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Abstract

We investigate the conservation properties of Hamiltonian systems in variational
data assimilation. We set up a four dimensional data assimilation scheme for the two-
body (Kepler) system using a symplectic scheme to model the non-linear problem. We
use our completed scheme to investigate the observability of the system and the effect
of different background constraints. We find that the addition of these constraints
gives an improved solution for the cases we have investigated.
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1 Introduction

Some features of atmospheric dynamics can be modelled using Hamiltonian methods. We
investigate whether the conservation properties of such systems can be exploited when
using data assimilation schemes. To do this we set up a full 4d variational (4D-Var)
data assimilation scheme for the simpler problem of planetary orbits, which also has a
Hamiltonian structure. The first section introduces variational data assimilation. We
then discuss the two-body problem in its continuous and discrete form. Section 3 shows
the results of our assimilation experiments.

1.1 4D Variational Data Assimilation

Data assimilation involves the integration of observations into a model to give a state that
most accurately describes reality. These methods are used in numerical weather predic-
tion where there is considerable amounts of data, and a very large state vector. A direct
solution of the data assimilation problem would involve the inversion of a matrix that is
too big to be achieved computationally. Thus many data assimilation schemes attempt to
find ways to approximate the problem [1]. Variational data assimilation methods are op-
timisation problems where we find the optimal state that minimises an objective function,
J , at the initial time. J has an observation term that measures the departures between
the observations and the model state for all observations over a given assimilation time
window. In addition it may often have a background term that accounts for the departure
between a known background state and the model state at the initial time.

4D-Var data assimilation includes data that is distributed in time and space. If we
initially assume that the only contribution to J is given by the observation term, we have

J(x) =
N∑

n=0

(yn −Hn[xn])TR−1
n (yn −Hn[xn]). (1)

Here n denotes quantities at time n; yn are the observations and xn the model state. Hn

is the observation operator which transforms the model state to that of the observation.
The matrix Rn is the observation error covariance matrix describing statistical informa-
tion about the errors in the observations.

The minimisation of equation (1) is subject to the strong constraint that the model
states, xn, are a solution to the numerical model. In addition the minimisation requires
that the tangent linear hypothesis holds. This hypothesis states that the forward model
can be linearised, and that the resulting linear model exhibits the same local behaviour
as the original.

The minimisation of J requires an optimisation algorithm which requires the calcula-
tion of both J and its gradient, ∇J at each iteration. The gradient of the observation term
can be found by running the adjoint model backwards, where the adjoint can be found as
the transpose of the tangent linear model, but is more generally derived directly from the
code of the linear model [2]. Thus to minimise J we require the non-linear forward model
and the adjoint. However to find the adjoint we also need to find the tangent linear model.

In this paper we investigate whether we can retrieve the true state by using a good
conservation method for the forward model of a 4D-Var scheme. We then compare two
methods of including a background constraint. For both we use the same background
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information at the initial time. In the first case we constrain the background model state
vector directly. In the second case this information is transformed to an energy thus
using the Hamiltonian property as a constraint. For the first of these we add to the cost
function a term of the form α1(xb0 −x0)(xb0 −x0)T , for the second the constraint term is
α2(E(xb0)− E(x0))2. Here α1 and α2 are parameters that allow the effect of each of the
terms to be controlled.

2 Modelling the Two-Body Problem

2.1 The Continuous Problem

The two-body problem is one of the simplest Hamiltonian problems. Instead of writing
the system as two particles of mass m1 and m2 in mutual orbit, we can set the origin at
the centre of mass. This reduces the problem to one particle of reduced mass µ, where
µ = m1m2

m1+m2
, in orbit around one particle of total mass, m1+m2. Our continuous equations

of motion can therefore be written as two first order, non-dimensional equations describing
the evolution of position, q = (q1, q2), and momentum, p = (p1, p2),

dq
dt

= p
dp
dt

= − q

(q2
1 + q2

2)
3
2

. (2)

2.1.1 Conservation Properties

The two-body problem has two conserved quantities, the Hamiltonian, E, which for this
problem is the total energy, and the angular momentum, L. These are given by,

E =
1
2

(
p2
1 + p2

2

)
− 1

(q2
1 + q2

2)
1
2

= constant L = q1p2 − p1q2 = constant. (3)

These characteristics are intrinsic to the physical problem, and will provide a useful test
of the discretised equations.

2.2 The Discrete Problem

To test the effect of these conservation properties in the 4D-Var scheme it is essential
that they are captured by the discrete model. In recent years geometric integration has
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Figure 1: Difference between the energy given by the model and the true energy for (a)
eccentricity, e = 0, and (b) e = 0.5
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attempted to address the issue of preserving global features, and in particular symplectic
methods are particularly good at conserving energy, and can also conserve angular mo-
mentum [3]. Following previous work on the two-body problem we use a second order,
symplectic, Runge-Kutta scheme known as the Störmer-Verlet method [4].

Figures 1(a) and 1(b) illustrate how well the model captures the energy conservation
for a circle (where eccentricity, e = 0) and an ellipse with e = 0.5. These figures show
the difference between the energy given by the model and the truth. For a circle this
difference is at a scale of 10−14, and so here the scheme does well. However we see that if
we increase the eccentricity the deviation increases around the point of closest approach.
These deviations can be explained by considering the second of Kepler’s three laws - a line
joining the orbitting body and the central body will sweep out equal areas in equal times.
Hence at closest approach the body will have a greater velocity. As we are using a fixed
step method to model the problem, this means the trajectory will be modelled by fewer
steps at this point giving a less accurate solution [3].

After finding a suitable non-linear forward model, we now use this to find our tan-
gent linear model. From this we will be able to derive our adjoint and thus calculate
the gradient of the cost function. To produce our linear model we linearise the discrete
equations. We then test both the code and the validity of the tangent linear hypothesis
using standard methods [5]. The validity time is a measure of how long the linear model
is a good approximation to the non-linear model. To test this, we track the evolution of
a perturbation in both models. We find that for a circle the validity time is reasonably
long, whereas if we increase the eccentricity the validity time is reduced, suggesting that
the more eccentric ellipses exhibit more non-linear behaviour. Once we have the linear
model we can construct the adjoint directly from the code. This is then tested using stan-
dard techniques [5]. We are now able to set up the 4D-Var scheme using a quasi-Newton
iterative scheme to find the optimal state.

3 Assimilation Experiments

For our investigation we carry out identical twin experiments. For an identical twin
experiment the observations are generated by the forward non-linear model - this allows
us to know the true solution. We assimilate these observations using the scheme starting
from an incorrect initial guess. If we have perfect observations, we should thus be able
to retrieve the true solution. These ‘observations’ can then be made more realistic by
adding noise to them. For our experiments we add noise with a Gaussian distribution
with variance 10−4 and no bias.

3.1 Observability

In general we do not have observations of all of the variables at every timestep. We
investigate whether we still obtain a good solution if we use fewer observations by looking
at the observability of the system. For observations at two timesteps the observability
matrix is given by,

H̃ =

(
H

HM

)
(4)

where H is the linearised observation operator and M is the linear model. If the matrix
H̃ has full column rank then the system is said to be observable, that is we can construct
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Figure 2: Error between the optimal solution and the truth for e = 0 and assimilation
window t = 12.6, for (a) dense observations, and (b) sparse observations

the solution from the given observations. This limited analysis suggests that the system
is fully observable if we have any two of the four variables as observations.

To look at this further we run our 4D-Var scheme using observations in all four vari-
ables, position observations only, and finally observations of momentum only. In the first
instance we use observations at every other timestep where all four variables are used, and
every timestep for the other two cases, so that we are using the same number of obser-
vations in each case. Our data assimilation window has length t = 12.6, with timestep,
∆t = 0.001. Figure 2(a) compares the error in the trajectories of the three cases over the
data assimilation window, and a subsequent forecast.

We see that over the data assimilation window the error for each of the three cases is
of a similar magnitude. However where we have used only observations of position in the
4D-Var scheme, the error in the forecast is diverging. This contradicts the result found
previously using the observability analysis for two timesteps only - although we have used
observations in two of the four variables we have not reconstructed the true solution. This
suggests that although we are using a good energy conserving model, the data assimilation
scheme does not always produce a good solution. Thus we may wish to impose an explicit
constraint on the Hamiltonian, E, to improve the forecast.

3.2 Constraints

To improve our solution we add a constraint to the cost function. Typically this is done
using the background information directly, as discussed in section 1.1. Alternatively we
transform this information to the background energy, and use the Hamiltonian as an
explicit constraint. We now compare these constraints using sparse observations so that
their effect is more easily seen. We repeat the experiment as in section 3.1 this time
using observations every 5000 timesteps where all variables are observed, and every 2500
timesteps where only two of the four are observed, thus assimilating 12 observations.
Figure 2(b) illustrates these results without using any constraint. We see that when we
use observations of all variables but at fewer observation times, the solution is diverging.
This suggests it is better to have more frequent observations, even if they are of position
or momentum only. We use this diverging case to investigate the effect of constraints. In
both cases we use perfect background information.
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(e=0, noisy observations, state vector background constraint)
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Figure 3: Error between the optimal solution and the truth using sparse observations
of momentum with (a) a background constraint, and (b) an energy constraint (e = 0,
assimilation window t = 12.6)

3.2.1 Constraint using xb

Here we alter the cost function and its gradient to include a background term. This means
that the optimal solution must fit the observations and remain close to a background
term produced by a previous forecast (xb0). Figure 3(a) shows the effect of including a
background constraint for the case where we have observations every 5000 timesteps. We
note that there is an improvement everywhere over both the data assimilation window
and the forecast, although the error is still diverging even with a large value of α1.

3.2.2 Constraint using E(xb)

Here we constrain the energy of the assimilation solution to be close to the energy of
the background used in section 3.2.1, E(xb0). Figure 3(b) shows the effect of the energy
constraint using the same observations as in section 3.2.1. Here we see that for large α2

although the solution at the beginning of the assimilation window is worse than without
any constraint, the forecast is considerably improved. In addition the error diverges less
for this constraint than for that illustrated by figure 3a.

4 Conclusions

We have seen that when producing a model for this simple Hamiltonian system it is pos-
sible to find methods that are very good at preserving the physical characteristics of the
problem - energy and angular momentum conservation. However in spite of this the data
assimilation scheme produced using these methods does not produce a good solution in
all cases. We have investigated whether these results can be improved using constraints,
and have found that if we use our background state directly as a constraint we notice an
improvement in the solution. If we transform this background information to the Hamil-
tonian property, the forecast is further improved.
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