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Abstract

The problem of four-dimensional variational data assimilation can be considered
as a nonlinear least squares problem. A common method for solving it is equivalent
to a Gauss-Newton method. However approximations must be made in order to solve
the problem efficiently. In this paper we examine two approximations to the Gauss-
Newton method and their effect on the data assimilation problem.



1 Introduction

Data assimilation is the name given to the process of combining observed data with a
numerical model to produce the best estimate of the state of a system. It is used for
example in numerical weather prediction to obtain the initial conditions from which to
run a weather forecasting model. Modern techniques of data assimilation include four-
dimensional variational data assimilation (4D-Var), which uses a sequence of observations
over a given time window to estimate the best model trajectory within the window. This
method considers the data assimilation problem as a nonlinear least squares problem,
which is solved using an iterative process. However the problem is very large and so
approximations must be made to ensure an efficient solution process. In this paper we
consider the effect of some of these approximations on the convergence of the iteration
process. In Section 2 we introduce the concept of four-dimensional variational data as-
similation. Section 3 introduces the Gauss-Newton method for solving a nonlinear least
squares problem, which is equivalent to a method commonly used in 4D-Var. In Section 4
we illustrate approximations of the Gauss-Newton method using a simple 4D-Var system
and state some theoretical results which explain the numerical results. Finally we draw
some conclusions in Section 5.

2 Four-dimensional variational data assimilation

The aim of four-dimensional variational data assimilation is to find a model state xq at
an initial time tg, such that the distance between the trajectory of the model and a set of
observations y; at times ¢; is minimized, subject to x¢ remaining close to a prior estimate
x?, also known as a background field. Mathematically this can be expressed as a nonlinear
least squares problem, for which we wish to find the model state xp that minimizes the
objective function
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subject to the x; satisfying the discrete nonlinear model
X; = S(ti,to,XO), (2)

where S(t;,t0,%o) is the solution operator of the nonlinear model. The matrices By and
R,; are the background error and observation error covariance matrices respectively and
H; is an operator which maps the model field to observation space.

For the problem of numerical weather prediction the state vector is very large, with the
order of 107 elements. Thus efficient methods must be found to minimize the function (1).
A common way of treating this problem is by what is called the incremental method [1],
which we have previously shown to be equivalent to applying the Gauss-Newton iteration
to minimize a nonlinear least squares function [2].

3 Gauss-Newton iteration

To introduce the Gauss-Newton method we consider a general nonlinear least squares
problem of the form

min 7 (x) = 3 || £(x) [3= 3£ 7E(x), (3)



with x € R™ [3]. We can write the 4D-Var objective function (1) in this form by putting
f(x) = C~/2d, where
b
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We assume that J(x) is twice continuously differentiable in an open convex set D € R™
and that the minimization problem (3) has a unique solution x* € D. Then the first and
second derivatives of J(x) are given by

VI(x) = JTf(x), (5)
VEI(x) = JTT+Q(x), (6)

where J = J(x) is the Jacobian of f(x) and Q(x) contains the second order information.
Then the Gauss-Newton iteration for solving (3) is an approximation to a Newton iteration
in which the second order terms are neglected. Thus we obtain the iterative procedure

(GN)

Solve (JTJ)ox® = —J37¢x"), (7)
Set x(FD) = x4 5x(*) (8)

Sufficient conditions for the convergence of the exact Gauss-Newton method (GN) to
the solution of the nonlinear least squares problem (3) have been derived by different au-
thors. From [4] we know that convergence to x* is guaranteed if ||(J (x*)7J(x*)) 71 Q(x*)|| <
1. Other sufficient conditions can be found in [3], which also gives a rate of convergence,
and in [5], which provides a proof from a geometrical point of view.

For the data assimilation problem it is not normally possible to solve (7) directly and so
the solution is found by an iterative minimization of a convex quadratic function. We refer
to this procedure as the inner minimization. We note also from (4) that the definition of
f(x) implicitly includes an integration of the nonlinear model (2) to calculate the value of
x at each time step in d. Hence the Jacobian J includes an integration of the linearization
of this nonlinear model.

4 Application to data assimilation

In practice the data assimilation problem is very large and approximations must be made
to ensure an efficient solution method. Two approximations which are commonly made are
to solve the inner minimization problem inexactly and to replace the true linearized model
with an approximation to it. We investigate these approximations in simple assimilation
experimemts.

4.1 Assimilation system

The model we use to test approximations to the Gauss-Newton method is a one-dimensional
nonlinear shallow water system for the flow of a fluid over an obstacle in the absence of
rotation. The model equations are given by
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Figure 1: Comparison of convergence of (a) objective function and (b) its gradient for a
constant convergence criterion (solid line) and a variable criterion (dashed line).

with D/Dt = 9/0t + ud/dx. In these equations h = h(z) is the height of the bottom
orography, u is the velocity of the fluid and ¢ = gh is the geopotential, where g is the
gravitational constant and h > 0 the depth of the fluid above the orography. The problem
is defined on the domain x € [0, L], with periodic boundary conditions, and we let ¢ € [0, T]].

The model is discretized using a two-time-level semi-implicit semi-Lagrangian scheme.
Further details of the numerics can be found in [6]. We use a periodic domain of 1000
grid points, with a spacing Az = 0.01 m, so that x € [0 m, 10 m]. The model time step is
taken to be 9.2 x 1073 s and we consider an assimilation over a window of 100 time steps.

In order to test the assimilation we run ‘identical twin’ experiments, in which observa-
tions are generated from a run of the model defined to be the truth. These observations
are then assimilated using 4D-Var, starting from an incorrect prior estimate. The in-
ner minimization is performed using a conjugate gradient method and is considered to
have converged when the relative change in the objective function between iterations is
reduced by a factor e. Using such a system we test the effect of approximations to the
Gauss-Newton method when applied to the assimilation problem.

4.2 Truncation of inner mininimization

The first approximation that is often made is to perform an inexact solution of the inner
problem (7). Intuitively we may expect that this is a reasonable approximation, since each
successive inner problem is only an approximation to the true problem and so we may want
to solve these only to within the accuracy of that approximation. This is equivalent to
applying a truncated Gauss-Newton iteration (TGN), in which the first step of the (GN)
method (7) is replaced by

Solve (ITJ)6x™® = —JT¢(x*)) + 1y, (11)

where 7, is the residual due to the inexact solution of the inner minimization.

To investigate the effect of this approximation we run an assimilation experiment for
four iterations of the Gauss-Newton method, in which we have perfect observations of all
variables at each time step. We compare two experiments, one in which the convergence
parameter e is held constant at a value of 107* and one in which it is varied between Gauss-
Newton iterations, from 10~2 on the first iteration, decreasing by a factor of 10 on each
successive iteration. The convergence of the objective function and its gradient is shown
in Figure 1. We see that by using a variable convergence criterion with greater truncation
on earlier iterations we are able to obtain faster overall convergence. An examination of



0 2 4 6 8 10
Distance (m)

Figure 2: Plot (a) shows the error in the w field in the centre of time window for the
assimilation with true linearization (dotted line) and approximate linearization (dashed
line). Plot (b) shows the difference between the two solutions.

the two solutions from these experiments shows that they both approximate the truth to
within the same accuracy.

By adapting the theory from [7] we may prove that the (TGN) algorithm converges to
the true solution x* of the nonlinear problem, provided that the truncation residual 7y is
small enough. We obtain the theorem:

Theorem 1 Suppose that on each iteration we truncate the Gauss-Newton method when
7 1< e 1 I E (k) ||, with

o < = (I () I () Qx|
L[| (I (ep) I (k) QU (%) |l

and let n < Mmax < t < 1. Then there exists € > 0 such that, if | xo — x* [|< €, the
truncated Gauss-Newton iteration (TGN) converges to the solution x* of the nonlinear
least squares problem (3).

(12)

4.3 Approximation of linear model

A second approximation we may wish to make in 4D-Var is to replace the true linearization
of the nonlinear model with an approximation to it. In the context of the Gauss-Newton
iteration, this is equivalent to replacing the Jacobian J(x) with an approximation J(x).
Thus we obtain the perturbed Gauss-Newton iteration (PGN), in which the first step of
the method (7) is replaced by

Solve (jTj)(Sx(k) = —ij(X(k)), (13)

where J is the perturbed Jacobian.

To test the effect of such an approximation we perform an assimilation using the same
case as in Section 4.2, but in which we add noise to the observations with a maximum
amplitude of 5%. Assimilations are performed with an exact and approximate linear
model, as derived previously in [6] and used for assimilation experiments in [2]. In Figure 2
we show the errors in the u field at the centre of the time window in comparison with the
true solution and the difference between the two solutions. We find that both solutions
agree with the truth to within the accuracy of the observations and the difference between
them is two orders of magnitude less than this.



Again it is possible to provide a theoretical understanding of these results by an analysis
of the (PGN) method. The method can be considered as a way of solving the approximate
normal equations

JEHTF(x) = 0. (14)
Then based on the work of [7] and [8] we can prove the following theorem:

Theorem 2 Let the first derwative of J(x)Tf(X) be written
J(x)"I(x) + Qx), (15)

where Q(x) represents second order terms arising from the derivative of J(x). Suppose
that on each iteration k of the perturbed Gauss-Newton method we have

(T Gei) T () = T ()T T (1) — Qi) (T ()T T () 1| < 1. (16)

Then there exists € > 0 such that, if || xo — X* ||< €, the (PGN) iteration converges to the
solution X* of the perturbed problem (14).

Thus, provided that certain sufficient conditions are satisfied, the data assimilation
system using an approximate linear model will converge. We may expect the solutions
to be similar if the perturbed Jacobian j(x) is close to the true Jacobian J(x), that is if
the approximations made to the linear model are small. Further analysis shows that the
difference between the true fixed point x* and the perturbed fixed point X* depends on
the distance between the pseudo-inverses (J7J)~1J7 and (J7J)~'J7 calculated at x* and
on the residual f(x*). If there is no error on the observations, then the residual is zero and
we find that the fixed point x* of the exact Gauss-Newton method is also a fixed point of
the perturbed iteration (PGN).

5 Conclusions

In order to use 4D-Var for data assimilation in any realistic system it is necessary to
make some approximations. In this work we have examined two such approximations,
truncation of the inner minimization and approximation of the linear model. Numerical
results with a simple model showed that the assimilation system may still be valid when
such approximations are included. By examining the underlying algorithm in the context
of approximations to the Gauss-Newton iteration we have been able to provide theoretical
results which support the numerical results. Preliminary results on the convergence of
the truncated and perturbed Gauss-Newton iterations have been presented. Proofs of the
theorems are not given here, but full details will be provided elsewhere.
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