. F. Toro [12]. Figures 21 to 29 show the results generated
by the Lagrangian HLLC and Roe schemes, as applied to test 1. As a con-
sequence of the simplicity of the test problem, (i.e one-dimension, no wave
interactions and small temporal domain), there is no mesh tangling (node
over taking in one-dimension). Hence the Lagrangian results presented suf-
fer from none of the inaccuracies caused by grid distortion, and serve as a
valuable comparision to the Lagrange-Remap data. Figures 30 to 47 contain
the results created using the Lagrange-Remap, or split fixed grid, HLLC and
Roe methods, as applied to test 1. Figures 48 to 53 show the results from
the second order HLLC scheme with a piecewise linear remap procedure, as
applied to tests 1 to 3.

Eulerian Methods.

The results from the first-order HLLC and Roe schemes are displayed in
Figures 12 and 13 respectively. Both figures show poor resolution of the
nonlinear waves and the discontinuous character of the linear wave is unrec-
ognizable. There are no signs of spurious oscillations in either of the results.

The results from the second-order HLLC and the Roe schemes are pre-
sented in Figures 14 to 20. Figures 14 to 17 show results for the HLLC
method using slope limiters which are ‘equivalent’ to the flux limiters min-
bee and superbee. Figures 18 to 20 display the results obtained using the
flux limited version of Roe’s scheme with the minbee, Van Leer and superbee
flux limiters. All the plots disclose an anticipated improvement in accuracy
upon the corresponding first-order results.

The HLLC results generated using conserved variable slope limiting (Fig-
ures 14 and 15) contain spurious oscillations between the right travelling
contact and shock waves. Particularly visible is the erroneous fluctuation
in the results corresponding to the superbee slope limiter. In comparison,
the HLLC results produced using wave-by-wave slope limiting (Figures 16
and 17) are void of spurious oscillations. Apart from this discrepancy, the
two approaches produce solution profiles of equal accuracy. Hence, the data
appears to suggest that it is advantageous to apply wave-by-wave limiting,
rather than to employ conserved variable limiting in an Eulerian reference
frame.

Regardless of the type of slope limiting, the superbee limiter gives rise
to sharper resolution of the shock and rarefraction discontinuities than the
minbee limiter.

The second order Roe results are bereft of fluctuations and the shock
discontinuity is sharply resolved. The results from the superbee limiter are
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the most promising, producing the most accurate solution profile of the three
limiters studied. The superiority of the van Leer limiter over the minbee
limiter, is also demonstrated.

Lagrangian Methods.

The results from the first-order HLLC and Roe schemes are presented in Fig-
ures 21 and 22 respectively. Both figures show equally poor shock resolution,
smearing the profile across six cells. The contact discontinuity is captured
well by both of the schemes, with the HLLC method exhibiting a slightly
sharper resolution. The HLLC results contain an overshoot immediately
ahead of the contact dicontinuity, whilst in the Roe results an oscillation is
visible directly behind the contact wave. Diffusion of the rarefraction wave,
typical of that expected by first-order schemes, is visible in both figures. The
Roe scheme achieves greater accuracy at the shock wave than the HLLC
scheme.

The results from the second-order HLLC and the Roe schemes are dis-
played in Figures 23 to 29. Figures 23 to 26 show results for the HLLC
method using slope limiters which are ‘equivalent’ to the flux limiters min-
bee and superbee. Figures 27 to 29 present the results obtained using the
flux limited version of Roe’s scheme with the minbee, Van Leer and superbee
flux limiters. All the plots show an anticipated improvement in accuracy
upon the corresponding first-order results.

The HLLC results generated using conserved variable slope limiting (Fig-
ures 23 and 24) display spurious oscillation between the contact and shock
discontinuities. On the other hand the HLLC results produced using wave-
by-wave slope limiting (Figures 25 and 26) show only a single overshoot ahead
of the contact wave. Hence, the data appears to indicate an advantage in
using wave-by-wave slope limiting oppose to conserved variable limiting in a
Lagrangian reference frame.

Regardless of which slope limiting process is applied, the superbee limiter
induces greater accuracy across the shock and rarefraction waves than the
minbee limiter.

Each of the second-order Roe results contain an oscillation preceeding
the contact discontinuity. The results from the superbee flux limiter show an
accurate capturing of discontinuities, however oscillations are visible behind
the shock wave, see Figure 29. In comparison, the results from the minbee
flux limiter do not contain spurious oscillations behind the shock wave, how-
ever the solution profile suffers greater smearing, see Figure 27. The van
Leer flux limiter produces results which lie between these two extremes, see

Figure 28.
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Lagrange-Remap Methods.

The results from the first-order HLLC and Roe schemes are given in Figures
30 to 33. Figures 30 and 31 are a consequence of applying a piecewise con-
stant remap, whilst Figures 32 and 33 result from using a piecewise linear
remap.

The piecewise constant results show no signs of spurious oscillations.
There is considerable smearing of discontinuities, most noticable across the
contact wave, as highlighted on the density and energy plots. The Roe scheme
achieves greater accuracy at the shock wave than the HLLC scheme.

The piecewise linear results demonstrate an expected increase in accu-
racy over the piecewise constant results. However, spurious oscillations are
visible in the figures between the contact and shock waves. These fluctua-
tions are certainly more profound within the Roe results, where there exists
a substantial oscillation behind the shock discontinuity.

The results from the second-order HLLC and Roe schemes are displayed
in Figures 34 to 47. Figures 34 to 40 present results with a piecewise con-
stant remap, whilst Figures 41 to 47 show results created by applying a
piecewise linear remap. All the results indicate an anticipated advance in
accuracy across discontinuities caused by increasing the order accuracy of
the Lagrangian phase.

For the HLL.C scheme with a piecewise constant remap, the second-order
results are void of oscillations. The contact discontinuity is poorly resolved
in each of the figures. The results again reveal the advantage of using a
superbee limiter instead of a minbee limiter. i.e. sharper resolution of the
nonlinear waves. However, these results also show a visible drop in the height
of the solution profile, between the contact and shock discontinuities, when
replacing the minbee limiter with the superbee limiter.

The results for the Roe scheme with a piecewise constant remap exhibit
erroneous oscillations behind the shock wave. Unsatisfactory contact reso-
lution is also evident. From looking at the results, it is obvious that the
superbee flux limiter generates the sharpest discontinuities, but contain the
most violent oscillations. The minbee flux limiter creates the most smeared
solution profile, but produces the smallest oscillations. The van Leer limiter
results again fall between these two extremes. The drop in profile height,
between the contact and shock waves, is also apparent in the Roe results
when using the superbee limiter as opposed to the minbee limiter.

As with the first-order schemes, the results show an expected improve-
ment in accuracy when the constant remap is replaced by a piecewise linear
remap. However, spurious oscillations are introduced into the HLLC results
and the fluctuations in the Roe data are amplified. The Figures 41 to 47 con-
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firm that there is a reduction in the height of the solution profile, between
the contact and shock discontinuities, when minbee (slope or flux) limiter is
replace by a superbee limiter.

The benefits of using wave-by-wave slope limiting instead of conserved
slope limiting are less obvious when either of the remapping methods is em-
ployed.

Eulerian Method Vs Lagrange-Remap Method

The results from the first-order HLLC and Roe Eulerian schemes are dis-
played in Figures 12 and 13 respectively. These are comparable to the results
produced by first-order HLL.C and Roe Lagrangian methods with a piecewise
constant remap, which are located in Figures 30 and 31 respectively.

As visible, both the HLLC and the Roe unsplit (Eulerian) results demon-
strate greater accuracy across the non-linear discontinuities, than the corre-
sponding split (Lagrange-Remap) results. Particularly apparent is the dif-
ference in the resolution profiles at the rarefraction wave. The discontinuous
character of the linear wave is unrecognisable with both the unsplit and split
results.

The results from the second-order Eulerian HLLC and Roe schemes are
presented in Figures 14 to 20. Figures 14 to 17 show results for the HLLC
method using slope limiters. While Figures 18 to 20 present the results
obtained using the flux limited version of Roe’s scheme. These plots are
comparable to the results generated using the second-order HLLC and Roe
Lagrangian methods with a piecewise linear remap, which can be found in
Figures 41 to 47.

For the HLLC scheme the superiority, in this test problem, of the wave-by-
wave slope limiting over the conserved variable limiting has been established
in the previous discussions. Therefore, the following observations are related
to those results created using wave-by-wave slope limiting only (see Figures
16 and 17 for the unsplit results, and Figures 43 and 44 for the split results).

Limiter-wise the HLLC method achieves the same level of accuracy across
the non-linear waves for the split and unsplit approaches. However, Figures
16 and 43 indicate that the minbee limiter produces a sharper contact dis-
continuity when it is applied with a Lagrangian-Remap scheme as opposed to
an Fulerian scheme. In contrast, the super limiter favours the unsplit setting
over the split, producing a contact wave spread across 4 cells compared to 5
cells respectively (see Figures 17 and 44).

Regardless of which limiter is used, the results produced using the unsplit
HLLC schemes are void of oscillations. However, the data corresponding to
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the split HLL.C methods show erroneous fluctuations between the shock and
contact waves.

For the Roe scheme, limiter-wise it is visible that there is no obvious
advantage in adopting either the unsplit or the split approaches when con-
sidering accuracy across the shock and rarefraction waves. However, the
Lagrange-Remap results are polluted with large spurious oscillations which
are not visible in the Eulerian data. Moreover, when considering the results
from the Van Leer and superbee limiter, the contact resolution from the split
scheme can be viewed as poor when compared to that of the unsplit scheme.

Interface Tracking Method

The results to tests 1 to 3, generated using the second-order HLLC scheme
with a piecewise linear interface tracking remap procedure, are displayed in
Figures 48 to 53. Figures 48, 50 and 52 show results created using a minbee
slope limiter, while Figures 49, 51 and 53 contain those results produced
using a superbee slope limiter.

The results from test 1, Figure 48 and 49, are directly comparable to
the results in Figures 43 and 44, which were created using the second-order
HLLC Lagrange scheme with a standard piecewise linear remap. As visible
the interface tracking procedure has made a significant improvement to the
solution profile at the interface. In Figures 48 and 49, there is no smearing of
the contact discontinuity. However, in regions away from the interface there
appears to be no difference between the two sets of data. Inparticlar, there
still exits in the density plots, diffusion to left of the contact and an slight
undershoot to the right.

The characteristics of the interface tracking technique are echoed in the
results from tests 2 and 3, see Figures 50 to 53.

8 Conclusions

The main focus of this work has been to numerically solve the Euler equations
for one-dimensional unsteady compressible flow, by employing a finite volume
Lagrange-Remap scheme. The rezoning is carried out at each time step and
the mesh is remapped back to the grid which was used at the initial time
level. The aim was to aquire an insight into whether or not there is any
benefit to employing a split fixed grid scheme (Lagrange-Remap), rather
than an unsplit fixed grid scheme (Eulerian), to solve the governing system
of equations.
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The results from the shock tube problem would seem to suggest that
there is no obvious advantage in adopting a Lagrange-Remap approach over
an Eulerian method. In fact the data would perhaps prompt the reader to
disregard the option of using an split scheme altogether. However, to base
a judgement on the results from one test problem alone would be, at best,
naive. To make a more informed decision, it would be wise to consider a
greater range of test problems in which there were wave interactions and
dimensions greater than one.

The split scheme presents the opportunity to consider the solution for the
sound wave related transport and the advection related transport separately.
It is this authors opinion, that this decomposition offers greater potential
for developing an accurate ‘fixed grid’ solution method, than when faced
with the unsplit scenario. Moreover, in this work the results generated using
the Lagrangian schemes where extremely promising, and in general achieved
greater accuracy than the Eulerian results. It was only when the Lagrangian
schemes were combined with a remap phase, that the results became less
impressive than those from the FEulerian methods. Hence, the remap phase
in this work could be viewed as over diffusive, and this author believes that
an improvement in the rezoning algorithm would lead to the split scheme
results surpassing the unsplit results in terms of accuracy.

For the Eulerian approach the most accurate solution profile was cre-
ated by the flux-limited Roe scheme using the superbee limiter (see Figure
20). The most precise results generated by a Lagangian scheme where those
produced by the HLLC method with wave-by-wave slope limiting using the
superbee limiter (see Figure 26). In terms of the Lagrange-Remap methods,
the most accurate solution profile was created by the HLLC scheme using
wave-by-wave slope limiting with superbee limiter and a piecewise linear
remap (see Figure 44).

The interface tracking procedure of Section 6 has shown to greatly im-
prove the resolution of the solution profile at the material interface. There
is no smearing of the contact discontinuity. However, the method has not
alleviated, from the density profile, the diffusion to the left of the contact and
the undershoot to the right. Furthermore, extension to higher dimensions is
not obvious.

9 Extensions
Areas of future work include a more rigorous testing of the proposed Lagrange-

Remap solution method. This should involve investigating how the schemes
cope with wave interactions, and how the methods can be implemented in
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higher dimensions. In addition, there is scope for improving or even raising
the order of accuracy of the existing Lagrange and Remap phases of the split
scheme. For example, Sims [8] explored a piecewise parabolic (third order
accurate) remap algorithm.

Alternative methods for accurately resolving a material interface in one
and higher dimensions need to be investigated further.
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Figure 12: HLLC Eulerian method applied to test 1. Numerical (dotted line) and exact
(solid line) solutions are evaluated at time 0.2 units.
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Figure 13: Roe Eulerian method applied to test 1. Numerical (dotted line) and exact
(solid line) solutions are evaluated at time 0.2 units.
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Figure 14: MUSCL-Hancock HLLC Eulerian method applied to test 1, with conserved
variable slope limiting using the minbee limiter. Numerical (dotted line) and exact (solid
line) solutions are evaluated at time 0.2 units.
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Figure 15: MUSCL-Hancock HLLC Eulerian method applied to test 1, with conserved
variable slope limiting using the superbee limiter. Numerical (dotted line) and exact (solid
line) solutions are evaluated at time 0.2 units.
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Figure 16: MUSCL-Hancock HLLC Eulerian method applied to test 1, with wave-by-
wave slope limiting using the minbee limiter. Numerical (dotted line) and exact (solid
line) solutions are evaluated at time 0.2 units.

Density Velocity
1 1
0.8 0.8
0.6 0.6
(=X =]
0.4
0.4
0.2
0.2
0
0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
Pressure Internal Energy
35
1
0.8 3
a 0.6 025
0.4
2
0.2
0 15

o
o
)
=}
~
=}
o
o
©
=
o
<}
N
o
i
o
=)
o
©
=

Figure 17: MUSCL-Hancock HLLC Eulerian method applied to test 1, with wave-by-
wave slope limiting using the superbee limiter. Numerical (dotted line) and exact (solid
line) solutions are evaluated at time 0.2 units.
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Figure 18: Flux limited verson of Roe Eulerian method applied to test 1, using the
minbee limiter. Numerical (dotted line) and exact (solid line) solutions are evaluated at
time 0.2 units.
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Figure 19: Flux limited verson of Roe Eulerian method applied to test 1, using the Van
Leer limiter. Numerical (dotted line) and exact (solid line) solutions are evaluated at time
0.2 units.
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Figure 20: Flux limited verson of Roe Eulerian method applied to test 1, using the
superbee limiter. Numerical (dotted line) and exact (solid line) solutions are evaluated at

time 0.2 units.

Figure 21: HLLC Lagrangian method applied to test 1. Numerical (dotted line) and
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exact (solid line) solutions are evaluated at time 0.2 units.
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Figure 22: Roe Lagrange method applied to test 1. Numerical (dotted line) and exact
(solid line) solutions are evaluated at time 0.2 units.
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Figure 23: MUSCL-Hancock HLLC Lagrangian method applied to test 1, with conserved
variable slope limiting using the minbee limiter. Numerical (dotted line) and exact (solid
line) solutions are evaluated at time 0.2 units.
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Figure 24: MUSCL-Hancock HLLC Lagrangian method applied to test 1, with conserved
variable slope limiting using the superbee limiter. Numerical (dotted line) and exact (solid
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Figure 25: MUSCL-Hancock HLLC Lagrangian method applied to test 1, with wave-
by-wave slope limiting using the minbee limiter. Numerical (dotted line) and exact (solid
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Figure 26: MUSCL-Hancock HLLC Lagrangian method applied to test 1, with wave-by-
wave slope limiting using the superbee limiter. Numerical (dotted line) and exact (solid
line) solutions are evaluated at time 0.2 units.
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Figure 27: Flux limited verson of Roe Lagrange scheme applied to test 1, using the
minbee limiter. Numerical (dotted line) and exact (solid line) solutions are evaluated at

time 0.2 units.
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Figure 28: Flux limited verson of Roe Lagrange scheme applied to test 1, using the Van
Leer limiter. Numerical (dotted line) and exact (solid line) solutions are evaluated at time
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Figure 29: Flux limited verson of Roe Lagrange scheme applied to test 1, using the
superbee limiter. Numerical (dotted line) and exact (solid line) solutions are evaluated at
time 0.2 units.
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Figure 30: HLLC Lagrangian method applied to test 1, with piecewise constant remap.
Numerical (dotted line) and exact (solid line) solutions are evaluated at time 0.2 units.
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Figure 31: Roe Lagrange method applied to test 1, with piecewise constant remap.
Numerical (dotted line) and exact (solid line) solutions are evaluated at time 0.2 units.
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Figure 32: HLLC Lagrangian method applied to test 1, with piecewise linear remap.
Numerical (dotted line) and exact (solid line) solutions are evaluated at time 0.2 units.
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Figure 33: Roe Lagrange method applied to test 1, with piecewise linear remap. Nu-
merical (dotted line) and exact (solid line) solutions are evaluated at time 0.2 units.
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Figure 34: MUSCL-Hancock HLLC Lagrangian method applied to test 1, with conserved
variable slope limiting using the minbee limiter, and piecewise constant remap. Numerical
(dotted line) and exact (solid line) solutions are evaluated at time 0.2 units.
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Figure 35: MUSCL-Hancock HLLC Lagrangian method applied to test 1, with con-
served variable slope limiting using the superbee limiter, and piecewise constant remap.
Numerical (dotted line) and exact (solid line) solutions are evaluated at time 0.2 units
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Figure 36: MUSCL-Hancock HLLC Lagrangian method applied to test 1, with wave-by-
wave slope limiting using the minbee limiter, and piecewise constant remap. Numerical
(dotted line) and exact (solid line) solutions are evaluated at time 0.2 units.
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Figure 37: MUSCL-Hancock HLLC Lagrangian method applied to test 1, with wave-by-
wave slope limiting using the superbee limiter, and piecewise constant remap. Numerical
(dotted line) and exact (solid line) solutions are evaluated at time 0.2 units
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Figure 38: Flux limited verson of Roe Lagrange scheme applied to test 1, using the
minbee limiter and piecewise constant remap. Numerical (dotted line) and exact (solid
line) solutions are evaluated at time 0.2 units.
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Figure 39: Flux limited verson of Roe Lagrange scheme applied to test 1, using the Van
Leer limiter and piecewise constant remap. Numerical (dotted line) and exact (solid line)
solutions are evaluated at time 0.2 units.
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Figure 40: Flux limited verson of Roe Lagrange scheme applied to test 1, using the
superbee limiter, and piecewise constant remap. Numerical (dotted line) and exact (solid
line) solutions are evaluated at time 0.2 units.
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Figure 41: MUSCL-Hancock HLLC Lagrangian method applied to test 1, with conserved
variable slope limiting using the minbee limiter, and piecewise linear remap. Numerical
(dotted line) and exact (solid line) solutions are evaluated at time 0.2 units.
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Figure 42: MUSCL-Hancock HLLC Lagrangian method applied to test 1, with conserved
variable slope limiting using the superbee limiter, and piecewise linear remap. Numerical
(dotted line) and exact (solid line) solutions are evaluated at time 0.2 units
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Figure 43: MUSCL-Hancock HLLC Lagrangian method applied to test 1, with wave-
by-wave slope limiting using the minbee limiter, and piecewise linear remap. Numerical
(dotted line) and exact (solid line) solutions are evaluated at time 0.2 units.
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Figure 44: MUSCL-Hancock HLLC Lagrangian method applied to test 1, with wave-
by-wave slope limiting using the superbee limiter, and piecewise linear remap. Numerical
(dotted line) and exact (solid line) solutions are evaluated at time 0.2 units
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Figure 45: Flux limited verson of Roe Lagrange scheme applied to test 1, using the
minbee limiter and piecewise linear remap. Numerical (dotted line) and exact (solid line)
solutions are evaluated at time 0.2 units.
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Figure 46: Flux limited verson of Roe Lagrange scheme applied to test 1, using the Van
Leer limiter and piecewise linear remap. Numerical (dotted line) and exact (solid line)

solutions are evaluated at time 0.2 units.
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Figure 47: Flux limited verson of Roe Lagrange scheme applied to test 1, using the
superbee limiter, and piecewise linear remap. Numerical (dotted line) and exact (solid

line) solutions are evaluated at time 0.2 units.
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Figure 48: MUSCL-Hancock HLLC Lagrangian method applied to test 1, with wave-
by-wave slope limiting using the minbee limiter, and piecewise linear remap. Numerical
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(dotted line) and exact (solid line) solutions are evaluated at time 0.2 units.
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Figure 49: MUSCL-Hancock HLLC Lagrangian method applied to test 1, with wave-
by-wave slope limiting using the minbee limiter, and piecewise linear remap. Numerical
(dotted line) and exact (solid line) solutions are evaluated at time 0.2 units.
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Figure 50: MUSCL-Hancock HLLC Lagrangian method applied to test 2, with wave-
by-wave slope limiting using the minbee limiter, and piecewise linear remap. Numerical
(dotted line) and exact (solid line) solutions are evaluated at time 0.2 units.
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Figure 51: MUSCL-Hancock HLLC Lagrangian method applied to test 2, with wave-
by-wave slope limiting using the minbee limiter, and piecewise linear remap. Numerical
(dotted line) and exact (solid line) solutions are evaluated at time 0.2 units.
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Figure 52: MUSCL-Hancock HLLC Lagrangian method applied to test 3, with wave-
by-wave slope limiting using the minbee limiter, and piecewise linear remap. Numerical
(dotted line) and exact (solid line) solutions are evaluated at time 0.2 units.
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Figure 53: MUSCL-Hancock HLLC Lagrangian method applied to test 3, with wave-
by-wave slope limiting using the minbee limiter, and piecewise linear remap. Numerical
(dotted line) and exact (solid line) solutions are evaluated at time 0.2 units.
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