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Abstract

The formulation of four-dimensional variational data assimilation allows the in-
corporation of constraints into the cost function which need only be weakly satisfied.
In this paper we investigate the value of imposing conservation properties as weak
constraints. Using the example of the two-body problem of celestial mechanics we
compare weak constraints based on conservation laws with a constraint on the back-
ground state. We show how the imposition of conservation-based weak constraints
changes the nature of the gradient equation. Assimilation experiments demonstrate
how this can add extra information to the assimilation process, even when the under-

lying numerical model is conserving.



1 Introduction

Data assimilation for numerical weather prediction (NWP) aims to use information from
observations together with a numerical forecasting model to produce the best estimate of
the state of the atmosphere. Many operational forecasting centres have moved towards
variational assimilation techniques, in which the analysis is found by minimizing a function
measuring the distance between observations and the model state. However since the ob-
servations themselves are insufficient to determine the atmospheric state, extra constraints
must be incorporated into the variational problem. Such constraints fall into two cate-
gories, strong constraints, which must be satisfied exactly, and weak constraints, which
need be only approximately satisfied (Sasaki 1970). Of the first type the most common
approach is to incorporate the numerical model as a strong constraint, so that a sequence
of states over a time interval of observations must satisfy the model equations. This leads
to the method of four-dimensional variational assimilation (4D-Var), which is now opera-
tional in many forecasting centres (Rabier et al. 2000, Laroche et al. 2005, Rawlins 2005).
Of the weak constraints the most common is the requirement that the analysed state be
close to a previous short-range forecast or background field. This leads to the so-called
‘background term’ within the 4D-Var cost function and such a term is now standard in
almost all implementations of 4D-Var.

Other constraints may also be added into the cost function in two ways. The most
common way is the incorporation of linear constraints through the formulation of the
background error covariance matrix. This method is particularly used to enforce balance
conditions within the analysis. Such constraints are specified in the assimilation system by
means of a variable transformation, which is designed to implicitly enforce relationships
between the analysis increments (Parrish and Derber 1992, Cullen 2003). Alternatively
weak constraints may be added as extra terms on the cost function, to enforce balance or
other conditions only weakly. This method has been used to filter high frequency waves
from the analysis or to smooth the final solution (Gauthier and Thépaut 2001, Lin et al.
2002). Other weak constraints can be used to allow for the fact that the model itself is
not perfect (Zupanski 1997, Nichols 2003, Trémolet 2006).

One fundamental aspect of dynamical systems that is not very well exploited in present
data assimilation methods is that of their conservation properties. In many environmental
systems certain quantities are known to be conserved or approximately conserved, for

example potential vorticity in the atmosphere. It is unlikely that we would want an



assimilation system to exactly conserve such quantitites, since if the background value is
in error then the observations should be able to correct it. However we may expect that
information can be gained from weakly constraining these quantities in the assimilation
scheme, since they are unlikely to vary widely between one assimilation cycle and the next.

It may be argued that if the model itself is conserving and we constrain only the
initial state by means of a background term, then implicitly we are also constraining
the conserved quantities. In this paper we consider whether the explicit incorporation of
conservation properties as a weak constraint can add information to a 4D-Var analysis,
even if the model itself is conserving. To study this problem we use a simple Hamiltonian
system, the two-body problem of celestial mechanics. This is a Hamiltonian system with
known conservation properties and so we can test rigorously whether there is any extra
benefit to be gained by making the constraint on the conserved quantities explicit. Initial
results reported in Watkinson et al. (2005) and Watkinson et al. (2006) indicated that
such a weak constraint behaves very differently from a standard background constraint.
Here we provide further numerical evidence that this is the case and detailed analysis
to explain this difference. The paper is organised as follows. In the next section we set
out the mathematical formulation for the incorporation of weak constraints into 4D-Var.
Section 3 presents the two-body problem that we use in this study in its continuous and
discrete formulations. In section 4 we examine in detail the incorporation of a background
constraint and two conservation weak constraints into 4D-Var applied to the two-body
problem. The different formulations are compared numerically in section 5, before we

present our conclusions in section 6.

2 Four-dimensional variational assimilation with weak con-

straints

We begin by presenting a general formulation for the incorporation of weak constraints into
the 4D-Var problem. We consider the continuous problem only, noting that the parallel
theory for the discrete case follows in the same way. We assume that we have a vector

quantity x(¢) which obeys the dynamical system
x = f(x), (1)

where ¢ indicates time, - = % and f is a continuous differentiable function of x, which in

general will be nonlinear. Then given a set of observations over a time window [tg, tn]
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we define a function F'(¢,x,%) which measures the distance between the model trajectory
and the observations. The 4D-Var problem, with only the observation term, can then be
formulated in the following way: Minimize the cost function
in
Jo(x) = /t (% %) @)
subject to the strong constraint (1). Using standard methods of the calculus of variations
(Courant and Hilbert, 1953) we incorporate the strong constraint by defining a Lagrangian
tn
L= t {F(t,x,%) + A()T (x — f(x))}dt, (3)
0
where A(?) is a vector of Lagrange multipliers. Then the solution of the variational problem
is given by the value of x which ensures that the first variation d£ = 0. If we define
G(x, A, %x,A) = F(t,x,%) + A(t)T (x — f(x)), then necessary conditions to ensure 6L = 0

are given by Euler-Lagrange equations

d

Gy — .G = 0, (4)

a-2la =0 5)
A di A 9

where subscripts indicate derivatives. The second of these simply recovers the equations of
the dynamical system (1). The first Euler-Lagrange equation implies the adjoint equations

: of OF dor
A= oA o - 2o 0

where 0f /0x is the Jacobian of f with respect to x. We also must satisfy the boundary
conditions

Aln) =0,  Alto) = 0. (7)

We impose the first of these at the final time ¢). The second boundary condition specifies
that the gradient of the Lagrangian is zero at the initial time.

We now consider the effect on the problem of adding a weak constraint. We consider

a general weak constraint ®(x(tg)), which is a function of x at the initial time. Such a

constraint can be incorporated into the variational problem by defining a new Lagrangian

tn
L= \ Gdt + ®(x(to)), (8)
where the Lagrange multiplier for the constraint is constant and can be taken to be equal to

one without loss of generality. Since this constraint is not integrated over time, the FEuler-

Lagrange equations remain unchanged. However the constraint changes the boundary



conditions for the adjoint problem to give the revised gradient equation at the initial time

5L d®(x(to))
6x(to)  dx(ty)

~ A(to) = 0. (9)

This new gradient equation must be satisfied at the minimum of the weakly constrained
problem.
In view of the background and conservation constraints we wish to compare in this

paper, we restrict our attention to weak constraints of the form

B(z(to)) = %(g(X(to)) — 8(%))" C™ (g (x(to)) — g(xs)), (10)

where x; = x3(tg) is an a priori or background field at the initial time ¢y, g is a vector
function of x and C is a covariance matrix. In this case the gradient equation (9) becomes

oL og
5X(t0) N (’)x(to

T
)) C(g(x(t0)) — g(x8)) — Alto) = 0. (1)

Hence the addition of a weak constraint introduces an extra term in the gradient equation
dependent upon the gradient of the constraint at the initial time. This means that not
only the solution at the minimum will be dependent on the constraint, but so also will
the iteration path taken by any optimization procedure which uses gradient information.
We now illustrate how this can lead to different kinds of solution depending upon how the
weak constraint is formulated. The model we use to study this is the two-body problem

of celestial mechanics, which we introduce in the next section.

3 The two-body problem

The two-body problem describes the motion of two bodies, with masses m1 and meo, in
mutual orbit. In its most general form this gives the trajectories of the two bodies as they
move through space. This can be simplified by the introduction of the reduced two-body
problem. By restating the problem in terms of the position of the centre of mass of the
two bodies and the separation between them, we can manipulate Newton’s equations of
motion such that the full two-body problem becomes an equivalent one body problem

(Kibble 1985, Section 7.1). If we consider the problem in a centre of mass frame we can

mimo
mi-+ma

formulate an equivalent problem in which a body of reduced mass u = orbits a
fixed body of mass M = my + ms. In this case the motion is restricted to a plane.
This system is much simpler to solve than the full two-body problem, and in addition

obeys Kepler’s laws, which describe the motion of the planets in the solar system. Although



planetary motion is not exactly described by a reduced system, in the case where a small
body such as the Earth orbits a large body such as the sun, the reduced problem and
the full system are very similar and Kepler’s laws apply to the reduced problem. These
laws provide extra qualitative information about the system being modelled and can be

summarized as follows (cf. Acheson 1997, p.71):
e The shape of an orbit is a conic section with the centre of mass at one focus.

e A line from the orbitting body to the fixed body will sweep out equal areas in equal

times.

e The square of the period of the orbit is proportional to the cube of its semi-major

axis.

It is the aim of this paper to understand the value of incorporating such information into

the data assimilation problem.

3.1 The continuous system

The equations for the reduced two-body problem can be written in a coordinate system
centred on the fixed body of mass M, so that only the motion of the reduced body need

be considered. Using non-dimensionalised variables we define the position vector of the

orbitting body q = (g1, ¢2)” and its corresponding momentum vector p = (py, p2)?. This

system is a Hamiltonian system, where the Hamiltonian F is given by the total energy

E(q,p) = 5 (p} +p3) — (12)

N | =

—-
(g7 +a3)>
The Hamiltonian is conserved in time. The equations of motion can then be derived from

the canonical equations
dq OF dp OF

i = -, 13
dt  op’ dt oq (13)
This gives the non-dimensional system equations
dq
= = 14
& P, (14)
dp q
— = - (15)
di lall®
where ||q|| = (q- q)%. The system also conserves angular momentum L given by
L(q,p) = q1p2 — p1go- (16)

Kepler’s second law follows directly from this conservation principle.



3.2 The discrete model

When discretizing a Hamiltonian system it is important not only to reduce the local trun-
cation error, but to preserve the global qualitative features of the system being modelled,
such as conservation laws or symmetries. Symplectic integration schemes for Hamiltonian
problems are designed to ensure that the conservation properties of the continuous system
are preserved in the discrete model. The scheme we use for modelling the two-body prob-
lem is the Stormer-Verlet scheme, which is a second-order accurate symplectic method.
This scheme has previously been used to model similar Hamiltonian systems (Budd and
Piggott 2000, Leimkuhler and Reich 2001). We define the position vector of the discrete
system Q = (Q1, Q2)T and the discrete momentum vector P = (Py, P;)T. Then applying
the Stormer-Verlet scheme to the equations of the reduced two-body problem (14) and

(15) we obtain the discrete system

L E%, (17)
2(QF + Q)

Qn+1 — Q’n + th+%; (18)
n+1

Pn+1 — Pn+% _ ﬁ Q (19)

2 (Q71“H-12 + Q3+12)§ ’
where h is the non-dimensional time step.

In order to demonstrate the conservation properties of this scheme we run the model
from the initial conditions Q = (1,0),P = (0,1), taken from Budd and Piggott (2003).
The analytical solution with these starting values is a circular orbit with a period of 27
and a radius of one. For a time step of A = 0.001 we verify that the error in the energy
compared to the constant analytical value remains small. In Figure 1 we show the error
in the energy over two orbits for a circular orbit (eccentricity = 0) and an orbit with
eccentricity equal to 0.5. We note that the scales on the two plots are different. For
the circular orbit the energy is almost exactly conserved, with the error of the order of
machine precision. As the eccentricity is increased there is a greater error in the energy
conservation, of the order 10~7, except at one point in the orbit. This corresponds to the
point of closest approach, which for this experiment is the point of the initial conditions.
At this point the energy returns to its initial value, due to the symmetry of the problem.
For elliptical orbits started away from the point of closest approach the error increases
slightly at the point of closest approach on the orbit. Schemes with varying time steps
must be then used if the error is to be reduced at all points on the orbit. These results

are discussed in more detail in Watkinson et al. (2005) and Watkinson (2006). For the



purpose of studying the behaviour of weak constraints in 4D-Var we do not need the
complication of large ellipticities and so we may restrict ourselves to circular orbits. We
are therefore confident in using the Stormer-Verlet scheme in our tests. Before presenting
the results from numerical tests we examine how weak-constraint information from the

two-body problem may feed into a 4D-Var assimilation.

4 Weak-constraint 4D-Var for the two-body problem

We now examine the formulation of different weak constraints as applied to 4D-Var for
the two-body problem. As in section 2 we present the theory only for the continuous
case. We wish to compare a standard constraint on the background field with a weak
constraint on the energy or angular momentum. Each of these can be expressed in the
form of the general constraint (10) with an appropriate definition of g(x). We consider

first a weak-constraint term on the background field itself, which we define as
1 _
Jp = 5(x — xp) B (x — xp). (20)

This is in the form (10) if we define g(x) = x and C = B. Then applying the derivation
of Section 2 we find that this constraint will introduce a term in the gradient equation
equal to

VJy =B (x —xp) (21)

and for the two-body problem this is equal to

1| 1Y) (22)
P—DPy

Hence for the standard background constraint the extra gradient term depends only on
the difference between the components of the current state x and those of the background
state xp. Through the presence of the background error covariance matrix each component
of the gradient vector depends on a linear combination of these differences. However, since
the matrix B is usually independent of the state vector, the only dependence on x comes
from the componentwise differences from the background state. For the reminder of this

paper we consider an inverse background error covariance matrix B! = oy I, where o is

a scalar. Then the extra gradient term becomes

Vdy = a1(x — xp)- (23)



We now consider the effect of including the Hamiltonian, or total energy, as a weak

constraint. We define a weak-constraint term

Jg = %az(E(q, p) — E(qy, ps))* (24)

where E(q,p) is defined by (12) and as is a scalar. Again this is of the form (10), where
g(x) is now the scalar function E(q,p) and C~! = asl. The gradient equation for this

constraint then contains the term

0F/0q
VJg = a2(E(q,p) — E(as, Pe)) : (25)
OFE/0p
Using the canonical equations (13) we see that this is equal to
VJp = as(B(a,p) - Elanps) | | (26)
q
where the dot indicates the total time derivative. We see therefore that when the Hamil-
tonian is used as a constraint the gradient depends not only on the energy difference from
the background, but also on the time derivative of the current model solution. The gra-
dient with respect to the position variables depends on the rate of change of momentum
and similarly the gradient with respect to the momentum variables depends on the rate
of change of position. Whereas the gradient term arising from a background constraint
depends on variables at one particular time only, that arising from the Hamiltonian con-
straints depends on the model time tendency at that time. Hence we may expect these
two constraints to act differently within the data assimilation system. From the structure
of (25) and the canonical equations we see that for 4D-Var applied to any Hamiltonian
system, adding a weak constraint on the Hamiltonian will give gradient components in
the direction of the model tendencies.
The final constraint we consider is a weak constraint on the angular momentum, of

the form
1
Jo = gos(L(a,p) - L(ap, pb))?, (27)

where L is the angular momentum defined by (16) and a3 is a scalar. The gradient term

introduced by this constraint is equal to

D2
VJp = as(La,p) - Lianpy) | |- (28)
—q2

q1
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For this constraint the gradient depends on the angular momentum difference from the
background and on the actual values of the trajectory. The gradient with respect to
position has a component in the direction defined by the momentum coordinates and
the gradient with respect to momentum has a component in the direction defined by
the position coordinates. We now study the effect of these differences in some numerical

experiments.

5 Numerical experiments

To examine how the different weak constraints affect a 4D-Var analysis we set up a 4D-
Var system for the two-body problem presented in Section 3. We consider a discrete
formulation of the cost function introduced in Section 2, which we write in the standard
form
1
Jo(x0) = 5 D (i — hi(x:) Ry M (yi — hi(xi), (29)
i=0
where y are the observations at time ¢;, h; is the observation operator and R is the
observation error covariance matrix. The cost function is minimized with respect to the
initial state xg, subject to the discrete model equations described in Section 3.2. Discrete
equivalents of the weak constraints described in Section 4 can be added in turn to this
cost function. The adjoint model for the system is generated from the discrete numerical
model using the approach of automatic differentiation (Giering and Kaminski 1998). The
code is verified by using the standard adjoint test and gradient test (Watkinson 2006, Li
et al. 1994). The discrete cost function is minimized using the quasi-Newton method of
the CONMIN algorithm (Shanno and Phua 1980)

For each of the experiments described the true solution is found by running the model
with the same initial conditions as in Section 3.2, with a model time step of 0.001. The
solution trajectory is a circular orbit of radius one. Identical twin assimilation experiments
are carried out using observations taken from the true trajectory with a random Gaussian
error of variance 10~%. The assimilation time window is taken to be 7 time units, which
corresponds to half of an orbit, and a forecast is run for a further four complete orbits from
the end of the assimilation window. Observations are taken of the whole model state at the
end of the assimilation window and halfway through the window, so that the observation

operator is equal to the identity matrix at each of these times. As in Watkinson et al.

(2005) the 4D-Var minimization is stopped when all of the following conditions hold (Gill
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et al. 1986, p.306):

[Tk — Ji| %k-1 = Xklla _ 1 [V T ll2

<e TR TRZ o5
1+ | Jg|

1+ |Jg ’
where k is the iteration number, J; is the sum of J, and the constraint term evaluated at

the iterate x;, and € is a tolerance which we choose to be 1076.

5.1 Perfect background

For the first set of experiments we take the background field x; to be equal to the true
solution at the initial time. Although this is unrealistic, since in practice it is the truth
we are trying to estimate, these experiments allow us to study cleanly the different be-
haviours of the weak constraints. The initial guess for the 4D-Var minimization is a small
perturbation to the truth, perturbed in such a way as to have an incorrect energy and
angular momentum. We examine first the effect of a weak constraint on the background
field itself, as described by (20). In Figure 2 we plot the root mean square error of the
state vector during the assimilation and forecast period for experiments with only the
observation term and with various weightings of the background weak constraint. For the
case in which no weak constraint is applied we see that the error has a tendency which
increases with time, with an oscillating error pattern superimposed. As the background
constraint is applied with increasing weight both of these errors are reduced. However it
appears that the background constraint is more efficient at surpressing the oscillations;
the divergence with time is still present with the highest value of the weighting «;.

In Figure 3 we see the same experiment performed with the background constraint
replaced by a weak constraint on the energy, as defined by (24). Different weightings are
chosen from those used for the background constraint to ensure that the relative weight
of the observation and constraint term is similar for both constraints. For the energy
constraint the behaviour is different from the background constraint as the weighting
is increased. In this case the oscillations are not smoothed out as they were for the
background constraint, even for high values of as. However we see that for the highest
value of the weighting the divergence of the error with time is removed. If we use a weak
constraint on the angular momentum (27) then the error plot is almost identical to that
of the energy constraint shown in Figure 3.

To explain the difference in behaviour between the constraints we must consider the
sources of the two different types of error we see in the unconstrained solution, the growth

over time and the oscillations. As discussed in Watkinson et al. (2005), the increase in
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the error over time is a result of the analysed and true orbits being out of phase with
each other. Thus we can conclude that the period of the analysed orbit is in error from
the true solution. From Kepler’s third law this implies an error in the length of the semi-
major axis. On the other hand the oscillations in the error curves can be explained by
considering the comparison of two solutions with the same semi-major axes but different
eccentricities. Two such solutions would have the same period and therefore will always
be at the same point on the orbit, but the difference between them will be smaller as they
pass the points of closest and furthest approach. This can be seen more clearly from the
diagram in Figure 4.

Having understood these different sources of error we can now see more clearly why
the different weak constraints behave in the way they do. Application of the background
constraint was found to give an analysis error which was less oscillitory while still increasing
with time, though more slowly. This means that it constrains well the ellipticity of the
solution and provides some constraint on the period. By constraining the initial values
of position and momentum the background weak constraint ensures that the path of the
analysed orbit follows approximately the same shape as the background orbit, that is that
it has the same ellipticity.

On the other hand, for the energy weak constraint we found that the analysis error
no longer increased with time, but that the oscillations did remain. This indicates that
this constraint acts to improve the period of the solution, while having less effect on the
error in ellipticity. We can understand this by noting that the length of the semi-major
axis of the orbit depends solely on the energy (Goldstein 1959, p.79) and from Kepler’s
third law the period of the orbit is directly related to the length of the semi-major axis.
Hence a constraint on the energy constrains the length of the semi-major axis, and hence
constrains the period of the orbit.

For the angular momentum weak constraint the numerical results were very similar to
those of the energy constraint, with an improvement in the period of the analysed orbit
but little change in the eccentricity. We can explain this with reference to Kepler’s second
law, which is a direct consequence of the conservation of angular momentum. This law
states that a line from the orbiting body to the centre sweeps out equal areas in equal
times. We can therefore infer that a change in the semi-major axis would change the area
being swept out. By constraining the angular momentum we constrain the area that is

swept out in a given time and thus constrain the length of the semi-major axis. Hence, as
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for the energy constraint, the period of the orbit is constrained.

From these results with a perfect background constraint we can understand how the
different formulations of the weak constraint affect the analysis in different ways. As we
presented in Section 4 a weak constraint on the background field introduces a term in the
gradient which depends on the difference in components of the state vector and this acts
to control the shape of the final orbit. The energy constraint was shown in Section 4 to
give a gradient term which depends on the difference in the total energy and this acts to
control the period of the orbit. In a similar way a constraint on the angular momentum
also controls the period, by means of a gradient term dependent upon the error in angular
momentum.

In some ways these results may seem surprising. The model itself conserves energy and
angular momentum and so we may expect that by constraining the initial state, we are
also constraining the energy and angular momentum over the time window. Nevertheless
it appears that the use of an explicit constraint on the conserved quantities gives extra
information which is not provided by the use of the model alone. The performance of the
4D-Var assimilation system can be improved by making explicit use of the information
which is implicitly contained within the system dynamics. However the experiments pre-
sented so far assume that the background state is equal to the true state, which would
not be the case in practice. We now look at the effect of the constraints where we have a

more realistic background field.

5.2 Noisy background

We now consider adding the different weak constraints to the cost function when the
background field is not equal to the truth. We use the same experimental design as in the
previous section, with an assimilation window of length 7 and observations of the complete
state vector at times 7/2 and . However we now use a background state obtained by
adding random, Gaussian noise of variance ag = 107 to the truth. We recall that this
is the same variance as the observational noise. The background energy and angular
momentum are calculated from this noisy background state. With such a background we
must now take account of the background errors within the cost function, so the weak
constraints are now weighted according to the appropriate error covariance. Thus the

background constraint becomes
Iy = (x — x3)TB 1 (x — xp), (31)
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where B = afI.
For the energy and angular momentum constraints we must calculate the variance from

the variance of the background. Thus the energy constraint becomes

Jg = %(Em,p) ~ Bl p)’ (32)

where the variance o% is defined by

o5 = Vi, E(x(t0)) s (33)

and s = (O'g, ag,ag,ag)T. The angular momentum constraint has a similar form to the

energy constraint. We add a term to the cost function of the form
1
I = —5 (L(xp(to)) — L(x(t)))?, (34)
L

where the variance 0% is defined by
0% = Vi, L(x(to))"s. (35)

We consider the effect of these constraints individually and their combined effects.

In Figure 5 we show the evolution of the error for the experiments with only a back-
ground constraint, only an energy constraint and the combination of both these con-
straints, for a noisy background field. The curve for the experiment with no constraints is
exactly the same as in the previous section. We consider first the background constraint.
We see that as with the perfect background constraint there is some improvement to the
divergence of the solution with time and hence to the period of the analysis. There is also
some improvement to the oscillations in the error, and hence the ellipticity of the solution,
though the effect is smaller than that seen when using a perfect background. The noise
on the background means that the background state can only constrain the ellipticity to
within the error of the background and thus some oscillations still appear in the error
field.

For the energy constraint we see that there is some improvement in the period of the
solution, but almost no improvement in the ellipticity. This is consistent with the results
from the experiments using a perfect background. However when both constraints are
applied together we see that the error is less than when either is applied individually.

When the angular momentum constraint is applied then, as for the case with the
perfect background, the results appear identical to those of the energy constraint. Thus

it would appear that, as with the perfect background, the angular momentum constraint
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is not providing any extra infromation which is not present in the energy constraint. To
test this hypothesis we compare the effect of using all three constraints together with
an experiment using the background constraint plus twice the energy constraint. The
resulting error plot is shown in Figure 6. We see that the errors for these two experiments
are equal. The addition of the angular momentum constraint is equivalent to doubling
the weight on the energy constraint. Thus, consistent with our previous experiments, we
conclude that the angular momentum and energy constraints act in the same way, that is

both act to constrain the period of the analysis.

6 Conclusions

When assimilating data into a dynamical system it is important to incorporate as much
knowledge of the system as possible into the assimilation process. Most modern assimila-
tion methods make good use of the system dynamics and of dynamical balance relation-
ships. However knowledge of the conservation laws of the system is usually incorporated
only implicitly through the system equations. In this study we have investigated the value
of imposing information about these conservation laws explicitly as a weak constraint.
A theoretical analysis of such weak constraints in the context of the two-body problem
showed that they lead to terms in the gradient equations quite different from those pro-
duced by a constraint on the background state, with gradient components in different
directions. In particular, for both the energy and angular momentum constraints the gra-
dient with respect to position coordinates had a component in the direction determined
by the momentum, and vice versa.

In numerical experiments this difference in the formulation of the constraints was shown
to constrain the geometry of the analysis in different ways. The background constraint
acts more to constrain the ellipticity of the orbit, whereas the use of global conservation
constraints was better able to constrain the period. The combination of both types of con-
straint leads to a better analysis and forecast than either constraint applied individually.
Hence, even though the dynamical model itself conserves energy and angular momentum,
we have shown that a weak constraint on these quantities can add information which is
not available by constraining the background state alone. Although the dynamical system
used for this study is very simple, it has revealed how the use of conservation properties as
weak constraints can change the nature of the 4D-Var assimilation, by acting to constrain

global properties of the system. In a future paper we will extend our analysis to a more
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complex problem in which different scales of motion are present, the planetary three-body

problem.
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Figure 1: Difference between the true energy (calculated analytically) and the energy from

the numerical model for (a) a circular orbit and (b) an orbit of ellipticity 0.5.
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Error

Figure 2: Plot of RMS analysis and forecast error for experiments with no constraint
(solid line) and a perfect background constraint with weights a; = 2 x 10® (dashed line),
a1 = 2 x 10* (dotted line) and a; = 2 x 10° (dot-dashed line). The vertical line indicates

the end of the assimilation window.
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Error

Figure 3: Plot of RMS analysis and forecast error for experiments with no constraint (solid
line) and a perfect energy constraint with weights ap = 2 x 10* (dashed line), ag = 2 x 103
(dotted line) and as = 2 x 10° (dot-dashed line). The vertical line indicates the end of

the assimilation window.
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Figure 4: Mlustration of the effect of comparing orbits with two different eccentricities.

23



Error

Time

Figure 5: Plot of RMS analysis and forecast error for experiments with no constraint
(solid line), a noisy background constraint (dotted line), a noisy energy constraint (dashed
line) and both constraints (dot-dashed line). The vertical line indicates the end of the

assimilation window.

24



Error

Time

Figure 6: Plot of RMS analysis and forecast error for experiments with no constraint
(solid line), a noisy background constraint (dashed line), background, energy and angular
momentum constraints (dotted line) and background constraint plus twice the energy

constraint (dot-dashed line). The vertical line indicates the end of the assimilation window.
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