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Abstract

This report looks at how to accurately numerically approximate
the equations governing bed-load sediment transport in rivers and
channels. We will discuss five different formulations that can be used
to numerically approximate the equations. For each formulation, two
different numerical schemes will be used to solve the equations. Two
different test problems are discussed which are used to compare the
performance of the different formulations.
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1 Introduction

In recent years, bed-load sediment transport in channels and rivers has
become a major problem. The understanding as to how sediment interacts
in certain environments is crucial for both the environment and businesses.
For example, if a dam is constructed such that sediment is deposited at the
entrance of the dam, a build up of sediment could occur resulting in the
sediment needing to be drained frequently. The walls of the dam may get
severely damaged if there is a massive build up of sediment next to the walls.
In the environment, the understanding of how sediment interacts is essential
when chemicals are deposited into rivers. We need to be able to make sure
that these chemicals are being dispersed safely and how they interact with
the river.

Throughout this report, we will be discussing how we can accurately numer-
ically approximate the equations governing bed-load sediment transport in
channels and rivers. These comprise the equation for conservation of mass,

oh N d(uh)
ot ox

the equation for conservation of momentum,

d(uh) O [hu? + Lgh?]

—0, (1.1)

= —ghB,, 1.2
a T o g (1.2)
and the Bed-Updating Equation,
0B 0q
— — =0 1.3
ot * ox ’ (13)

where & = ﬁ and € is the porosity of the riverbed. Here h(x,t) represents

the height of the river, B(xz,t) is the height of the riverbed, wu(z,t) is the
velocity in the x direction and ¢(u, h) is the total (suspended and bedload)
volumetric sediment transport rate in the = direction, see Figure 1.1.

The Sediment Transport Flux, ¢, is not a direct function of B, which can
cause difficulties when deriving a numerical scheme for the Bed-Updating
Equation. In some cases, the Sediment Transport Flux cannot be written
analytically and is calculated by using a black box approach where the flux
is deduced form discrete data. In this report, we will only consider the most
basic form of the Sediment Transport Flux,

q(u) = Aulu|™ . (1.4)
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Figure 1.1: The variables h(x,t), u(z,t), n(x,t), g(u, h) and B(z,t).

The value of A usually depends on the depth of the river and m is usually
chosen such that 1 < m < 4. The difficulty with using (1.4) is that it cannot
be differentiated with respect to u. However, if we only consider positive
values of u then (1.4) becomes

q(u) = Au™ where wu >0, (1.5)

which can now be differentiated with respect to uw. A variety of other
Sediment Transport formulae can be found in Soulsby[10], including the
Sediment Transport formulae of van Rijn[12].

In Section 2, we will discuss five different formulations that can be used to
numerically approximate (1.1), (1.2) and (1.3).

In Section 3, we will discuss some numerical techniques that we can use
to approximate the different formulations. Most of the numerical schemes
discussed in Section 3 are for the Sediment Transport Flux (1.5), but they
could be extended to use any Sediment Transport Flux, including the black
box approach.

In Section 4, two test problems will be discussed and the three different
formulations will be used to numerically approximate the test problems. An
overall comparison will be made to see which approach is the most accurate.



2 Different Formulations

There are numerous ways we can re-write the system (1.1), (1.2) and (1.3)
but we require a formulation of the system that can be used to obtain an
accurate numerical approximation. All of the formulations discussed in this
section will be derived using Sediment Transport Flux (1.5), thus we also
require that

h(z,t) >0, wu(x,t)>0 and —oo< B(z,t)< c0.
All systems discussed in this section can be written in the form

ow N OF (w)
ot ox

~R, (2.1)

where R is the source term and F is the flux function, which is called a
non-homogeneous conservation law with source term present and whose

Jacobian matrix is J = g—g. Some of the numerical schemes discussed in

Section 3 require the eigenvalues and eigenvectors of the Jacobian matrix,
and so we also derive these here.

2.1 Formulation A

One approach we could use is to re-write (1.1) and (1.2) in system form,

h uh 0
) R e Il S PR

which is called the Shallow Water Equations and is written in conservative
variable form. We can then calculate the Bed-Updating Equation,

Bt +§Q:1: = 07

separately. This approach we call Formulation A and it can be used in
three different ways.

1. Formulation A-NC: We numerically approximate the Shallow Water
Equations and the Bed-Updating Equation using the same time step.



2. Formulation A-CV: We converge the Shallow Water Equations to
a steady state solution and then we update the riverbed. The overall
time step of this formulation is the morphological time step of the
Bed-Updating Equation and the Shallow Water Equations are
converged to a steady state solution every time the riverbed is updated.

3. Formulation A-SF: We can re-write Formulation A in system form,

h uh 0
uh | + | i +igh? | = | —ghB, (2.3)
B &q 0

t T

and numerically approximate the whole system.

Unfortunately, all three variations of Formulation A have a source term
present, which may cause difficulties to numerically approximate, especially
if the source term is stiff.

The Jacobian matrix will also be required for each variation of Formulation
A. For

1. Formulation A-NC and Formulation A-CV, the Shallow Water
Equations Jacobian matrix is

0 1
J_|:62—u2 ZU}’

where ¢ = y/gh, which has eigenvalues
AM=u—c and N =u+ec,

with corresponding eigenvectors

1 1
el:{u—c] and ezz[u+c].

2. Formulation A-SF, if we use the Sediment Transport Flux (1.5) then
the Jacobian matrix is

0 1 0
J=|c*—u? 2u 0|,
—ud d 0



where ¢ = \/gh and d = £ Amu™! for u > 0. Notice that this Jacobian
matrix is singular, which we might expect to create difficulties when
implementing a numerical scheme for this formulation. The eigenvalues
of the Jacobian matrix are

AM=u—c, M=0 and N3 =u+c,

whose corresponding eigenvectors are

1 0 1
o u—=c - o u—+c
e, = —ed , €y = (1) and €3 = cd
U —c u+c

2.2 Formulation B

Another approach that we can use is to re-write the equation of conservation
of momentum (1.2) as

ou 0 [3u*+ g(h+ B)]
= = 2.4
ot oz 0 (2.4)

by using (1.1) and then combine (1.1), (2.4) and (1.3) into system form to
obtain Formulation B,

h uh
u | + | su*+g(h+B) | =0. (2.5)
B t gq T

Notice that this formulation does not have a source term present, hence,
Formulation B will be easier to numerically approximate. However,
Formulation B is not in conservative variable form and so, shocks may
propagate at incorrect speeds.

If we use the Sediment Transport Flux (1.5) then the Jacobian matrix of
Formulation B is

v h 0
J=1g v g},
0 d o0
where d = Aému™~! for u > 0. Notice that the Jacobian matrix of

Formulation B is not singular. The eigenvalues, A, of the Jacobian
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matrix cannot be easily written analytically since they are the roots of the
polynomial

P\, w) =X —2uX + [u® — g(h + d)] X\ + gud = 0.
However, we can prove that the roots of P(\, w) are always real for
h(z,t) >0, wu(z,t)>0 and —oo< B(z,t) < oo

by using formulae for the roots of a cubic, see Spiegel & Liu[9]. For a cubic
equation,
P(z) = 2° + 12 + agr + a3 = 0,

if we let

1 1
Q= §(3a2 —a?) and R= a(9a1a2 — 27a; — 243),

then the discriminant is D = Q® + R? and if

1. D > 0 then one root is real and two are complex;
2. D =0 then all roots are real and two are equal;

3. D < 0 then all roots are real and unequal.

If D < 0 then the roots of P(x) are

1 1
T =2y/-0Q 005(59) — 30, (2.6a)
1 1
Ty =24/—Q cos(g(ﬁ +27)) — 30 (2.6b)
and 1 1
3 =2y/—Q 005(5(9 +4m)) — 30 (2.6¢)

R

where cos 8 = .
A /_QB

Now, by using the above approach, for Formulation B
ap = —2u, ay;=u’>—g(h+d) and az=gud

which implies that
1, ., u 2
Q:—§(u +3g(h+d)) and R:5—4(9g(2h—d)—2u ).
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Hence,

D= %[Sguzhz — w2(4hu® + gd(d + 20h)) — 4g*(h® + d® + 3hd(h + d))]

and for all three roots to be real and unequal,
8gu*h? < u?(4hu® + gd(d + 20h)) + 4¢*(h* + d* + 3hd(h + d)),

which is always satisfied since h(z,t) > 0 and u(z,t) > 0 = d > 0. Hence,
the roots of P(\, w) are always real and unequal for

h(z,t) >0, wu(z,t)>0 and —oo< B(z,t) < 0.

It can also be shown that P(A, w) has one negative root and two positive
roots, i.e.
)\1 <0< )\2 < )\3,

where )\, is the eigenvalue associated with the Bed-Updating Equation.

Now that we have proved that the roots of P()\) are always real, we can
obtain the eigenvectors,

where the \; are given by (2.6).

2.3 Formulation C

In order to obtain a formulation that is written in conservative variable form
and whose Jacobian matrix is not singular, we can re-write the equation of
the conservation of momentum (1.2) as

O(uh) N 0 [hu? + Lgh* + ghB]
ot oz

by using the chain rule,

= gBh,, (2.7)

d(hB) 0B  _0h
or ~ar T Par
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and then combine (1.1), (2.7) and (1.3) into system form to obtain
Formulation C,

h uh 0
uh | + | hu® +igh* +ghB | = | gBh, |. (2.8)
B &q 0

t T

Unfortunately, Formulation C has a source term present.

If we use the Sediment Transport Flux (1.5), then the Jacobian matrix of
Formulation C is

0 1 0
J=| gh+B)—u* 2u gh |,
—ud d 0

where d = %Amum_1 for u > 0. The eigenvalues, A, of the Jacobian matrix
again cannot be easily written analytically since they are the roots of the
polynomial

P\, w) =X —2uX* + [u® — g(h+ B + hd)| A + ghud = 0.
However, we can prove that the roots of P(\, w) are always real for
h(z,t) >0, wu(z,t)>0 and —oo< B(z,t) < oo

by using the approach which was discussed in Section 2.2. For Formulation
C,
a; = —2u, ay=u’—g(h+B+hd) and a3= ghud

which implies that

1
Q=5 +3g(h+B+hd) and R= —534(213 — 9g(2h + 2B — hd)).
Hence,

I_18u2g(h + B)? — u*[4u*(B + h) + ghd(20(h + B) + hd)]
—4¢*(h* + B® + h*d® + 3h(d + 1)(h + B)(hd + B))]

~ 108

and for all three roots to be real and unequal,

8u?g(h + B)* < u*[4u®*(B + h) + ghd(20(h + B) + hd)]
+4¢*(h* + B® + h*d® + 3h(d + 1)(h + B)(hd + B)),



which is satisfied if h(z,t)+ B(x,t) > 0 since h(z,t) > 0, u(z,t) >0=d >0
and —oo < B(z,t) < co. Hence, the roots of P(\, w) are always real and
unequal for

h(z,t) >0, wu(x,t)>0 and —oo< B(z,t)<o0

if h(z,t) + B(z,t) > 0. It can also be shown that P(\, w) has one negative
root and two positive roots, i.e.

)\1<0<)\2<)\3,

where )\, is the eigenvalue associated with the Bed-Updating Equation.

Now that we have proved that the roots of P()\) are always real, we need to
determine the eigenvectors. The eigenvectors of the Jacobian matrix are

1
Ak

u? — g(h+ B) + (A — 2u) N\ |
gh

e =

where again )\ are given by (2.6).

Throughout this section, we have discussed five different formulations that
can be used to numerically approximate the system (1.1), (1.2) and (1.3).
In the next section, we will discuss how these different formulations can be
numerically approximated.



3 Numerical Schemes

In this section, we will discuss how we can numerically approximate the
formulations discussed in the previous section. We will discuss two numerical
approaches: LeVeque & Yee’s MacCormack approach (see LeVeque & Yee[7],
Yee[13] and Hudson[6]) and an adaptation of Roe’s Scheme (see Roel8],
Glaister[3] and Hubbard & Garcia-Navarro[5]). The numerical approaches
discussed in this section will be based on (2.1) since all of the formulations
can be written in this form. We will also try to ensure that all of the
numerical approaches satisfy the Total Variational Diminishing property (see
Harten[4] and Sweby[11]). Flux limiter methods and slope limiter methods
will be used to try to ensure that the numerical approaches satisfy the TVD
property. The numerical approaches will also be adapted specifically for each
formulation.

Before we can implement any numerical schemes, we must first define a
mesh. In this report, we will be using a variable mesh over the finite region
rg < x < xy and ty < t < ty, which is illustrated in Figure 3.1. The

t

) Ax
tn
tnTl .
Tig1 — T = Ax 1=0,1,...,1
n+1 n+1 n+1
Uiy | Uy Uity
Ini1 ‘
n n n
; Uiq Uy Ui Aty
" n—1 n—1 n—1 ‘At
Uiy | Uy Uity | ~ln
tn—l
ty —ta1 = Aty n=0,1,...,N
tl ]
to | I T
Zo T TN Ti—1 X Tig1l - Tr—1 Ig

Figure 3.1: The Mesh.

points x = zy and x = z; are the spatial boundaries and we will require
numerical boundary conditions at these points. The numerical solution is
denoted by u? ~ u(iAz,t,), where Az = x;41 — 34, t,, = to + Yp_y Aty
and Aty = t, — t,_1. The spatial step size, Az, is fixed and we will use a
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variable time step, At;, which will be calculated to produce a certain Courant
number,

v = ﬁmax(|)\k|),

Ax

in order to ensure that the numerical scheme is stable.

3.1 MacCormack Approach

One of the most basic numerical schemes we can use to approximate (2.1) is
the MacCormack approach as discussed by LeVeque & Yee[7],

1
Wit = S ) = D D)+ ORI, (31)
where
w,) = wi' = s(Fl\y — F}) + sR}
and s = 2L The advantage of using (3.1) is that we do not need to

approximate the eigenvalues and eigenvectors of the Jacobian matrix.
However, the numerical scheme does not satisfy the TVD property, thus
spurious oscillations may occur in the numerical solution. LeVeque & Yee[7]
modified (3.1) so that the numerical scheme satisfies the TVD property by
using slope limiters

witl = wi? 4 (x®, 8®, —x, 8®)) (3.2)

)

w}(le)re X is a matrix containing the right eigenvectors e; of the Jacobian,
2

w,”’ is the numerical approximation derived from (3.1), i.e.

1 s s
wl? = Lot = S - B+ 2R,

where
1 1
At ¢z+% Oéer%
_ 2 _ . _ w1
s = Ea ‘I)H»% - . ’ - Xi+l(w7,+1 Wi )
¢p 1 Q. 1
7,+§ 7,+§
1 At
ko 2 ko k
k . k k k
il = mlnmod(ai_%,aiJr%,aiJr%)
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and

d min(al, [b], |c[) if d = sgn(a) = sgn(b) = sgn(c),

minmod(a, b, ¢) = { 0 otherwise.

Here, p is the number of components of the system, £k =1,2,..., p represents
the k™ component of the system and ), e and « represents the eigenvalues,
eigenvectors and wave strengths associated with the system (2.1) respectively.

Alternatively, we could calculate A\, e and « by using Roe’s decomposition
p ~ ~
k=1

Variables which have = represent the Roe Average and A is the Jacobian
matrix evaluated at Roe’s average state. We will discuss the method of
decomposition in Section 3.2.

The MacCormack approach requires that

At

so that the numerical scheme will remain stable. Hence, for all of the
formulations we will use

B Azx
- 2max (| A7)’

to calculate the time step, which will ensure that the numerical scheme does
not become unstable.

At (3.3)

In the next few sections, we will discuss how we can apply LeVeque & Yee’s
MacCormack approach to the different formulations discussed in Section 2.

3.1.1 Formulation A-NC

In order to use LeVeque & Yee’s MacCormack approach to approximate
Formulation A-NC, we must apply (3.2) to the Shallow Water Equations
and the Bed-Updating Equation separately. For

12



1. The Shallow Water Equations, we use

N o hu "
P Laphy |00 T T |t + ggh? |,
and

' —5(hi + 1) (Bl = BY) |

2. The Bed-Updating Equation, we can re-write (3.2) as

B+t = B? 4 (%, —o®)) (3.4)

1
1+ 1=

where BZ@) is the numerical approximation derived from

s
2

B® = X(Br 1+ BY)

W _
] 2 )7

(@ q; 4

where
1 n n n
BY = B — ¢s(qfyy — ab),

1
2, = [ = AB= Q)10 viey = 3o A

)

In order to be able to use (3.4), we need to be able to obtain an accurate
approximation of the wave speed, A\, which can be very difficult to
obtain since the Sediment Transport Flux is not a direct function of B.
A variety of approaches that can be used to obtain an approximation
of the wave speed are discussed in Section 3.3 where the advantages
and disadvantages of each approach are discussed as well.

For Formulation A-INC, the time step of the Shallow Water Equations and
the morphological time step of the Bed-Updating Equation are the same and
are calculated using (3.3).

3.1.2 Formulation A-CV

For Formulation A-CV, we use LeVeque & Yee's MacCormack approach
in exactly the same way we did for Formulation A-NC, which is discussed
in Section 3.1.1. The only difference is that we converge the Shallow Water
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Equations to a steady state solution first and then update the riverbed. A
steady state solution is obtained if
ow
ot
Thus, in order to determine if the steady state solution has been obtained,
we set a tolerance level, tol, such that

=0.

Wit —w!| <tol for i=0,1,2,...,1.

The morphological time step of the Bed-Updating Equation is the overall
time step of this formulation and is calculated separately from the time step
of the Shallow Water Equations. The Shallow Water Equations must be
converged to the steady state solution each time the riverbed is updated.

3.1.3 Formulation A-SF

Since Formulation A-SF is in system form, LeVeque & Yee’s MacCormack
approach is easier to implement and is used with

n

b} hu
wl'= | urh? |, FI'=| hu®+ igh?
By &q .
and
0
R =| —§(hiy, + h%)(an-H — B})

3.1.4 Formulation B

We can also use LeVeque & Yee’s MacCormack approach to approximate
Formulation B by using

n

h} hu
wi'= | u? and F} = | tu®+ g(h+ B)
B &q .
Also, since no source term is present in Formulation B,
R} =0.
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3.1.5 Formulation C

LeVeque & Yee’s MacCormack approach can be used to approximate
Formulation C by using

"—[u?;t?-l F?:[hu2+%g;jz+gh,3-|

R e A

0
R} = | 2(B}, + B)(hi — h})
0

and

3.2 Roe’s Scheme

Roe[8] derived an approach which approximates systems of conservation laws,

a_w+a_F—0
ot or

by using a piecewise constant approximation in each cell

(3.5)

Az
A

w, ifoe, -2 <<z, +
w(z,t,) = R
5

Wg ifo—7$<x<a:R+

where w; and wp represent the piecewise constant states at t¢,, and
determining the exact solution of a linearised Riemann problem, which is
related to (3.5)

W~ ow
IV LA TV _ 9
or AL R G =0,
where A(wp, wg) ~ 9F is the linearised Jacobian matrix and ~ is called the

Roe average. The eigenvalues and eigenvectors of A are A and & respectively
and are determined from the decomposition

p
k=1

where Aw = wr — wy, p is the number of components in the system and
& represents the wavestrengths, i.e. dap = Aw,. Once the eigenvalues,

15



Name of Flux-limiter O (0)

Minmod max(0, min(1,9))
Roe’s Superbee max(0, min(26, 1), min(0, 2))
van Leer 61+ 6
1+ 10|
van Albada o
14 0*

Table 3.1: Some Flux-limiters

eigenvectors and wavestrengths associated with the linearised Riemann
problem have been obtained, Roe’s Scheme [8] can be used

witt =wl — s(F;,, —F! ,) +sR], (3.6)
2 2
where

1 1<
Fii=5FL+F)—3 D Ak Ael(1 = @x(1 = [wel))&xlis 1,

k=1

At ~ (&k)Hl
= — = )\ 9 == 2 [ =1 — L

S Ax’ Vi SAk, k (&k)H,%, ? Sgn(l/k)H»Ea

and @, can be any of the flux-limiters listed in Table 3.1. For the source

term approximation, R}, we can use

1. A pointwise approach,

* 1 n n
R; = (R}, +R] ). (3.7)

2. A decomposed approach, where we decompose the source term in a
similar way as for the flux terms, i.e.

1 z”: - -
- Brex =
Ax p

Here, (3, are the coefficients of the decomposition of the source term
onto the eigenvectors of the characteristic decomposition (see Glaister[3],
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Hubbard & Garcia-Navarro[5] and Hudson[6]). Once the values of £
have been obtained, we can approximate the source term by using

)

R'=R_,+R/, (3.8)
1+ =5

where

p

RE, = 5 D (Al £ sen()(1 = Bl = l))ie .

k=1

The advantage of using the decomposed approach to numerically approxi-
mate the source term is that the numerical scheme satisfies the C-property
of Bermudez & Vazquez[1]. For a numerical scheme to satisfy the C-property
of Bermudez & Vazquez[l], the scheme must be either exact or second or-
der accurate when applied to the quiescent flow case, i.e. uw =0 and h = H,
where H = D— B. Since Roe’s Scheme with source term approximation (3.8)
satisfies the C-property of Bermudez & Vazquez[1], the numerical scheme will
not produce any waves in a region that should remain steady (see Bermudez
& Vazques[1l] and Hudson[6] for more details). Unfortunately, if we use the
decomposed approach with the flux-limited second order version of (3.6), then
spurious oscillations may occur in the numerical results when the source term
is stiff (see Hudson[6] and Hubbard & Garcia-Navarro[5] for more details).
If the spurious oscillations do overpower the numerical solution, then we can
reduce them by using a smaller Courant number, but sometimes the Courant
number required can be very small resulting in the numerical scheme being
impractical due to long computational run times.

Roe’s Scheme requires that

At

so that the numerical scheme will remain stable. Hence, for all of the
formulations we will use

B Ax

~ Zmax((A])’
to calculate the time step, which will ensure that the numerical scheme does
not become unstable.

At (3.9)

In the next few sections, we will discuss how we can apply (3.6) to the
different formulations discussed in Section 2.
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3.2.1 Formulation A-INC

In order to use (3.6) to approximate Formulation A-NC, we must apply
the numerical scheme to the Shallow Water Equations and the Bed-Updating
Equation separately. For

1. The Shallow Water Equations, here we use

w [ hr n hu "
Wi_{u?h?] and Fi_[hlﬂ—l—%gh?}'

i
The eigenvalues are
M=a—¢ and Ml =i+,

whose corresponding eigenvectors are

) 1 ) 1
el:[ﬂ—é] and ez:[a+5]’

and the wavestrengths are

-1 1 _
ap = iAh - %(A(hu) — uAh)

and ) )

¢
where the Roe averages are

vV hRuR + v hLUL

U = and ¢

Vhr +Vhy

For the source term approximation, we can use either the pointwise

(hg + hr).

NGRS

approach,
0
Rn = n n n n Y
ity —2(hi + 1Y) (B — BYY) ]
or the decomposed approach,
~ cAB ~ cAB
b= 5 and By = — 5

18



2. The Bed-Updating Equation, we can re-write Roe’s Scheme as

B = B!~ s(ql,, —a,). (3.10)
where
= g+ @) — sl = By (U= [y ) (BE — BY)
qz«}»% - 2 q7,+1 ql 2 7/+5 Z+§ 7,+§ i+1 1 /0
At ABp, 1 :
S:A:L.’ VZ-|-2 :S)\i-l-l’ gl‘l‘%: AB.+12’ I:Z—Sgn(l/k)i_'_%,
Ty

n n _ .| 94
ABHé = Bi+1 - B, )‘i+% =¢ [8—3} . )
2

and @, can be any of the flux-limiters listed in Table 3.1. In order
to be able to use (3.10), we need to be able to obtain an accurate
approximation of the wave speed, A, which can be very difficult to
obtain since the Sediment Transport Flux is not a direct function of B.
A variety of approaches that can be used to obtain an approximation
of the wave speed are discussed in Section 3.3 where the advantages
and disadvantages of each approach are discussed as well.

For Formulation A-INC, the time step of the Shallow Water Equations and
the morphological time step of the Bed-Updating Equation are the same and
are calculated using (3.9).

3.2.2 Formulation A-CV

For Formulation A-CV, Roe’s Scheme with source term approximation is
used in exactly the same way as Formulation A-NC, which is discussed
in Section 3.2.1. The only difference is that the Shallow Water Equations
are converged to a steady state solution and then the riverbed updated. In
order to determine if the steady state solution has been obtained, we set a
tolerance level, tol, such that

Wit —wi'| <tol for i=0,1,2,...,1.

The morphological time step of the Bed-Updating Equation is the overall
time step of this formulation and is calculated separately from the time step
of the Shallow Water Equations. The Shallow Water Equations must be
converged to the steady state solution each time the riverbed is updated.
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3.2.3 Formulation A-SF

We can use (3.6) to approximate Formulation A-SF by using

h? hu "
wl= | u'h? | and F} = | hu®+ Lgh®
By UL

The eigenvalues are
M=id—0¢ M=0 and M=a+¢

whose corresponding eigenvectors are

@ic 0 ~1~

& = S|, &=10 and &= | "¢ |,
—cd 1 cd
i—c i+ é

and the wavestrengths are

1

61 = oo((@+ &) Ah — A(uh)),
o d@A(ub) + 2aAh)
e A GRS
and 1
a3 = o= (A(uh) — (@ - €)Ah),

where the Roe averages are

__ Vhrur +Vhrur g
u = s C = —(hR+hL)
Vhr++Vhy 2
and
J= EA(Au™)
~ A(uh) — GAR

If the Sediment Transport Flux (1.5) is used with A = 1 and m is an integer,
then we can use

d=

VIR +VIL) S e
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For the source term approximation, we can use either the pointwise approach,

! 1
R?—i—% - L —4(hyy +h7) (B, — BY) J ;
0

or the decomposed approach,

- ¢AB - du?AB - ¢AB
o T amre M 2

1=

3.2.4 Formulation B

Formulation B can also be approximated by using (3.6) with

n

h? hu
w = | ul and F!=| su?+g(h+ B)
B! EAU™ ;
The Roe averaged eigenvalues are obtained by finding the roots of
P\ =N —2aX2 + [a2 — g(h + d)]\ + gud = 0.

The roots of P()) are determined by using the approach which was discussed
in Section 2.2. Once the values of the eigenvalues have been obtained, they
are used to determine the values of the corresponding eigenvectors

1
A — 1
e, = h R
(ﬂ—Ak)2—gh

gh

and the wavestrengths

ap —

(@ — Xo) (@ — No) + gh)Ah + (2 — Ay — \y)Au + ghAB
Ak = Aa) (A = A)

where a # k # b. The Roe averages are

1 = 1 - EA(Au™
ﬂzi(UR—FuL), hzi(hR—FhL) and dzig (Au™)
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If the Sediment Transport Flux (1.5) is used with A = 1 and m is an integer,
then we can use

m—1
d~ — 5 Z(UR)k(UL)m_(l+k)-
k=0
Also for Formulation B, there is no source term present so

R, =0 and f =0.
2

3.2.5 Formulation C

Formulation C can also be approximated by using (3.6) with

h? hu "
w? = | ulh? and F! = | hu®+ 1gh? + ghB
B EAuU™

The Roe averaged eigenvalues are obtained by finding the roots of
P(A\) = X —2a)\? 4[4 — g(h+ B + hd)]\ + ghiid = 0.

The roots of P (5\) are determined by using the approach which was discussed
in Section 2.2. Once the values of the eigenvalues have be obtained, they are
used to determine the values of the corresponding eigenvectors

1

o M

T @2 — g(h+ B) + (O — 20) M
gh

and the wavestrengths

(Aado + g(h + B) — 0?)Ah + (26 — Ay — X)) A(uh) + ghAB
(A = Aa) Ak — M)

ap =

where a # k # b. The Roe averages are

- Vhrug +~/hrup, ~ 1 N
T VeV e ) (Bt B
and
- EA(Au™)
d= R
A(uh) — uAh



If the Sediment Transport Flux (1.5) is used with A = 1 and m is an integer,
we can use

VIR VL) S e

For the source term approximation, we can use a pointwise approach,

d=

0

RZ_% = [ %(B?+1 + an)(h'?-u - hi) J )
0

or a decomposed approach:

s gB2i— )\, — N)AR

Bk G S\a)(j\k ) where a # k # b.

3.3 Approximating the Wave Speed of the Bed-Updating
Equation

Most of the numerical schemes discussed for Formulation A-NC and
Formulation A-CV require a numerical approximation of the wave speed
of the Bed-Updating Equation,

0B dq
ot T T

whose wave speed is A = & g—g. Unfortunately, the Sediment Transport Flux,
q, is not a direct function of B, which can create difficulties in obtaining an
accurate approximation of the wave speed.

One approach we can use to approximate the wave speed is to use a finite
difference approach,

Qi+1 — 4 .

Unfortunately, the finite difference approach can only be used when B; ; —
B; # 0 and can also produce an inaccurate approximation of the wave speed
when the gradient of the riverbed changes sign. In Section 2, we proved that
if we use q(u) = Au™ for u > 0, then the wave speed of the Bed-Updating
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A q; A
qi+] BH—I

q;

9ii2 Bii Bi+2

v
=

v
=

Figure 3.2: The Occurrence of a Negative Wave Speed.

Equation is always positive. However the finite difference approach may
produce negative wave speeds, as illustrated in Figure 3.2, where it can be
seen that B; .1 —B; > 0 but ¢;11—¢; < 0, which implies that for the illustrated
data

|Biy1 — Bil’

Hence, the finite difference approach has produced a negative wave speed but
the analytic wave speed is positive.

A

v+

= ¢

(V[

Another approach we can use is an analytical approach, see Chesher et
al[2], but can only be used for problems where the height of the riverbed is
considerably smaller than the height of the river. The approach assumes that
the height of the river is constant, i.e. h(z,t) & D — B and then rewrites the
Sediment Transport Flux so that it may be differentiated with respect to B.
As an example, consider ¢(u) = u™ for u > 0. Now, by letting Q) = uh, we
may obtain

_ Owm) _ 9(QmhT™)
A=8SE TS e
and since h ~ D — B,
o@D -B™ ,0(D—-B)")  py-m9(@™)
A€ 9B =£Q 55 +&(D - B) B)z;
= Ax nga((D gBB)m) — é-QO(D - B)fmfl — é—TQOhm,
and since u = Qh~!,
&m .,
S Tu .
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Hence, we can use

gm min n ]' n n
AipL = o [u ]i+%’ where hH% = i(hiJrl + A7) (3.12)
i+35

as an approximation of the wave speed. Unfortunately, the analytical
approach can only be used if the Sediment Transport Flux can be written
analytically and can only be used for test problems where the height of the
riverbed is significantly smaller than the height of the river.

There are numerical schemes that we can use to approximate the Bed-
Updating Equation that do not require a value of the wave speed to be
calculated. For example, the Lax-Friedrichs scheme,

B = (Bl + BLY) — €5(ah — al-), (313)
can be used to approximate the Bed-Updating Equation but the Lax-Friedrichs
scheme suffers from dissipation resulting in a very small Courant number
being required. Alternatively, since we know that the sign of the wave speed
of the Bed-Updating Equation must be positive if we use ¢(u) = Au™ where
u > 0, we can use the first order Upwind scheme,

B = B — &s(q) — ¢ 1), (3.14)

to approximate the Bed-Updating Equation. Alternatively LeVeque & Yee’s

MacCormack approach (3.4) with @Z(i)l = 0 does not require an approxima-
2

tion of the wave speed either and is second order accurate.
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4 Numerical Results

In this section, we will discuss two different test problems which we will
use to compare the different formulations. All of the test problems use the
Sediment Transport Flux (1.5) with A =1 and n = 3, i.e.

q(u) = u®.
The advantage of using this form of the Sediment Transport Flux is that it

is differentiable and is valid for all values of u. In addition, the porosity of
the bed will be taken as € = 0.2.

We will use LeVeque & Yee’s MacCormack approach and Roe’s Scheme with
the source term decomposed, i.e (3.6) with source term approximation (3.8),
to approximate the different formulations. Unless stated, both LeVeque &
Yee’s MacCormack approach and Roe’s Scheme with source term decomposed
will be used with a maximum Courant number of v = 0.5, a spatial step size
of Az =1 and boundary conditions

n+1

n+1 __ n _ n
" =w, and Wil =Wy,

Wi

where ¢ = 1 to 5. Roe’s Scheme with source term decomposed will be used
with the minmod flux-limiter and the final time for both test problems is
t = 500s. For Formulation A-CV, a tolerance level of tol = 10~7 will be
used to converge the Shallow Water Equations. Formulation A-NC and
Formulation A-CV will require an approximation of the wave speed of the
Bed-Updating Equation so the analytical approach (3.12) will be used to
approximate the wave speed.

4.1 Test Problems

In order to rigorously test the numerical formulations discussed in this report,
we will use two distinct test problems, which consist of a pulse in a riverbed
for Problem A and a sediment bore for Problem B in a 1D Channel.
For both test problems, we require initial conditions that are for a moving
riverbed and not a fixed riverbed. In order to obtain such initial conditions,
we use Formulation B with the following dummy initial conditions, which
consists of the region zy = 0 to x; = 1000m where

h*(2,0) =10 — B*(2,0), u*(z,0) = h*(z,0)
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and the bathymetry for

1. Problem A is

sin? 7(x — 300)
in“{ ——~
B*(z,0) = 200

0 otherwise

) it 300 < z < 500

Y

which is illustrated in Figure 4.1.

2. Problem B is

B(x,0)= {1 ~ tanh (%(x _ 400))] ,

™

which is illustrated in Figure 4.2.

These dummy initial conditions are then iterated by using Formulation B
until ¢ = 75s by which time the numerical data has settled and represents
a moving riverbed. Then the initial conditions of the test problems are now
w(z,0) = w*(x,75), which are illustrated in Figure 4.3 and Figure 4.4 for
Problem A and Figure 4.5 and Figure 4.6 for Problem B.

4.2 Numerical Results for Problem A
4.2.1 Roe’s Scheme with Source Term Decomposed

From Figure 4.7 and Figure 4.8, we can see that Formulation A-NC
using Roe’s Scheme with source term decomposed has produced spurious
oscillations in the numerical results. This is due to the Bed-Updating
Equation being calculated separately and requires an accurate approximation
of the wave speed for the numerical formulation to be accurate. However the
spurious oscillations can be reduced by using a smaller Courant number but
at the expense of long computational run times.

In Figure 4.9 and Figure 4.10, we can see that Formulation A-CV using

Roe’s Scheme with source term decomposed has increased the height of the
pulse in the velocity and height of the river dramatically. This is because by
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converging the Shallow Water Equations, we have assumed that the riverbed
is fixed. We would expect the pulse in the velocity to decrease for a moving
riverbed since the velocity is pushing the pulse in the riverbed resulting
in a smaller velocity over the pulse in the riverbed. However, by using
Formulation A-CV, no spurious oscillations are present in the numerical
results even thought we have calculated the Bed-Updating Equation
separately. In addition, by using Formulation A-CV, we can use the finite
difference approach (3.11) to approximate the wave speed since the gradients
of the riverbed and the Sediment Transport Flux are never of opposite sign.

For Formulation A-SF using Roe’s Scheme with source term decomposed,
Figure 4.11 and Figure 4.12 show that the numerical results do not suffer
from spurious oscillations. Surprisingly, even thought the formulation has a
singular matrix, the numerical results are still quite accurate.

From Figure 4.13 and Figure 4.14, we can see that Formulation B using
Roe’s Scheme has produced very smooth numerical results with no spurious
oscillations present.

Figure 4.15 and Figure 4.16 show that Formulation C using Roe’s Scheme
with source term decomposed has also produced very smooth numerical
results with no spurious oscillations present.

In Figures 4.17 to 4.20, an overall comparison is given at ¢ = 500s. Here,
we can see that the most accurate formulation was Formulation B, closely
followed by Formulation C. Formulation A-SF produced quite accurate
numerical results but differed slightly to Formulation B and Formulation
C. Formulation A-INC gave the least accurate numerical results as far
as spurious oscillations is concerned but Formulation A-CV moved the
pulse in the riverbed at a completely different wave speed than the other
approaches. Hence, converging the Shallow Water Equations to a steady state
solution before updating the riverbed is incorrect as the approach assumes
that the riverbed is fixed.

4.2.2 LeVeque & Yee’s MacCormack Approach

For LeVeque & Yee’s MacCormack approach, an overall comparison of the
different formulations is given at ¢ = 500s in Figures 4.21 to 4.24. Here, we
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can see that Formulation A-CV has again moved the pulse in the riverbed
at a completely different wave speed than the other approaches. However,
for the MacCormack approach, Formulation A-SF has produced spurious
oscillations that have overpowered the numerical solution. These spurious
oscillations cannot be minimised using a smaller Courant number. By
using the second order version of LeVeque & Yee’s MacCormack approach,
the spurious oscillations are considerably smaller but we require a numerical
scheme that satisfies the TVD property. Formulation A-INC has not
produced spurious oscillations for LeVeque & Yee’s MacCormack approach
but did for Roe’s Scheme with source term decomposed. However, by
looking at Figure 4.21, we can see that Formulation A-NC has produced
slight waves on the right side of the pulse and the maximum height of the
pulse differs from the other formulations. As with Roe’s Scheme with source
term decomposed, Formulation B and Formulation C have produced the
most accurate numerical results for the MacCormack approach.

4.3 Numerical Results for Problem B

4.3.1 Roe’s Scheme with Source Term Decomposed

Figure 4.25 and Figure 4.26 show the numerical results of Formulation A-
NC using Roe’s Scheme with source term decomposed. Here, we can see that
spurious oscillations have begin to overpower the numerical solution due to
the Bed-Updating Equation being approximated separately. However, the
spurious oscillations are not as prominent as with Problem A and can be
minimised by using a smaller Courant number.

For Formulation A-CV using Roe’s Scheme with source term decomposed,
Figure 4.27 and Figure 4.28 show that by converging the Shallow Water
Equations, the velocity and the height of the riverbed increase dramatically.
However, the numerical results do not suffer from spurious oscillations even
though the Bed-Updating Equation is approximated separately.

From Figure 4.29 and Figure 4.30, we can see that Formulation A-SF using
Roe’s Scheme with source term decomposed has produced quite accurate

numerical results even though the Jacobian matrix is singular.

Figure 4.31 and Figure 4.32 show the numerical results of Formulation B
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using Roe’s Scheme. As with Problem A, the numerical results obtained
are very smooth and do not suffer from spurious oscillations.

For Formulation C using Roe’s Scheme with source term decomposed,
Figure 4.33 and Figure 4.34 show that the numerical results are also very
smooth.

In Figures 4.35 to 4.38, an overall comparison of the different formulations is
given at ¢ = 500s. Here, we can see that the most accurate formulation was
Formulation B, closely followed by Formulation C. Formulation A-SF
has again produced quite accurate numerical results but differed slightly to
Formulation B and Formulation C. Formulation A-NC gave the least
accurate numerical results as far as spurious oscillations is concerned but
Formulation A-CV moved the pulse in the riverbed at a completely
different wave speed than the other approaches. Hence, converging the
Shallow Water Equations to a steady state solution before updating the
riverbed is incorrect as the approach assumes that the riverbed is fixed.

4.3.2 LeVeque & Yee’s MacCormack Approach

For LeVeque & Yee’s MacCormack approach, an overall comparison of the
different formulations is given at ¢ = 500s in Figures 4.39 to 4.42. As with
Problem A, Formulation A-SF using the MacCormack approach has
produced spurious oscillations that have overpowered the numerical solution
and can only be minimised by using the second order version of the
numerical scheme. Formulation A-CV has again moved the sediment bore
at a completely different wave speed than the other formulations.
Formulation B has produced the most accurate numerical results closely
followed by Formulation C. Formulation A-NC has produced accurate
results that do not suffer from spurious oscillations but is less accurate than
Formulation C.
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B*(x,0)

0o 100 200 300 400 500 600 700 800 900 1000

Figure 4.1: The Dummy Initial Condition B*(z,0) for Problem A.

B*(x,0)

0o 100 200 300 400 500 600 700 800 900 1000

Figure 4.2: The Dummy Initial Condition B*(z,0) for Problem B.
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Figure 4.3: The Initial Conditions for Problem A (h and B).

o] 100 200 300 400 500 600 700 800 900 1000

Figure 4.4: The Initial Conditions for Problem A (u).
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u(x,0)

— B(x,0) — h(x,0) + B(x,0)

Figure 4.5: The Initial Conditions for Problem B (h and B).
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Figure 4.6: The Initial Conditions for Problem B (u).
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Figure 4.7: The Numerical Results for Problem A using Formulation A-
NC and Roe’s Scheme with Source Term Decomposed (h + B).
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Figure 4.8: The Numerical Results for Problem A using Formulation A-
NC and Roe’s Scheme with Source Term Decomposed (u).
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h(x,t) + B(x,t)
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Figure 4.9: The Numerical Results for Problem A using Formulation A-
CV and Roe’s Scheme with Source Term Decomposed (h + B) .
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Figure 4.10: The Numerical Results for Problem A using Formulation
A-CV and Roe’s Scheme with Source Term Decomposed (u).
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Figure 4.11: The Numerical Results for Problem A using Formulation
A-SF and Roe’s Scheme with Source Term Decomposed (h + B).
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Figure 4.12: The Numerical Results for Problem A using Formulation
A-SF and Roe’s Scheme with Source Term Decomposed (B).
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Figure 4.13: The Numerical Results for Problem A using Formulation B
and Roe’s Scheme (h+B).
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Figure 4.14: The Numerical Results for Problem A using Formulation B
and Roe’s Scheme (u).
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Figure 4.15: The Numerical Results for Problem A using Formulation C
and Roe’s Scheme with Source Term Decomposed (h).
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Figure 4.16: The Numerical Results for Problem A using Formulation C
and Roe’s Scheme with Source Term Decomposed (B).
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Figure 4.17: Comparison of the Numerical Results of Roe’s Scheme with
Source Term Decomposed at t = 500 for Problem A (h+B).
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Figure 4.18: Comparison of the Numerical Results of Roe’s Scheme with
Source Term Decomposed at t = 500 for Problem A (h).
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Figure 4.19: Comparison of the Numerical Results of Roe’s Scheme with
Source Term Decomposed at t = 500 for Problem A (u).
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Figure 4.20: Comparison of the Numerical Results of Roe’s Scheme with
Source Term Decomposed at t = 500 for Problem A (B).
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Figure 4.21: Comparison of the Numerical Results of LeVeque & Yee’s Mac-
Cormack Approach at t = 500 for Problem A (h+B).
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Figure 4.22: Comparison of the Numerical Results of LeVeque & Yee’s Mac-
Cormack Approach at t = 500 for Problem A (h).
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Figure 4.23: Comparison of the Numerical Results of LeVeque & Yee’s Mac-
Cormack Approach at t = 500 for Problem A (B).
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Figure 4.24: Comparison of the Numerical Results of LeVeque & Yee’s Mac-
Cormack Approach at t = 500 for Problem A (u).
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Figure 4.25: The Numerical Results for Problem B using Formulation
A-NC and Roe’s Scheme with Source Term Decomposed (h+B).
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Figure 4.26: The Numerical Results for Problem B using Formulation
A-NC and Roe’s Scheme with Source Term Decomposed (B).
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Figure 4.27: The Numerical Results for Problem B using Formulation
A-CV and Roe’s Scheme with Source Term Decomposed (h+B).
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Figure 4.28: The Numerical Results for Problem B using Formulation
A-CV and Roe’s Scheme with Source Term Decomposed (u).
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Figure 4.29: The Numerical Results for Problem B using Formulation
A-SF and Roe’s Scheme with Source Term Decomposed (h+B).
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Figure 4.30: The Numerical Results for Problem B using Formulation
A-SF and Roe’s Scheme with Source Term Decomposed (B).
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Figure 4.31: The Numerical Results for Problem B using Formulation B
and Roe’s Scheme (h+B).
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Figure 4.32: The Numerical Results for Problem B using Formulation B
and Roe’s Scheme (B).
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Figure 4.33: The Numerical Results for Problem B using Formulation C
and Roe’s Scheme with Source Term Decomposed (h).
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Figure 4.34: The Numerical Results for Problem B using Formulation C
and Roe’s Scheme with Source Term Decomposed (u).
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Figure 4.35: Comparison of the Numerical Results of Roe’s Scheme with
Source Term Decomposed at t = 500 for Problem B (h+B).
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Figure 4.36: Comparison of the Numerical Results of Roe’s Scheme with
Source Term Decomposed at t = 500 for Problem B (h).
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B(x,500)

Figure 4.37:
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Comparison of the Numerical Results of Roe’s Scheme with

Source Term Decomposed at t = 500 for Problem B (B).
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Comparison of the Numerical Results of Roe’s Scheme with

Source Term Decomposed at t = 500 for Problem B (u).
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Figure 4.39: Comparison of the Numerical Results of LeVeque & Yee’s Mac-
Cormack Approach at t = 500 for Problem B (h+B).
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Figure 4.40: Comparison of the Numerical Results of LeVeque & Yee’s Mac-
Cormack Approach at t = 500 for Problem B (h).
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Figure 4.41: Comparison of the Numerical Results of LeVeque & Yee’s Mac-
Cormack Approach at t = 500 for Problem B (B).
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Figure 4.42: Comparison of the Numerical Results of LeVeque & Yee’s Mac-
Cormack Approach at t = 500 for Problem B(u).
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5 Conclusion

Throughout this report, we have discussed five different formulations and
compared them for two test problems. We have shown that the most
accurate formulation is Formulation B closely followed by Formulation
C. The advantage of using Formulation B is that a source term is not
present, which makes the formulation easier to numerically approximate.
However, the numerical results of Formulation B may not be so accurate
when

considering shocks as the formulation is not written in conservative variable
form. Formulation A-SF was quite accurate when using Roe’s Scheme
with source term decomposed but suffered from spurious oscillations when
using LeVeque & Yee’s MacCormack approach and the numerical results
differed slightly to Formulation B and Formulation C. Formulation A-
CV gave inaccurate results as the approach moved the pulse in Problem A
and the sediment bore in Problem B at a faster wave speed than any of
the other formulations due to the Shallow Water Equations being converged
before the riverbed was updated. Formulation A-CV also took consider-
ably longer computational run times than any of the other approaches and
sometimes took up to 50 times longer making the method very
impractical. Formulation A-NC produced accurate results when using
LeVeque & Yee’s MacCormack approach but suffered from spurious
oscillations when using Roe’s Scheme with source term decomposed. These
spurious oscillations are due to the Bed-Updating Equation being calculated
separately but can be minimised by using a smaller Courant number.
However, by using a smaller Courant number, the formulation may become
impractical due to long computational run times. As an alternative, we could
use Roe’s Scheme with source term decomposed to numerically approximate
the Shallow Water Equations with

B =B} = s¢(qj,1 — ;1) (5.1)

where

o= g +5(1— Vﬁé)(‘l?ﬂ —q)®7 if Vin% >0

i+1 — n 1 n n n\dn n )

a2 g — 51+ VH_%)(qi-l—l —q)®; if Vitl <0

to numerically approximate the Bed-Updating Equation for Formulation

A-NC. But the numerical scheme still suffers from spurious oscillations,
which are considerably worse than the normal approach (3.10), see Figures
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5.1 to 5.2. However, by using a staggered approach,

{ g (- @ - e i >0

gy — 5L+ v O (@ — g thHer i vl <o

qi:_l =

7 B) % Z-I—%
we can minimise these spurious oscillations without having to reduce the
Courant number, see Figure 5.1 and Figure 5.2.
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Figure 5.1: Comparison of the numerical results of Problem A using For-
mulation A-NC with the alternative numerical approach (h+B).
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Figure 5.2: Comparison of the numerical results of Problem A using For-
mulation A-NC with the alternative numerical approach (u).
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