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Abstract

The Gauss-Newton (GN) method is a well known iterative tech-
nique for solving nonlinear least squares problems subject to dynamical
system constraints. Such problems arise commonly from applications
in optimal control and state estimation. Variational data assimilation
systems for weather, ocean and climate prediction currently use ap-
proximate GN methods. The GN method solves a sequence of linear
least squares problems subject to linearized system constraints. For
very large systems, low resolution linear approximations to the model
dynamics are used to improve the efficiency of the algorithm. We pro-
pose a new method for deriving low order system approximations based
on model reduction techniques from control theory. We show how this
technique can be combined with the GN method to retain the response
of the dynamical system more accurately and improve the performance
of the GN method.

Keywords Large-scale nonlinear least squares problems subject to dy-
namical system constraints; Gauss-Newton methods; variational data
assimilation; weather, ocean and climate prediction.

1 INTRODUCTION

The Gauss-Newton (GN) method is a well known iterative technique for
solving nonlinear least squares problems subject to strong dynamical con-
straints [5]. It is commonly applied to solve optimal control and optimal
state estimation problems and is used in variational data assimilation for
environmental systems [11, 9, 10, 3]. The Gauss-Newton method is essen-
tially an approximation to the Newton method in which only the first order
part of the Hessian is retained. We consider a general nonlinear least squares
problem

min
x

φ(x) = f(x)T f(x), (1)

where f(x) is a nonlinear function of x and we define J(x) to be the Jacobian
of f(x). Then the Gauss-Newton iteration method for solving this problem
consists of the following steps:

Solve for δx(k): (J(x(k))TJ(x(k)))δx(k) = −J(x(k))Tf(x(k)), (2)
Update: x(k+1) = x(k) + δx(k), (3)

for k = 0, 1 . . . . For very large systems, such as arise in meteorology and
oceanography, it is not generally possible to solve (2) directly. The solution
δx(k) is then found by an ‘inner’ minimization of the linear least squares
function

φ̃(δx(k)) = ||J(x(k))δx(k) + f(x(k))||2. (4)
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In the case where strong dynamical constraints are imposed on the opti-
mization problem, the objective function f(x) contains the dynamical sys-
tem equations. In order to apply the GN method, the Jacobian of the
function f(x) is needed and, hence, the Jacobian of the nonlinear system
equations, known as the tangent linear model, is also required. The inner
linear minimization problem (4) is then solved subject to the strong dynam-
ical constraints imposed by the tangent linear model equations.

In order to make the GN method more efficient for large systems, a com-
monly used approach is to approximate the full tangent linear model by a
linearized model at low spatial resolution, while still calculating f(x) and up-
dating x at the highest spatial resolution. Thus in (4) the Jacobian J(x(k))
is replaced by an approximate low resolution operator J̃(x(k)). Whilst this
leads to an algorithm that is practical to compute in real-time, the approx-
imations made do not take into account whether the most important parts
of the dynamical system are being retained. Thus it is difficult to quantify
how much information is being lost due to the reduction in resolution.

In this work we propose a new method for approximating the inner step
of the Gauss-Newton method, based on the ideas of model reduction. Model
reduction has been used in the field of state-space control theory to approx-
imate very large dynamical systems with low order models [1]. Employing
the example of the balanced truncation technique we show how model re-
duction may be used in the inner step of the Gauss-Newton algorithm to
give an approximate iteration procedure that retains the most important
properties of the dynamical system response.

We demonstrate the application of this technique to the problem of vari-
ational data assimilation, which corresponds to an optimal state estimation
problem. Experiments with a shallow-water model are used to show the
benefit that may be obtained by using a reduced order model instead of a
standard low resolution model within the GN algorithm. We show how the
use of model reduction allows the system to be approximated by a system
of much smaller dimension than can be used with a low resolution model.

In the next section we describe the application of approximate GN meth-
ods to the variational data assimilation problem and in Section 3 we present
the model reduction techniques that we use here. In Section 4 the test
model is defined and experimental results are shown. Conclusions are given
in Section 5.

2 FOUR DIMENSIONAL VARIATIONAL DATA
ASSIMILATION

The aim of variational data assimilation is to match the output response of
a dynamical system model to observed measurements of the outputs over
a specified time window. For a discrete dynamical system, we let xj ∈ IRn
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be the model state vector, yj ∈ IRpj be a vector of pj observations and
hj : IRn → IRpj be a nonlinear function that relates the system states to the
observations at time tj . The data assimilation problem is then defined as
follows.
Problem 1. Minimize, with respect to x0, the objective function

J [x0] =
1
2
(x0 − xb

0)
TB−1

0 (x0 − xb
0) +

1
2

N∑

j=0

(hj(xj)− yj)TR−1
j (hj(xj)− yj),

(5)
subject to xj , j = 0, . . . , N, satisfying the discrete dynamical system equa-
tions.
The background estimate, xb

0, of the initial state, x0, is known. If the initial
errors (x0 − xb

0) and the observational errors dj = hj(xj)− yj are assumed
to be unbiased, Gaussian random vectors with covariance matrices B0 and
Rj , respectively, then the optimization delivers the best statistically linear
unbiased estimate of the initial system states.

In practice the constrained minimization problem is solved iteratively by
the GN method. At each step of this method the inner linear least squares
problem (4) must be solved for the increment δx(k). We write the linearized
discrete system equations as

δxj+1 = Mjδxj , dj = Hjδxj , (6)

where the input δx0 = B
1
2
0 ω with ω ∼ N (0, I), and Mj and Hj are, respec-

tively, the tangent linear system model and the Jacobian of the observation
operator obtained by linearizing around the state xj . The inner minimiza-
tion problem is then given by
Problem 2. Minimize, with respect to δx(k)

0 , the objective function

J̃ (k)[δx(k)
0 ] =

1
2
(δx(k)

0 − [xb − x0
(k)])TB−1

0 (δx(k)
0 − [xb − x0

(k)])

+
1
2

N∑

j=0

(Hjδx
(k)
j − d(k)

j )TR−1
j (Hjδx

(k)
j − d(k)

j ), (7)

subject to the states δx(k)
j satisfying the discrete linear system equations (6).

Problem 2 is solved by an inner iteration process, such as the conjugate
gradient method. Each inner iteration requires one forward solution of the
tangent linear model equations (6), starting from the current best estimate
of the initial states, and one backward solution of the corresponding linear
adjoint equations to determine the gradient of the objective function. In
order for this process to be operationally feasible for very large systems such
as weather and ocean systems, which involve as many as 108 state variables,
the computational cost is reduced by using low dimensional approximations
to the linear models.

4



Low dimensional system models can be obtained by using low resolution
approximations to the full dynamical system. Significant features of the
system behaviour are often lost, however, in such approximations. In par-
ticular optimal error growth modes may not be captured by these models.
In the next section we propose an alternative method for generating low
order system approximations using techniques of model reduction.

3 MODEL REDUCTION BY BALANCED -
TRUNCATION

To find low order approximations to the linearized system model (6), we
project the system into a low dimensional subspace. We introduce linear
restriction operators UT

j ∈ IRr×n that project the state variables into the
subspace IRr where r << n. We define variables δx̂j ∈ IRr, such that
δx̂j = UT

j δxj , and define prolongation operators Vj ∈ IRn×r that project the
variables back into the original space IRn. The restriction and prolongation
operators UT

j and Vj satisfy UT
j Vj = Ir and VjUT

j is a projection operator.
We write the projected linear system as

δx̂j+1 = UT
j MjVjδx̂j , d̂j = HjVjδx̂j . (8)

The reduced-dimension inner minimization problem then becomes
Problem 3. Minimize, with respect to δx̂(k)

0 , the objective function

Ĵ (k)[δx̂(k)
0 ] =

1
2
(δx̂(k)

0 −UT
0 [xb − x0

(k)])TB̂−1
0 (δx̂(k)

0 −UT
0 [xb − x0

(k)])

+
1
2

N∑

i=0

(HjVjδx̂
(k)
j − d(k)

j )TR−1
j (HjVjδx̂

(k)
j − d(k)

j ), (9)

subject to the states δx̂(k)
j satisfying the discrete linear system equations (8).

The prolongation operator V0 is then applied to lift the solution δx̂(k)
0 back

into the space IRn. Here the matrix B̂0 = UT
0 B0U0 models the background

error statistics in the reduced space.
The projection matrices are chosen to ensure that the low order linear

model (8) accurately approximates the output response of the linear system
(6) to the input data over a full frequency range. Specifically the aim of the
model reduction is to design a model of order r << n of the form (8) such
that the expected value of the distance between the system outputs dj and
the reduced order model outputs d̂j , written as

lim
i→∞

E
{
‖d̂j − dj‖2

2

}
= lim

i→∞
E

{[
d̂j − dj

]T [
d̂j − dj

]}
, (10)

is minimized over all white noise input errors ω of normalized unit length,
with E {

1
n‖ω‖2

2

}
= 1, where E{·} denotes the expected value.
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The response of a discrete linear system is represented by its Hankel ma-
trix and a good approximation to the optimal reduced order system can be
found by matching the Hankel singular values of the reduced order model
to those of the full linear system model. The projection matrices Uj and
Vj are therefore selected to ensure that the maximum Hankel singular val-
ues of the full system are retained by the reduced order model. A global
error bound on the expected error between the frequency responses of the
full and reduced systems, based on the neglected Hankel singular values,
then exists [1]. A reduced order system derived by this method is therefore
expected to capture well the modes of optimal error growth. Efficient and
accurate numerical techniques are readily available for finding the restric-
tion and prolongation operators for systems of moderately large size based
on balanced-truncation methods ([8, 2]), and for very large systems, Krylov
subspace methods and rational interpolation methods can be implemented
([4, 6]). (See [12] for further details and preliminary results.)

4 NUMERICAL EXPERIMENTS

To illustrate the benefit of using reduced order models we apply the method
of balanced truncation to a discrete model of the nonlinear 1D shallow water
equations with rotation and compare the results to those obtained using a
low resolution model of the system. The continuous system is given by

∂u

∂t
+ (Uc + u)

∂u

∂x
− fv = −g

∂(h + h̄)
∂x

,

∂v

∂t
+ (Uc + u)

∂v

∂x
+ fu = 0,

∂h

∂t
+

∂h(Uc + u)
∂x

= 0, (11)

where u denotes the departure of the velocity in the x-direction from a known
constant forcing mean flow, Uc , h̄ = h̄(x) is the height of the orography, f is
the Coriolis parameter and g is the gravitational force. The model domain
is periodic in the x-direction. The system is discretized as described in [7]
using a semi-implicit semi-Lagrangian integration scheme.

The data for the problem is also given in [7]. An initial perturbation
δx0 is defined and the outputs dj satisfying the discrete linear equations
(6) are determined. A time-invariant linear model that approximates the
tangent linear model of the system is used in the experiments. The solution
in IRr of the reduced inner minimization problem, Problem 3, is found us-
ing (i) a low resolution model and (ii) a reduced order model obtained by
balanced-truncation. In case (i) the corresponding solution in IRn is found
by interpolation, whilst in case (ii) the solution in IRn is found by applying
the prolongation operator.

The results are compared to the exact solution to the full linear least
squares problem, Problem 2, in IRn. For the example where n = 1500 and
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Figure 1: Errors in solutions to reduced linear least squares problem for low
resolution model (dotted) of order r = 750 and optimal reduced order model
(dashed) of order (a) r = 750 and (b) r = 250.
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r = 750, the errors between the exact solution and the solutions obtained
using the two different low dimensional models are shown in Figure 1(a).
The least square norms of the errors in the two cases are given, respectively,
by (i) 0.0396 and (ii) 0.0057. It is clear that for the same model size, the
optimal reduced order models are significantly more accurate than the low
resolution models. This benefit can be explained in part by examining the
eigenstructure of the reduced dimensional systems. More of the significant
eigenvalues of the optimal reduced order model match those of the full sys-
tem than is the case for the low resolution model, showing that the modes of
the system are more accurately captured by the balanced-truncation method
than by using low resolution models.

Solutions to the reduced least squares problem obtained for smaller val-
ues of r demonstrate that balanced-truncation can be applied to find much
smaller systems with accuracy equal to that of the low resolution model. A
comparison of the errors obtained with the low resolution model of dimen-
sion r = 750 and an optimal reduced order model of dimension r = 250 is
shown in Figure 1(b). The least square error norm obtained using the opti-
mal reduced order model is now 0.0288. This demonstrates that an optimal
reduced order model with one-third the dimension can achieve the same ac-
curacy as a low resolution model. This represents a considerable increase in
computational efficiency in practice.

5 CONCLUSIONS

We have described a new approach to finding low dimensional linear models
that can be used to improve the efficiency of approximate Gauss-Newton
methods for solving nonlinear least squares problems. The new approach
applies techniques of optimal reduced order modelling from control theory
and is shown to give better accuracy with significant improvement in per-
formance in solving the inner linear least squares problem. The challenge is
now to develop these techniques to apply to the very large problems arising
in environmental systems.
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