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Abstract

We investigate the convergence of incremental four-dimensional variational data as-

similation (4D-Var) when an approximation to the tangent linear model is used within

the inner loop. Using a semi-implicit semi-Lagrangian model of the one-dimensional

shallow water equations, we perform data assimilation experiments using an exact tan-

gent linear model and using an inexact linear model (a perturbation forecast model).

We find that the two assimilations converge at a similar rate and the analyses are

also similar, with the difference between them dependent on the amount of noise in

the observations. To understand the numerical results we present the incremental 4D-

Var algorithm as a Gauss-Newton iteration for solving a least squares problem and

consider its fixed points.
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1 Introduction

In order to make four-dimensional variational assimilation (4D-Var) operationally afford-

able, Courtier et al. (1994) proposed an incremental version of the problem whereby the

minimization of the full nonlinear cost function is approximated by a series of minimiza-

tions of quadratic cost functions with linear constraints. These are derived by assuming

that the evolution of small perturbations to a given base trajectory can be approximated

using a linear model. Usually this linear model is taken to be the tangent linear model

(TLM) of the discrete nonlinear model, but Courtier et al. propose that other linear

models may also be used, provided that they are close to the tangent linear model.

More recently Lawless et al. (2003) (hereafter LNB) looked at another method of

developing a linear model, which starts from the continuous linearized equations. These

equations are discretized to form a perturbation forecast model (PFM). Such a model is

being developed as part of the incremental 4D-Var scheme of the UK Met Office (Lorenc et

al. 2000). The results of LNB showed that a PFM could adequately describe the evolution

of a perturbation in the discrete nonlinear model, provided that the perturbation was of

a reasonable size.

In the present study we consider the use of perturbation forecast models within the

inner loop of an incremental 4D-Var system. We examine whether the use of a PFM

within such a system will degrade the assimilation with respect to using a TLM, either in

terms of the convergence rate or in terms of the final analysis. In particular, we address

the difference between a TLM and a PFM for very small perturbations and assess how

this affects the assimilation close to the point of convergence.

We begin in section 2 by describing the continuous and discrete models used in this

study. The incremental 4D-Var assimilation system is then presented in section 3. In

section 4 we perform a series of assimilation experiments to compare the performance

using a TLM and a PFM, using both perfect observations and observations with error.

These results are then discussed in section 5, where we interpret incremental 4D-Var as a

Gauss-Newton iteration. By presenting the incremental procedure in this context, we are

able to understand more fully our numerical results. Finally we draw some conclusions in

section 6.
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2 Description of the models

2.1 Nonlinear model

The model we consider is the one-dimensional shallow water system for the flow of a fluid

over an obstacle in the absence of rotation. The continuous problem is described by the

equations

Du
Dt

+
∂φ

∂x
= −g

∂h̄

∂x
, (1)

D(lnφ)
Dt

+
∂u

∂x
= 0, (2)

with
D
Dt

=
∂

∂t
+ u

∂

∂x
. (3)

In these equations h̄ = h̄(x) is the height of the bottom orography, u is the velocity of the

fluid and φ = gh is the geopotential, where g is the gravitational constant and h > 0 the

depth of the fluid above the orography. The problem is defined on the domain x ∈ [0, L],

with periodic boundary conditions, and we let t ∈ [0, T ].

The system is discretized using a two-time-level semi-implicit semi-Lagrangian inte-

gration scheme, based on the scheme of Temperton and Staniforth (1987). We use a grid

staggering in the spatial domain, with points at which u is held being half a grid length

from points at which φ is held. In the discrete equations subscripts au and du indicate

the arrival and departure points for the u variable and similarly aφ and dφ the arrival and

departure points for φ. The time discretization is then given by

un+1
au − un

du

∆t
+ (1− α1)

(
∂φ

∂x
+ g

∂h̄

∂x

)n

du

+ α1

(
∂φ

∂x
+ g

∂h̄

∂x

)n+1

au

= 0, (4)

(lnφ)n+1
aφ − (lnφ)n

dφ

∆t
+ (1− α2)

∂u

∂x

∣∣∣∣
n

dφ

+ α2
∂u

∂x

∣∣∣∣
n+1

aφ

= 0, (5)

where superscripts indicate the time level and the coefficients α1, α2 are time-weighting pa-

rameters that allow an off-centred time averaging of the forcing terms along the trajectory

to be used, as in Rivest et al. (1994).

The discrete equations are solved as described in LNB. After calculating the known

terms at time level n, a weakly nonlinear elliptic equation is formed for φ, where φ is

represented in terms of a perturbation to a reference value. This is solved using an

iterative procedure, from which we can calculate the value of φ at the new time level.

This new value can then be used to find the value of u at the new time level by means of

(4).
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2.2 Linear models

We develop both the tangent linear model and a perturbation forecast model for this

system, in order to compare the two within data assimilation experiments. The TLM

is derived directly from the nonlinear model source code, using the normal procedure

of automatic differentiation. The only exception to this rule is in the treatment of the

iterative procedure used to solve the elliptic equation. For this part of the solution we solve

the linearized equation within the TLM rather than differentiating the iterative procedure.

Further details of the resulting numerical scheme can be found in Lawless (2001).

For the PFM we must first linearize the continous nonlinear equations (1), (2) to find

the continuous linearized equations. Considering perturbations δu(x, t), δφ(x, t) around a

state ū(x, t), φ̄(x, t) which satisfies the nonlinear equations, we obtain for the linearization

of the momentum equation
Dδu
Dt

+ δu
∂ū

∂x
+

∂δφ

∂x
= 0 (6)

and for the linearization of the continuity equation

D
Dt

(δφ

φ̄

)
+ δu

∂(ln φ̄)
∂x

+
∂(δu)
∂x

= 0, (7)

where the material derivative D/Dt is defined as in (3), but using the linearization state

wind ū.

These equations are discretized using a semi-implicit semi-Lagrangian scheme, as used

in the nonlinear model. Hence the time discretization is

1
∆t

(
δun+1

au − δun
du

)
+ (1− α1)

∂δφ

∂x

∣∣∣∣
n

du

+ α1
∂δφ

∂x

∣∣∣∣
n+1

au

+ (1− α3)
(

δu
∂ū

∂x

)n

du

+ α3

(
δu

∂ū

∂x

)n+1

au

= 0, (8)

1
∆t

( (
δφ

φ̄

)n+1

aφ

−
(

δφ

φ̄

)n

dφ

)
+ (1− α2)

∂(δu)
∂x

∣∣∣∣
n

dφ

+ α2
∂(δu)
∂x

∣∣∣∣
n+1

aφ

+ (1− α4)
(

δu
∂(ln φ̄)

∂x

)n

dφ

+ α4

(
δu

∂(ln φ̄)
∂x

)n+1

aφ

= 0, (9)

where αi are time-weighting coefficients for i = 1, . . . , 4. The numerical solution of these

equations follows closely that used in the nonlinear model. Further details are provided

in LNB and Lawless (2001).

2.3 Adjoint models

The adjoints of both linear models are derived by using the automatic adjoint approach

and taking the transpose of the linear model source code. In doing this, care must be
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taken to ensure that the adjoint of the elliptic equation solution is treated correctly. To

ensure this we derive the adjoint of the discrete elliptic equation, which is then solved

within the adjoint model. In the next section we describe how these models are used to

build an incremental 4D-Var system.

3 Assimilation system

3.1 Incremental 4D-Var

A full nonlinear 4D-Var system aims to find the model state x0 which minimizes the cost

function

J [x0] =
1
2
(x0 − xb)TB−1

0 (x0 − xb) +
1
2

n∑

i=0

(H i[xi]− yo
i )

TR−1
i (Hi[xi]− yo

i ) (10)

subject to the discrete nonlinear model

xi = S (ti, t0,x0), (11)

where xb is a background field, yo
i are the observations, Hi is the observation operator

which maps the field from model space to observation space and S (ti, t0,x0) is the solution

operator of the nonlinear model. The matrices B0 and Ri are the background error and

observation error covariance matrices respectively.

In practice this problem is very costly to solve, since the nonlinearity of the observation

operator and the numerical model means that the cost function is a nonlinear least squares

problem. In the incremental version of 4D-Var we approximate the full problem by a series

of minimizations of approximate convex quadratic cost functions. This can be represented

by the following iterative algorithm, where k is the iteration number:

1. Define an initial guess field x0
(k) at time t0. For the first iteration, k = 0, we choose

x0
(0) = xb, the background state.

2. Run the nonlinear model to calculate xi
(k) at each time step ti.

3. For each observation, calculate the innovation vectors d(k)
i = yo

i −Hi[xi
(k)].

4. Define an increment δx(k)
0 = x(k+1)

0 − x0
(k).

5. Find the value of δx(k)
0 that minimizes the incremental cost function

J̃ (k)[δx(k)
0 ] =

1
2
(δx(k)

0 − [xb − x0
(k)])TB−1

0 (δx(k)
0 − [xb − x0

(k)])

+
1
2

n∑

i=0

(Hiδx
(k)
i − d(k)

i )TR−1
i (Hiδx

(k)
i − d(k)

i ) (12)
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subject to

δx(k)
i = L̃(ti, t0,x(k))δx(k)

0 , (13)

where Hi is the linearization of the observation operator Hi around the state x(k)
i

and L̃(ti, t0,x(k)) is the solution operator of the linear model (either the TLM or

PFM) linearized around the nonlinear model trajectory. In the case where the exact

TLM is used we use the notation L(ti, t0,x(k)).

6. Update the guess field using

x0
(k+1) = x0

(k) + δx(k)
0 . (14)

7. Repeat the procedure until a given convergence criterion is satisfied or a certain

number of iterations has been performed. The analysis field at the initial time is

then given by xa
0 = x0

(M), where M is the total number of iterations performed.

Each iteration of this set of steps is known as an outer loop. Within each outer loop we

must solve the minimization problem of step 5, which itself has to be solved using an

iterative procedure. This procedure is known as the inner loop. We now provide further

details on the solution of the inner loop minimization.

3.2 The inner loop

The problem to be minimized in the inner loop can be written as a convex quadratic mini-

mization problem, for which different solution methods are available, such as quasi-Newton

methods and conjugate gradient methods. For large dimensional problems the latter are

found to be the best compromise between convergence rate and computer memory re-

quirements (Chao and Chang, 1992). A review of various conjugate gradient methods

used in meteorology was carried out by Navon and Legler (1987). They found the best

performance from a Beale restarted memoryless quasi-Newton conjugate gradient method

(Shanno 1978, Shanno and Phua 1980) as implemented in the CONMIN routine available

from the ACM TOMS1 package. We also use this routine for the present study. It requires

as input both the value of the inner loop cost function, which can be obtained directly

from an evaluation of (12) and (13), and its gradient. Calculation of the correct gradient

information requires the adjoint of the linear model used in the calculation of J̃ . For the

present study the adjoints of the TLM and PFM have been implemented, as detailed in
1Available from the GAMS software library at gams.nist.gov
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section 2(c), and the implementation of both has been verified using the gradient test of

Navon et al. (1992).

It is necessary to provide some criterion to determine when the inner loop iterations

have converged sufficiently. In this study the iteration is stopped if the change in the cost

function from one iteration to the next is less than a prescribed tolerance. This is defined

by the test

J̃ (k)
(l+1) − J̃

(k)
(l) < ε(1 + J̃ (k)

(l) ) (15)

where l is the iteration count of the inner loop and ε is a small parameter. The reason for

the addition of one on the right hand side is to ensure that when J̃ itself is less than one,

the convergence criterion does not fall to less than order ε (Gill et al. 1986, p.306).

We note that within the incremental formulation of 4D-Var it is possible to run the

inner loop at a lower resolution than the outer loop. In this case the innovation vectors di

are still calculated at the higher resolution, using a high resolution run of the nonlinear

model. However the increment δxi is evolved using the linear model at a lower resolution.

The analysed increment at the end of each outer loop iteration must then be interpolated

back to the higher resolution to perform the update step (14).

4 Numerical experiments

4.1 Experimental design

In order to investigate the behaviour of a TLM and a PFM within incremental 4D-Var

we perform a series of identical twin experiments. We consider two different experimental

designs, one in which the true evolution is only weakly nonlinear during the assimilation

period and one in which the evolution becomes highly nonlinear. We refer to these as Case

I and Case II respectively. For Case I we use a periodic domain of 1000 grid points, with

a spacing ∆x = 0.01 m between them, so that x ∈ [0 m, 10 m]. For Case II we use 200

grid points, also with a spacing ∆x = 0.01 m, so that x ∈ [0 m, 2 m]. For both cases we

define an orography in the centre of the domain by

h̄(x) = h̄c

(
1− x2

a2

)
for 0 < |x| < a, (16)

and h̄(x) = 0 otherwise, where we choose h̄c = 0.05 m and a is taken to be 40∆x = 0.4 m.

The time-weightings for the scheme are taken to be α1 = α2 = 0.6 and for the PFM
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Figure 1: Initial conditions at time t = 0. The plots show (a) u and (b) φ for Case I and

(c) u and (d) φ for Case II.

α3 = α4 = 0.6. The gravitational constant g is set to 10 ms−2 and the model time step

∆t is 9.2× 10−3 s

The assimilation interval for Case I is taken to be 100 time steps, and for Case II it is

50 time steps. Figure 1 shows the initial conditions at time t = 0 for each of these cases.

For the assimilation experiments we take the first guess field at time t = 0 to be the true

solution shifted left by 0.5 m, reflecting a phase error seen in a forecast background field.

We illustrate the comparative behaviour of the TLM and PFM by comparing the

evolution of a perturbation in the linear models with its evolution in the nonlinear model.

We define a state x0 to be the true state at the initial time and a perturbation γδx0,

where δx0 is the difference between the first guess field and the true state and γ is a scalar

parameter. For both cases we calculate the relative error ER at the end of the assimilation

window, where

ER = 100
‖ S(tn, t0,x0 + γδx0)− S(tn, t0,x0)− L̃(tn, t0,x)γδx0 ‖

‖ L̃(tn, t0,x)γδx0 ‖
, (17)

and γ is taken to be 10−p, with p = 0, 1, 2, . . . , 5. Figure 2 shows for each case a plot of

the relative error for the u field as the perturbation size is reduced. We see that for Case I

the error for the TLM reduces linearly with perturbation size, showing that the model

is correctly coded. For Case II we also see a linear reduction in the relative error, until

the perturbations become very small. For small perturbations, errors around the shock

dominate the calculation and these decay only slowly, due to the high nonlinearity at the
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Figure 2: Plot of relative error ER of u field against perturbation size for (a) Case I and

(b) Case II. The solid line is for the tangent linear model and the dashed line for the

perturbation forecast model.

shock. The error in the PFM is similar to that for the TLM for larger perturbations,

but as found in LNB, the error for small perturbations is larger. We now investigate

whether this difference between the TLM and the PFM for small perturbations will affect

the convergence of an incremental 4D-Var scheme.

4.2 Assimilation experiments

We first perform an identical twin experiment in which there is no background term in

the cost function and perfect observations are given on every time step and at every grid

point. Hence the observation error covariance matrices Ri and the observation operators

Hi are both equal to the identity for each time step. The inner loop is kept to be the

same spatial resolution as the outer loop. Since we wish to test the effect caused by the

behaviour of the difference in the linear models for very small perturbations, we run a

total of 12 outer loops, thus ensuring that in later loops the perturbations being solved for

are small. The iterations of the inner loop are stopped when the criterion (15) is satisfied.

For this experiment the convergence parameter ε is set to be 10−8. The convergence of the

cost function and its gradient for this experiment is shown in Figures 3 and 4 for Cases I

and II respectively. We see that for both cases the convergence is almost identical whether

using a TLM or a PFM.

Since we know the true solution throughout the time window by construction of the
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Figure 3: Case I: Convergence of (a) cost function and (b) gradient for tangent linear

model (solid line) and perturbation forecast model (dashed line).

experiment, we can define the analysis error as the difference between the analysed solution

and the truth. In Figure 5 we show the analysis errors for Case I for both u and φ for

the different assimilation runs, with the fields taken at the centre of the time window.

For both the analysis using a TLM and that using a PFM, the root mean square (RMS)

norm of the analysis error is of the order 10−8, which is the best that we may expect

for the convergence tolerance we are using, and the norm of the difference between the

two analyses is of the same order. The analysis errors for Case II in the centre of the

time window are shown in Figure 6. Even though the evolution for this case is highly

nonlinear, with the formation of a shock, the assimilations using both linear models are

able to analyse the true solution to within a high degree of accuracy and the analysis error

is of order 10−7. The RMS norm of the difference between the two assimilations is of the

order 10−8 and so is within the order of the analysis error.

In order to test that the solutions around the shock remain stable as the analyses are

evolved, we run a forecast of 100 time steps starting from the analysis at the start of

the assimilation window. As the analysed solutions evolve we find that the errors in the

forecast solutions become more confined to the region of the shock formation. In Figure 7

we show the error in the forecasts after 100 time steps in the region of the shock. At this

stage almost all of the errors are around the shock position, with the maximum amplitude

increasing to order 10−6. However as the forecasts are continued further, the amplitude

of the error decays by an order of magnitude and the system remains stable.

From these results it would appear that incremental 4D-Var is able to perform a good
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Figure 4: Case II: Convergence of (a) cost function and (b) gradient for tangent linear

model (solid line) and perturbation forecast model (dashed line).
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Figure 5: Case I: Analysis errors at the centre of the time window for (a) u field and (b) φ

field, with the dotted line indicating the assimilation using the TLM and and the dashed

line using the PFM.
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Figure 6: As for Figure 5, for Case II.
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(a) u and (b) φ. The dotted line is for the assimilation using the TLM and the dashed

line for that using the PFM.
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analysis given perfect observations, using either a TLM or a PFM, even when the flow

is highly nonlinear. In order to understand whether both linear models continue to be

valid as the convergence is taken close to machine precision, we run again Case II using a

convergence parameter ε = 10−12 in the inner loop and running for 50 outer loops. The

difference between the two analysed solutions is reduced by two orders of magnitude from

order 10−8 to 10−10. Thus it seems that for the identical twin experiment the analysed

solution for a fully converged incremental 4D-Var is essentially the same, whether a TLM

or a PFM is used. We test how well the two analyses minimize the nonlinear cost function

(10) by testing the gradient ∇J at the converged solution. Theoretically the gradient

should be zero at the minimum, but numerically the best we might expect is that the norm

of the gradient will be of the order
√

ε (Gill et al. , 1986, p.303). For this experiment the

gradient is given by

∇J [x0] =
n∑

i=0

L(ti, t0,x)T(Hi[xi]− yo
i ). (18)

Substituting into this equation the analyses from the two different assimilations, we find

that for both cases the gradient is of order 10−6, indicating that both assimilations mini-

mize the nonlinear cost function to within the convergence tolerance of the inner loop. We

now investigate whether these findings still hold when error is present on the observations.

In the following sections we present only the results from Case II, since this is the more

stringent of the two test cases.

4.3 Imperfect observations

In order to investigate the effect of imperfect observations, a random unbiased error with

Gaussian distribution is added to the observations. The standard deviation of the ob-

servation error is chosen to be 0.1 ms−1 for the u observations and 0.2 m2s−2 for the

φ observations, representing 10% of the mean value of each field. The observations are

assumed to be uncorrelated, so that the observation error matrices Ri are diagonal ma-

trices of the chosen variances. Again no background term is included in the assimilation

experiments.

Laroche and Gauthier (1998) reported that a 4D-Var assimilation with noisy observa-

tions can lead to erroneous results if convergence is pushed below the level of the noise,

since the small scales in the analysis at the start of the time window are adjusted to fit

the observational noise. In order to avoid this effect we relax the convergence parameter

for this experiment to ε = 10−4. The assimilation is run for 12 outer loops. We find again
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that the convergence of the cost function and its gradient are almost identical for the as-

similations with the TLM and the PFM (not shown). The analysis errors at the centre of

the time window are shown in Figure 8. In comparison with Figure 6 we see that analysis

errors are much larger with imperfect observations. However the variance of the error field

is within the expected value, being two orders of magnitude less than the observation error

variance. As for the case with perfect observations, the analysis errors are spread evenly

throughout the domain. Again we run a forecast of 100 time steps from the analysis at the

start of the assimilation window. We find that as the forecasts evolve, the errors become

more concentrated around the shock position, but the maximum amplitude of the error

remains small.

Looking more closely at the difference between the analyses from the TLM and PFM

assimilations, we find that the RMS norm of the difference is of order 10−4, which is much

larger than in the experiment with exact observations. In order to understand whether this

difference arises from the convergence criteria chosen or from the noise on the observations,

we run an experiment with the same level of noise but much greater convergence. As at

the end of the previous section, we set ε = 10−12 and run for 50 outer loops. The RMS

norm of the difference between the two analyses remains of the order 10−4. If we calculate

the gradient of the nonlinear cost function (18) for the two analyses, we find that for

the TLM analysis the norm of ∇J is order 10−6, indicating that the minimum has been

found. However if we substitute the analysis from the PFM assimilation into the gradient

expression then we find that the norm of ∇J is order unity. Thus it appears that when

observational noise is included, the converged solution of incremental 4D-Var using a PFM

is no longer the same as that using a TLM. The analysis from the PFM experiment does

not minimize the nonlinear cost function, but is instead the solution of a closely related

problem. The reasons for this will be explained in section 5.

Finally in this section we examine how the comparative behaviour of the assimilations

depends on the level of noise on the observations. We run various experiments with the

standard deviation of the noise being changed from 10% of the mean value to values of

between 1% and 30%. The parameter ε is restored to the value of 10−4 and the number

of outer loops to 12. The error in the various analyses is then calculated by expressing

the RMS norm of the difference between the analysis and the true solution (the analysis

error) as a percentage of the RMS value of the true solution. A plot of this error measure

against observation error is shown in Figure 9. We see that for both the u and φ fields
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Figure 8: Case II: Analysis errors at the centre of the time window for (a) u field and (b) φ

field when noise is included on the observations. The dotted line indicates the assimilation

using the TLM and the dashed line that using the PFM.

the relative errors of the analyses are very close for the TLM and PFM experiments when

the noise level is below approximately 25% of the mean value of the field and the error

increases linearly with the noise level. Above the 25% level the error in the analysis from

the PFM experiment is higher than that from the TLM experiment. Thus we conclude

that for low levels of observational noise the assimilations with a TLM and a PFM may

behave similarly, but that this may not be true when the observations are very inaccurate.

4.4 Low resolution inner loop

As mentioned in section 3(b) the inner loop of 4D-Var may be run at a lower spatial

resolution than the outer loop, with the innovation vectors still being calculated at the

higher resolution. We now consider the effect of this approximation and compare it to the

approximation made in replacing a TLM with a PFM. We first run again the experiment

with perfect observations for 12 outer loops using Case II, as in the first experiment of

section 4(b), but this time with an inner loop at half the spatial resolution of the outer

loop. The covergence parameter ε is set to the original value of 10−8. In order to calculate

the inner loop cost function (12) we must include in the linearized observation operator

an interpolation of the perturbation δx to the observation point. An interpolation is also

needed to convert the increment from the inner loop minimization to a high resolution

16



0 5 10 15 20 25 30
0

2

4

6

8

Observation error (%)
A

n
al

ys
is

 e
rr

o
r 

(%
)

(a)

0 5 10 15 20 25 30
0

2

4

6

8

Observation error (%)

A
n

al
ys

is
 e

rr
o

r 
(%

)

(b)

Figure 9: Case II: Plot of percentage analysis error at the centre of the time window,

relative to the norm of the true solution, against level of observational noise, for (a) u field

and (b) φ field. The solid line indicates the assimilation using the TLM and the dashed

line that using the PFM.

increment, before it can be added on to the guess field. For both of these we use a linear

interpolation. In Figure 10 we show the convergence of the cost function and its gradient

for these experiments. Also shown for comparison is the convergence using the TLM at

the full resolution, which corresponds to the solid curves of Figure 4. We see that the

experiments using a low resolution inner loop converge to a much larger value of the cost

function than the experiment with everything at the higher resolution.

In Figure 11 we show the analysis errors in the u field and the difference between the

analyses using the two linear models. A comparison with Figure 6(a) shows that in this

case the use of a lower resolution inner loop causes an increase in the maximum analysis

error of more than two orders of magnitude. For this experiment the difference between

using a TLM or a PFM at the lower resolution is seen to be much less than the error

caused by a change of resolution in the inner loop. However, the error in the analysis

field is still much smaller than that seen in the full resolution experiment with imperfect

observations.

We repeat the experiments with a low resolution inner loop but using imperfect ob-

servations with a standard deviation of 10% of the mean. As previously the convergence

parameter ε is set to 10−4 to avoid small scales fitting the observational noise. We find

that the error difference caused by the change in resolution is smaller than the magnitude
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Figure 10: Case II: Convergence of (a) cost function and (b) gradient with inner loop at

lower resolution. The solid line is for the tangent linear model and the dashed line for the

perturbation forecast model. The dotted line shows for comparison the convergence using

the tangent linear model at full resolution.
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Figure 11: Case II: Analysis errors in u field at the centre of the time window using a

low resolution inner loop. Plot (a) shows the analyis error, with the dotted line indicating

the assimilation using the TLM and the dashed line using the PFM. Plot (b) shows the

difference between the two analyses
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Table 1: RMS norms of analysis differences using imperfect observations.

u(ms−1) φ(m2s−2)

(i) Between TLM analyses with 4.51× 10−3 6.03× 10−3

high and low resolution inner loop

(ii) Between TLM and PFM analyses with 7.75× 10−4 8.23× 10−4

high resolution inner loop

(iii) Between TLM and PFM analyses with 8.02× 10−4 8.75× 10−4

low resolution inner loop

of the analysis error. For the high resolution case using a TLM the norm of the analysis

error is of the order 10−2 for both the u and φ fields. In Table 1 we detail the RMS norms

of the difference in analyses caused by (i) changing from a high to low resolution inner

loop using a TLM, (ii) changing from a TLM to a PFM in a high resolution inner loop

and (iii) changing from a TLM to a PFM in a low resolution inner loop. We see that the

difference in the error between the analyses from assimilations with a TLM and a PFM

at either resolution still remains at least an order of magnitude less than the difference

caused by a change in resolution. The latter is itself an order of magnitude less than the

analysis error.

5 Discussion

5.1 Incremental 4D-Var as a Gauss-Newton iteration

In order to analyse the incremental 4D-Var problem it is useful to consider the underlying

iterative process which the outer loops represent. On each inner loop the cost function (12)

is minimized. If we assume that this minimization is exact, then the perturbation δx(k)
0

is a solution of the normal equations ∇J̃ (k)[δx(k)
0 ] = 0. Hence each outer loop iteration is

given by

x(k+1)
0 = x(k)

0 −
(

B−1
0 +

n∑

i=0

L̃T
i HT

i R−1
i HiL̃i

)−1

×
(

B−1
0 (x(k)

0 − xb) +
n∑

i=0

L̃T
i HT

i R−1
i (Hi[x

(k)
i ]− yo

i )

)
, (19)

where we use the shortened notation L̃i to indicate the linear model operator L̃(ti, t0,x(k)).

This equation defines the iterative process being used in incremental 4D-Var to minimize
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the original nonlinear cost function (10). The underlying iterative process was considered

by Thépaut and Veersé (1998), who used it to derive a general form of convergence con-

dition for incremental 4D-Var. We now show how the iteration may be interpreted as an

approximation to a Gauss-Newton iteration.

The theory of a Gauss-Newton iteration for a general least squares minimization is

presented in the appendix. In order to understand incremental 4D-Var from this perspec-

tive we must first write the nonlinear cost function (10) in the more general form (28).

We put

d̂(x0) = −




x0 − xb

H0[x0]− yo
0

...

Hn[xn]− yo
n




,C−1 =


 B−1

0 0

0 R−1


 , (20)

where R is the block diagonal matrix with entries Ri and C−1 is a symmetric positive

definite matrix. Then the cost function (10) can be written

J (x) =
1
2
d̂TC−1d̂. (21)

We note that this is equivalent to the general form (28) with f(x) = C−1/2d̂. Then the

Jacobian matrix of f(x) is given by

J = C−1/2Ĥ, (22)

where

Ĥ = −




I

H0

H1L1

...

HnLn




(23)

and Li = L(ti, t0,x(k)) is the solution operator of the exact tangent linear model.

If we were to use an exact Gauss-Newton method to minimize J (x), then from (31)

and (32) we see that the this implies that for each iteration we must have

x(k+1)
0 = x(k)

0 −
(
ĤTC−1Ĥ

)−1
ĤTC−1d̂, (24)

where Ĥ and d̂ are both dependent on the current iterate x(k)
0 . Expanding the variables in

full shows that this is exactly the same as (19) for the case L̃(ti, t0,x(k)) = L(ti, t0,x(k)).

Thus we conclude that the incremental 4D-Var iteration given by (19) is equivalent to
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a Gauss-Newton iteration if an exact tangent linear model is used. If the linear model

is approximated in any way, either by using a PFM instead of a TLM, or by reducing

the spatial resolution of the TLM, then the incremental 4D-Var can be considered as an

inexact Gauss-Newton iteration in which the Jacobian J is replaced by an approximation

J̃. We now make some comments on the convergence of this process.

5.2 Convergence of incremental 4D-Var

Although in practice incremental 4D-Var is only run for a few outer iterations, we can gain

some useful insights by looking at what happens if we run the iterations to convergence.

We assume that the iteration process has some fixed point x∗0 and that sufficient conditions

for convergence to this fixed point are satisfied. Then at the fixed point x∗0 we have

B−1
0 (x∗0 − xb) +

n∑

i=0

L̃T
i HT

i R−1
i (Hi[x∗i ]− yo

i ) = 0, (25)

with

x∗i = S (ti, t0,x∗0). (26)

We note first of all that, if L̃i is equal to the exact tangent linear model Li, then the left

hand side of (25) is equal to ∇J [x∗0]. Hence in this case the fixed point of the iteration is

also a stationary point of the nonlinear cost function (10).

In order to interpret the results of the experiments of section 4 we now consider the

case in which no background term is present, so that at the fixed point we have

n∑

i=0

L̃T
i HT

i R−1
i (Hi[x∗i ]− yo

i ) = 0. (27)

We denote the truth at time ti by xt
i and we suppose that we have perfect observations

of the true state, as for the experiments of section 4(b). Then at each time ti we have

yo
i = Hi[xt

i]. Hence we see that x∗0 = xt
0 is a fixed point of the iteration, since the residual

Hi[x∗i ]− yo
i is zero for all times ti and so (27) is automatically satisfied. Thus for perfect

observations we have a zero-residual problem, and xt
0 is a fixed point of the incremental

4D-Var iteration, irrespective of the matrices L̃i.

We emphasize that this does not mean that an iteration with any matrices L̃i will nec-

essarily converge to this fixed point, since the convergence will depend on other conditions,

including the distance of the first guess from the fixed point. However we do know that

we have a fixed point equal to the true solution of the nonlinear problem. In particular,

we see that by replacing a TLM with a PFM, the true solution of the nonlinear problem is
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still a fixed point of the incremental 4D-Var iteration. This explains why the experiments

of section 4(b) using a TLM and a PFM were able to give identical results to within the

accuracy of the solution procedure, even though the two linear models behave differently

for small perturbations.

We now consider what happens when the observations contain errors. In this case it

will not be true in general that there exists a point x∗0 such that yo
i = Hi[x∗i ] for all times

ti. Hence the point at which (27) is satisfied will depend on the matrices L̃i and we would

not expect to have the same fixed point when these matrices are changed. This is reflected

in the experiments of section 4(c), where the assimilations with the TLM and PFM did

not have the same solution when run to complete convergence. However we did find that

the solutions for the two assimilations were close. Since the fixed points must satisfy (27),

where L̃i are the matrices of the corresponding linear model, we may expect the analyses

to be close if the matrices are not too far apart in some sense, that is if the approximations

L̃i are close to the true tangent linear matrices Li. This will be investigated further in

future work.

Furthermore, since we do not have a zero-residual problem, we would also expect the

observational errors to play a significant role in determining how close the fixed points

are. In particular, when the error in the observations is large, then the assimilation has

more freedom to fit the observations within the observational error and so the fixed points

may be further apart. This is reflected in the difference in behaviour seen in Figure 9 as

the observational error is increased.

6 Conclusions

This study has shown that despite the fact that a PFM may behave differently from a TLM

for small perturbations, the inclusion of a PFM in an incremental 4D-Var scheme may be a

valid approximation. For tests with exact observations the assimilations with a TLM and

a PFM gave the same analysis to within the precision of the converged tolerance. When

error was included on the observations the analyses differed, even when the incremental

method was converged fully. However, the norm of the difference between the analyses

using a TLM and a PFM was still found to be much smaller than the difference between

either analysis and the true solution, providing that the observational noise remained

below a certain level.

The difference made in replacing a TLM with a PFM was also compared with the
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effect of using a reduced resolution TLM. For the experiments performed it was found

that reducing the resolution led to a greater increase in the analysis error than the use of

a PFM at either high or low resolution.

In order to understand the experimental results, the incremental 4D-Var algorithm was

formulated as a Gauss-Newton iteration. This provides a clear mathematical context in

which the convergence of incremental 4D-Var can be analysed. We have shown how we may

expect the assimilations to converge to the same analysis in the absence of observational

error, but that in general we would not expect this to occur when observational error is

present. In a future paper we will address some of the more theoretical questions arising

from this study, such as the convergence conditions using either a TLM or a PFM, how

close the converged solutions will be for a given PFM and how quickly the iteration will

converge to the solution.

Appendix: Gauss-Newton iteration

The Gauss-Newton method is an iterative method for solving a general nonlinear least

squares problem of the form

min
x
J (x) =

1
2
‖ f(x) ‖2

2=
1
2
f(x)Tf(x), (28)

with x ∈ Rn (Dennis and Schnabel, 1996). We assume that J (x) is twice continuously

differentiable in an open convex set D ∈ Rn and that the minimization problem (28) has

a unique solution x∗ ∈ D.

The first derivative matrix of f(x) is the Jacobian matrix J, with entries {J}ij =

∂fi(x)/∂xj . Then we can write the gradient and Hessian of J (x) as

∇J (x) = JTf(x), (29)

∇2J (x) = JTJ + Q(x), (30)

where Q(x) is the second order information. We note that at the minimum point x∗ we

have ∇J (x∗) = 0.

The Gauss-Newton iteration for solving (28) is given by

δx(k) = −(JTJ)−1JTf(x(k)), (31)

x(k+1) = x(k) + δx(k). (32)
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This is an approximation to the Newton iteration in which the second order terms of the

Hessian, Q(x), are neglected. It can be shown that under certain conditions, the Gauss-

Newton method will converge to the minimum x∗ (Dennis and Schnabel, 1996, Wedin,

1974).

If at the minimum point we have f(x∗) = 0, then the problem (28) is referred to as a

zero-residual problem. In this case the Gauss-Newton method is quadratically convergent.

Otherwise, if the method converges, then it does so linearly (Dennis and Schnabel, 1996).
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Wedin, P.-Å., (1974). On the Gauss-Newton method for nonlinear least squares problems.

Working Paper 24, Institute for Applied Mathematics, Stockholm, Sweden..

25


