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Abstract

Shallow water �ows through open channels with varying breadth are

commonly modelled by a system of one�dimensional equations� despite the

two�dimensional nature of the geometry and the solution� In this work

steady state �ows in converging	diverging channels are studied� in order

to determine the range of parameters 
�ow speed and channel breadth� for

which the assumption of quasi�one�dimensional �ow is valid� This is done

by comparing both exact and numerical solutions of the one�dimensional

model with numerical solutions of the corresponding two�dimensional �ows�

and it is shown that even for apparently gentle constrictions� for which the

assumptions from which the one�dimensional model is derived are valid�

signi�cant di
erences can occur� Furthermore� it is shown how the nature

of the �ow depends on the manner in which the boundary conditions are

applied by contrasting the solutions obtained from two commonly used

approaches�

�This work has been carried out as part of the Oxford�Reading Institute for Computational

Fluid Dynamics and was funded by EPSRC�

�



� Introduction

For speed and simplicity� one�dimensional models are often used in the modelling

of two�dimensional shallow water �ows� An example of this is the prediction of

the steady �ow through an open channel with variable breadth� However� the

validity of the one�dimensional model is limited by the assumptions made in its

derivation and its accuracy is bound to decrease as the variations in the channel

geometry become more severe and the transverse acceleration introduced into the

�ow gains in signi�cance� Not only are there quantitative di�erences between the

one� and two�dimensional solutions� but the �ows obtained may also exhibit major

di�erences in their qualitative features� di�ering predictions of the existence of

hydraulic jumps� for example�

In this work we examine the range of �ow parameters ��ow speed and size of

constriction	 for which the one�dimensional model of steady state shallow water

�ow through a channel of varying breadth accurately represents the full two�

dimensional solution� The investigation is used to highlight the limitations of the

one�dimensional model as well as to point out those quantities that it is able to

predict accurately� especially when the �ow exhibits genuinely two�dimensional

features and the assumptions underlying the one�dimensional model break down�

Close examination of the mathematical and numerical models also reveals the

dramatic e�ect that changing the form of the boundary conditions can have on the

solution� so the results obtained from two commonly�used boundary procedures

have been compared in order to illustrate this�

The one� and two�dimensional shallow water models employed are described

in Sections 
 and � respectively� In one dimension a brief derivation of a family of

exact solutions to the equations is also given� The comparison between the two

di�erent models is carried out in Section � using state of the art numerical tech�

niques to obtain the approximate solutions� This is followed by brief conclusions

about the validity of the simpler model�






� The one�dimensional model

In one dimension� shallow water �ow through an open channel of rectangular

cross�section and variable breadth can be modelled by the equations

�
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�
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in which d represents the depth of the �ow� u is its velocity� B � B�x	 is the

variable breadth of the channel and g is the acceleration due to gravity �see� for

example �
� for their derivation	� Essentially� Equation �
��	 can be derived from

the more general� two�dimensional shallow water model under the assumption

that Bx � O��	 for �� �� so that the transverse acceleration of the �ow is neg�

ligible in comparison with the longitudinal acceleration� In these circumstances

the variables d and u are considered to be breadth�averaged quantities� Only

steady state solutions are considered in this work� for which the time derivatives

are zero� They are only included in �
��	 because they are often used as a numer�

ical device to converge to steady solutions� as is done in the schemes of Section �

which provide the approximate solutions�

Exact steady state solutions of �
��	 are simple to construct �see for example

��� and related work in which the source terms represent variable bed topography

��� ��	� For a converging�diverging channel with continuously varying breadth

the steady solutions of �
��	 can be divided into four categories�

A� continuous � purely subcritical �possibly critical at the most narrow point

of the channel� the throat	�

B� discontinuous � subcritical at in�ow� passing smoothly to supercritical at

the throat� then back to subcritical via a stationary hydraulic jump in the

diverging region of the channel� remaining so until out�ow�

C� continuous � subcritical at in�ow� passing smoothly to supercritical at the

throat of the channel� and remaining supercritical to out�ow�

D� continuous � purely supercritical �possibly critical at the throat	�

�



The particular form taken by the steady solution depends on the boundary condi�

tions which are applied at the entrance and the exit of the channel section being

modelled�

The simplest cases are A and D� Integration of the steady equations leads s�

traightforwardly to two quantities which remain constant throughout the channel�

These are the total discharge

Q � Bdu � �
�
	

and the total head

HT �
u�


g

 d �

Q�


gB�d�

 d � �
��	

Given that values for Q and HT can be deduced from the boundary conditions�

combining �
�
	 with �
��	 leads to

d� �HTd
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an algebraic equation relating the depth of the �ow d to the local channel breadth

B� This has a pair of physically admissible �positive	 solutions for d� one repre�

senting subcritical �ow and the other supercritical �ow� on condition that
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for all values of B in the given channel geometry� where Fin � uin�
p
gdin is the

local Froude number speci�ed at in�ow� The solution which is chosen by the

equations �
��	 depends on the boundary conditions applied �unless both Q and

HT are speci�ed� in which case the choice remains open	�

When equality holds in �
��	 for some value of B within the channel geometry

the �ow becomes critical for the values of Q and HT implied by the boundary

conditions� However� any critical point of the �ow must lie at the throat of the

channel so� unless equality is satis�ed there� the inlet values of Q and�or HT

change automatically to satisfy the boundary condition at in�ow and the critical

condition at the throat �F � � when B � Bmin	� The �ow is then of type B or C�

Furthermore� the variation of the Froude number upstream of the critical point

in such situations is uniquely de�ned� being the subcritical solution �� � F � �	

of the equation

F �

�
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This implies that the Froude number at in�ow is �xed by the channel geometry�

taking the same value whenever the solution is transcritical �so F is not a practical

choice for speci�cation as an in�ow boundary condition	� The new values of Q

and HT for the smooth region of the �ow which surrounds the critical point can

be calculated by combining the subcritical in�ow boundary condition with this

in�ow Froude number�

Downstream of the critical point� the �ow type �B or C	 is determined by the

out�ow boundary conditions� Initially� since the �ow is continuous through the

critical point� the solution retains the upstream values of Q and HT but switches

to the supercritical branch of �
��	 downstream of the throat� If no jump occurs

the supercritical solution values found using �
��	 are retained throughout the

rest of the channel�

When a stationary hydraulic jump occurs �which must always be from super�

critical �ow to subcritical �ow	� equations �
��	 lead to two quantities which are

continuous across the jump� These are given by

�du� � � and
�
du� 
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gd�
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The �rst of these� together with �
�
	� implies that Q is constant throughout the

domain for any steady �ow� but from the second and �
��	 it is clear that there

is a jump in HT when the �ow is discontinuous� Thus the �ow downstream of a

stationary hydraulic jump is determined by the value of Q which has been calcu�

lated for the transcritical upstream �ow and the boundary condition speci�ed at

out�ow�

Combining the two expressions �
��	 leads to a relationship between the

branches of the solution on either side of the jump� given by

d� �
d�
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� 
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� � �
�
� �
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in which d� is the depth immediately downstream of a discontinuity� while d�

and F� are the depth and local Froude number immediately upstream� The �ow

sustains a stationary hydraulic jump if

�d�	out � dout � din �
��	

�



where �d�	out is calculated using �
��	 together with the assumption that the

jump occurs at the furthest downstream point of the constriction� Given the

boundary conditions and the critical condition� �which imply the values of Q and

HT the solution on either side of the discontinuity can be calculated from �
��	�

so it remains to �nd the point within the constriction at which condition �
��	 is

satis�ed� Both the upstream and downstream values of total head �HT
�

and HT�

respectively	 are known� and the upstream Froude number at the jump �F�	 can

be found by solving iteratively the equation

���HT
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which can be deduced from the jump conditions �
��	� The position of the jump

is then found by combining �
���	 with �
��	�

One important point to note here is the e�ect which the choice of bound�

ary condition has on the solution� In numerical calculations a wide variety of

conditions are applied� two of the most commonly used forms being

�� Q speci�ed at subcritical in�ow� d at subcritical out�ow�


� R� speci�ed at subcritical in�ow� R� at subcritical out�ow� where R� �

u� 

p
gd are the Riemann invariants of the homogeneous system�

At a supercritical in�ow boundary all solution variables are speci�ed� while noth�

ing is speci�ed at supercritical out�ow�

Figure 
�� illustrates the type of solution obtained using both sets of boundary

conditions� Note its close resemblance to Figure � of ��� which was constructed

in a similar manner for channel �ows with variable bed topography instead of

variable breadth� The �ow parameters which have been speci�ed are Bmin� the

minimum breadth of the channel �the shape of the channel need not be speci�ed

yet	� and Fin� the �initial� Froude number of the �ow �the in�ow Froude number

proposed before any adjustments are made to Q and HT due to the onset of

transcritical �ow	� The latter� along with the condition that the �initial� depth is

given by din � ���� determine the values of the variables chosen to be prescribed

at in�ow and out�ow boundaries �and also the initial conditions required by

�
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Figure 
��� Types of exact solution to constricted channel �ow test cases given

di�erent boundary conditions�

the numerical schemes in Section �	� The solid line in the �gure indicates the

transition between smooth �ow� type A or D� and transcritical �ow� type B or C�

the broken�dotted lines represent the transition from discontinuous type B �ow

to smooth type C �ow� Note that for supercritical �initial� Froude numbers these

three curves coincide�

When Fin is subcritical the transition to transcritical �ow is independent of the

type of boundary conditions applied but� particularly for the more severe channel

constrictions� it is noticeable that type 
 boundary conditions are far more likely

to sustain discontinuous �ow� This di�erence in behaviour may well be due to

the inhomogeneous nature of the equations �
��	� and the consequence that the

Riemann invariants are not constant along characteristics� This suggests that

type � boundary conditions should be used� simply to facilitate comparison with

experiment where Q and d are both measurable� The solutions depicted in Figure


�
 con�rm this� Although there is little di�erence to be seen between the depth

pro�les when Bmin � ���� the more extreme case shows very little resemblance

between the solutions� Even though one would not expect an accurate prediction

by the one�dimensional model for such a narrow constriction� this still suggests

�
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Figure 
�
� Exact solutions for di�erent boundary conditions� Bmin � ���� Fin �

���� �left	� Bmin � ���� Fin � ��� �right	�

that type � boundary conditions should be used�

� The two�dimensional model

In two dimensions� the shallow water equations are given in conservative form by

Ut 
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in which d is the depth of the �ow� u and v are the x� and y�velocities of the �ow

respectively� and g is the acceleration due to gravity� The e�ects of the varying

breadth of the channel are applied solely by the shape of the domain over which

these equations are solved and the boundary conditions which are applied so�

unlike the one�dimensional model� these equations have no source terms�

�



� Numerical results

The one�dimensional numerical scheme used in this work combines Roe�s approx�

imate Riemann solver ����� as applied to the shallow water equations �
��	 �����

with the minmod limiter ��
� within a MUSCL algorithm ����� together with a re�

cently developed upwind discretisation of the source term ���� In two dimensions�

the discretisation used is the multidimensional upwind method of Mesaros and

Roe ��� ��� applied to the shallow water equations� ����	 and ���
	� on unstructured

triangular grids ����

For the purposes of this comparison� each of the results presented is for a

channel of length � units which has a symmetric constriction of length � unit at

its centre whose breadth is given by

B�x	 �


��
�


���� ���� �Bmin	 cos����x� ���		 for jx� ���j � ���

��� otherwise �

����	

where Bmin is the minimumchannel breadth and x is the distance into the channel

�so the throat is positioned at the midpoint of the constriction	� In the two�

dimensional case the constriction has been chosen for simplicity to be represented

by symmetric indentations on either side of the channel �as illustrated in Figure

���	� Whilst alternative constructions undoubtedly alter the �ow in some way�

their e�ect on the comparison with one�dimensional results is not signi�cant�

Each of the one�dimensional numerical solutions is obtained on a uniform ��

node grid� giving comparable resolution to the two�dimensional grids used� each

of which has been constructed using a simple advancing front technique �see for

example ���	 with an underlying mesh spacing parameter of ����� The initial

conditions for each numerical experiment �in which the steady state solution is

achieved by approximating the evolution of the time�dependent shallow water

equations �
��	 with steady boundary conditions and converging to the steady

state from the initial conditions as t � �	 were d � ��� and F � Fin� with

v � ��� in two dimensions�

Figure ��� shows how well the one�dimensional numerical results agree with

the theory �as illustrated in Figure 
��	 in terms of the parameter values �Bmin

�
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Figure ���� Types of one�dimensional numerical solution to constricted channel

�ow test cases with boundary conditions of type � �left	 and type 
 �right	�

and Fin	 at which transition occurs between the di�erent types of steady solution

obtained� Di�erent symbols have been used to indicate the types of solution �A�

D	 predicted by the numerical scheme� Regions of the graph have been left empty�

but the solution type is implied by the symbol on the boundary of the region�

�Note that with the more commonly used approximations to the source terms�

such as a simple pointwise evaluation� the agreement with theory is less close� In

some cases they can predict unphysical phenomena� such as a continuous steady

state which is supercritical at both in�ow and out�ow but has a subcritical region

around the throat of the channel�	

The corresponding two�dimensional numerical results are shown in Figure

��
� In this case� type � boundary conditions correspond to specifying du and

setting v � � at subcritical in�ow and d at subcritical out�ow� type 
 boundary

conditions being whereR� � u


p
gd and v � � are speci�ed at subcritical in�ow

and R� � u � 

p
gd is given at subcritical out�ow �where it has been assumed

that these boundaries are parallel to the y�axis	� It is immediately clear that the

multidimensional nature of the geometry has a signi�cant e�ect on the solution�

the di�erences occurring whenever the two�dimensional �ow is not smooth� This

includes every steady state which has some supercritical component �cf� Figure

���	� As expected� the more narrow the constriction the greater the e�ect� but

even the smallest indentation allows a steady state solution which is supercritical

��
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Figure ��
� Types of two�dimensional numerical solution to constricted channel

�ow test cases with boundary conditions of type � �left	 and type 
 �right	�

at both in�ow and out�ow but has a subcritical pocket within the constriction�

In two dimensions there are �ve di�erent types of solution which may occur�

a	 Smooth and purely subcritical�

b	 Subcritical at in�ow and out�ow� critical at the channel throat� with a

steady discontinuity in the diverging region of the channel�

c	 Smooth �apart from the oblique jumps in two dimensions	� subcritical at

in�ow� critical at the throat� and supercritical at out�ow�

d	 Smooth in one dimension� supercritical at in�ow and out�ow� with oblique

jumps and a subcritical region in the constriction for two�dimensional �ow�

e	 Smooth in one dimension and purely supercritical in every case�

This corresponds to the one�dimensional situation� with the addition that case D

of Section 
 has now split into two cases� d	 and e	�

Interestingly� the type of solution generated in two dimensions no longer de�

pends to any great extent on the type of boundary condition which has been

employed� �There is only one di�erence between the two graphs of the numer�

ical results in Figure ��
� at Bmin � ��
� Fin � ����	 This close resemblance

may well be due to the fact that� unlike the one�dimensional system� the two�

dimensional equations are homogeneous� Quantitatively though� there is still a

��
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Figure ���� Comparison of depth for Bmin � ��� and Fin � ��� with boundary

conditions of type � �left	 and type 
 �right	�

Figure ���� Depth contours for Bmin � ��� and Fin � ����

considerable di�erence between the corresponding steady state solutions� partic�

ularly in the more extreme cases� This is illustrated in Figure ��� in which an�

alytical and numerical solutions to the one�dimensional equations are compared

with breadth�averaged numerical solution values obtained in two dimensions� The

depth contours shown in Figure ��� for type 
 boundary conditions illustrate the

two�dimensional nature of the highly curved hydraulic jump in this case�

For type � boundary conditions there is also a noticeable di�erence at in�ow

between the one� and two�dimensional solutions� The agreement becomes closer

at the upstream boundary as the channel is extended away from the constriction�

suggesting that the assumption which has been made that the �ow is uniform

along the whole of each subcritical in�ow and subcritical out�ow boundary is

invalid� The advantages of using type � boundary conditions are retained from one

�
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Figure ���� Comparison of discharge for Bmin � ��� with initial Froude numbers
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dimension� but there is a stronger argument for using type 
 boundary conditions

in two dimensions since they are considerably more robust when the transverse

variation of the solution is not accounted for at the boundary�

Figure ��� shows each of the �ve di�erent types of solution obtained for a less

extreme channel geometry using type � boundary conditions� The corresponding

contour plots of depth for the two�dimensional solutions are shown in Figure ���

�subcritical regions have been shaded to distinguish them	� In order to illustrate

the conservative nature of the numerical schemes� pro�les of discharge Q along

the channel are plotted in Figure ���� Except for some small perturbations close

to discontinuities the numerical schemes maintain the correct constant value of Q

throughout the channel in each case� The discrepancies which can be seen between

the one�dimensional exact and numerical results �which are in close agreement	

and the two�dimensional breadth�averaged results at the higher Froude numbers

can be clearly related to the appearance of oblique discontinuities �undular jumps	

triggered by the constriction when the �ow becomes supercritical at out�ow� The

in�uence of the oblique discontinuities on supercritical �ow is illustrated even

more dramatically in Figures ��� and ���� which depict the depth of the �ow for a

��
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channel with a quadruple symmetric constriction with Bmin � ��� and Fin � ����

The one�dimensional model predicts smooth supercritical �ow throughout� but

the comparison with two dimensions becomes progressively worse as the jumps

interact with each other�

� Conclusions

In this work a comparison has been made between one� and two�dimensional

models of steady state shallow water �ow through an open channel of varying

breadth� It has been shown that the numerical and analytical solutions to the

one�dimensional model agree closely� provided that an appropriate discretisation

of the source terms is employed�

When the �ow is completely smooth and subcritical these solutions also prove

to be an accurate prediction of the breadth�averaged two�dimensional �ow� For

small constrictions �Bx � �	 the agreement remains good even when the one�

dimensional model predicts a discontinuous �ow� because the transverse acceler�

ation in the �ow is negligible and consequently the two�dimensional solution re�

mains essentially one�dimensional� As the constriction narrows� however� steady

hydraulic jumps become more curved and the one�dimensional model less accu�

rate� When the �ow downstream of the constriction is supercritical� the undular

jumps which are propagated from the constriction in the two�dimensional case

cannot be predicted by the one�dimensional equations and the accuracy of the

simpler model is poor� even for channels with relatively small indentations which

should satisfy the assumptions under which the one�dimensional model is de�

rived� The agreement does however become closer again as the speed of the �ow

increases and these discontinuities become aligned with the channel�

Two commonly used forms of boundary condition have been compared� and

it has been shown that when the �ow is transcritical they can give widely di�er�

ing solutions for given geometries and initial �ow parameters� In one dimension

specifying discharge at in�ow and depth at out�ow seems appropriate� since both

their values can be determined simply from experiment� In two dimensions how�

ever� when the equations are homogeneous� specifying Riemann invariants proves

��



to be more robust�
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