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Abstract

A method of approximately solving transient, particularly convective, equa-
tions on adaptive grids is presented, which has the useful properties (i) that both
the grid and the solution remain monotonic, and (ii) that the solution is always
the best fit with adjustable nodes to a recovered smoother version of itself. In this
report the underlying representation is piecewise constant and the recovered func-
tion piecewise linear, while the equation is the inviscid Burgers’ equation solved
by upwind finite differences, but other representations, equations and schemes

are also discussed.



Contents

1 Introduction

2 Piecewise Constants in 1-D

3 Monotonicity of the Algorithm

4 Conservation of the Algorithm and Higher Order
5 Relationship With Modified Equation

6 Alternative Representation

References

10

11



1 Introduction

The solutions of time-dependent partial differential equations may exhibit steep
fronts whose locations vary with time and are difficult to predict in advance.
Resolution of the resulting profiles can be achieved by a fine grid everywhere, but
such a grid is impractically large, especially for 3-D calculations.

An adaptive grid is therefore demanded, one which will ideally follow the
fronts around and provide the required resolution in a selective way. In order to
achieve this ability, however, two difficult questions must be addressed. The first
is the problem of representation of the solution on an irregular grid or rather,
in this context, the problem of knowing the best irregular grid to represent the
solution. The second is the control of the grid as the solution changes position and
shape, in particular the prevention of node overtaking (which is the equivalent in
nodal terms of monotonicity in the solution profile).

The first problem has been tackled by a number of authors in the context
of approximation theory, in particular de Boor [1], Chui [2], Loach & Wathen
[3], Farmer, Heath & Moody [4] and Baines [5]. The latter gives algorithms
for obtaining best Lo fits to continuous functions using piecewise constant and
piecewise linear representations with adjustable nodes which are relatively simple
and robust and are the basis of the nodal movement used here. Of course in the
present context there is no given function to be fitted, since the exact solution
of the PDE is not known, but we get round this difficulty by predicting the new
numerical solution and makinguse of a recovered function (see below).

The second problem, that of nodal movement and its control, has also been
the subject of many papers, in particular Dorfi & Drury [6], Petzold [7] and
Miller [8] (see also Verwer et al. [9]). The moving finite element (MFE) method
method of Miller [8] is an attempt to move the nodes by the same mechanism
which controls the solution, namely, consistency with the underlying PDE. As
shown by Baines [10], the result for first order PDE’s is a characteristicOfollowing
method (akin to a Hamiltonian approach), but in the case of higher order PDE’s
the nodal velocities generated are less well understood and their effectiveness is

more dubious, except in the steady state limit (Jimack [13]). In any case Miller [§]



modifies nodal movement by using penalty functions to control node overtaking
and other singularities which may appear. This has the effect of maintaining
monotonicity of the grid as required, but destroys the approximate characteristic
nodal speeds property, under which the nodes are expected to overtake [11]. It
does however assist the effect of nodal speeds arising from higher order terms in
restrianing node overtaking.

The MFE method has been analysed further by baines [12], bringing out a link
between the equations used to generate nodal movement and those giving best
fits with adjustable nodes (see also [4], [5] and [13]). From the analysis in [12] it
is clear that MFE nodal velocities for first order equations are made of up to two
parts. First there is the approximation to the characteristic velocity, apparently
already in the inviscid Burgers’ equation where the L, projection step of MFE is
superfluous [14], [10]. Secondly, there is an additionla velocity generated by the
projection step which has been equated with one step of the iterative algorithm
to find the best fit with adjustable nodes described in [5].

The characteristic velocity draws the nodes into shocks where they naturally
coalesce, or overtake if not prevented by diffusive effects, real or artificial. (Even
with real viscosity Miller [8] requires penalty functions with tuning parameters
to prevent node overtaking, a device which tends to be problem dependent and
reduce the method’s usefulness.) On the other hand, the best-fit-seeking velocity
coming from the L, projection maintains monotonicity in the grid [5] while at the
same time clustering nodes in the regions of high slopes or curvature (depend-
ing on whether the underlying representation is piecewise constant or piecewise
linear).

In this report we construct a method whose grid velocity is derived from the L,
projection alone. Care is needed, however, because where no projection is needed,
as for example with the inviscid Burgers’ equation, there will be no grid velocity.
This objection is countered by projecting instead a smoother “recovered” function
(Johnson et al. [15]) which is in the form of a locally constructed polynomial.

When imposing a grid velocity on the nodes the differential equation must be
modified to take into account the fact that it is now set in Lagrangian (moving)

frame, the PDE being augmented by an extra convective term. Moreover, in



solving PDE’s with convective terms it is usually necessary to employ some kind
of upwind differencing to achieve monotonicity. By going for monotonicity (both
in the solution and the grid) the numerical viscosity generated provides the usual
non-overturned shock-like approximation to the solution of a convective equation
and its corresponding jump condition, but will be less than for a fixed grid.

In the next section we concentrate on a particular discrete solution represen-
tation and work through the method proposed above for a particular equation,

later indicating the possible generalisations and their properties.

2 Piecewise Constants in 1-D

Suppose that the underlying discrete representation of the solution of a PDE is

piecewise constant, as shown in Fig. 1.
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Figure 1:

Individual point values are thought of as existing at the midpoints of each element
as in the rightmost cell of Fig. 1. We consider here the Cauchy problem for the

inviscid Burgers’ equation problem
ur+uu, =0 (1> 0) (2.1)

u=up(x) (t=0) (2.2)

A non-adaptive scheme for this problem is the upwind finite difference method

At

Uyml =Uj = |U]”|A X
S

(ur=ur,) (2.3)

J

where p = sgn(UT) and A, X7 = 2(X7, — X ). (The right hand side of (2.3)

represents a linear interpolation of the values of U after being traced back along



the characteristics.) While consistent with the differential equation (2.1), the
scheme (2.3) is highly diffusive and, particularly in the case of a steepening wave,
gives very poor representation of the exact solution. The philosophy of adaptive
grids is that sharper shocks can be achieved by clustering of the grid points in a
controlled way, namely, in the vicinity of the shock, and for this we use the grid
movement strategy described earlier.

The first task, however, is to represent the function wug(z) of (2.2) as well
as possible using piecewise constant functions on a grid with free nodes. This
problem is addressed by Baines [5], where a simple algorithm is given to generate
such a representation. In summary, this is as follows. For a given continuous
function f(x), an initial arbitrary grid is set up in each element of which a constant

approximation is found by a local Ly projection (Fig. 2).

Figure 2:

Then, taking two adjacent elements, the averaged constant value is calculated
(shown dotted in Fig. 2) and its intersection with the f(x) function found. All

grid points are treated in this way in a sweep, before another sweep is done. At



convergence the best representation is obtained. A key property of the construc-
tion is that the nodes remain ordered, i.e. there is no node tangling.

The procedure also achieves the same result when f(z) is replaced by the
piecewise linear interpolant function, with values f(X;) at X; as in Fig. 3. This
is important for what follows.

Having generated a best initial grid and profile, the next task is to try and
maintain this property as the solution evolves. As is well known, an application
of the algorithm (2.3) on a fixed grid results in a profile of the correct general
shape, but diffused. We wish to use this (piecewise constant) profile to determine
a suitable grid movement. The best fit algorithm of Baines [5] operates on a
continuous function (or a piecewise linear continuous function), which we do not
have. But we can construct a piecewise linear recovered function from the new
piecewise constant function, which is shown in Fig. 4 as the piecewise linear

function linking the mid-points of the piecewise constant cell values.

Figure 4:

As explained above, the algorithm for finding the best piecewise constant fit
to this piecewise linear function is in the form of an iteration, the first step of
which gives a new grid position X;, which may be regarded as being carried out
by a certain grid movement X] The formula for the new grid position X; is

easily obtained, being the intersection between the piecewise linear function and



the ordinate

The new position is therefore

s2un
Xp ot b |07 = ULy 2 U, — U]
Xt = ;3 (2.5)
J Xn 1 6 U] Un Un Un Un
F+ i U = U < |Ufy, = UF|
i+k
where
U]n B U]n—l n o _ Uyn-l—l - Uy

Mﬁ_l = i on T ]n (26)
J=3 X], — X],_l Jt3 Xj—|—1 . X]‘

Where two intersections are possible the node is moved the shorter distance in
the direction of the higher slope.

We do not carry out any iteration, since corrections will depend strongly on
the linear nature of the recovery. The scheme, iteration and recovery should be
of comparable accuracy. We now return to the PDE, rewritten in a moving frame
as

U — Uy + uu, =0 (2.7)

(Baines [12], Blom et al. [9]), where @ is the velocity of the frame and @ is the
time derivative in that frame, and use it to generate new values UT'. We do this

by the algorithm (2.3) modified to incorporate the extra velocity, namely,

At
A X7

Urtt = o — ‘U]ﬁ _ X(l)‘

J

ur—=up,) (2.8)

where p = sgn(U7 — X](I)) The velocity X" is given by

(2.9)

where X](I) — X is the displacement generated by the best fit algorithm (2.5)
above. Note that the effect of the u,a term is simply to modify the wavespeed wu.

Thus we have

Xp 4 g |UF = U | > Uy = UF

J 4 M J J
J

n+l __ —%
Xt = (2.10)
' Xpp L8 g | < |Ur, - UF
j+1Mn+1 U7 = Ui [ < Ufy = UF|
itz

U: +1_ Ul —|U; — j N J AOX}?(Uj —-Ur,) (2.11)



where

= {Uf—W}. (2.12)

The result is a piecewise constant profile at time level n + 1, obtained by a
finite difference scheme consistent with the PDE, which is a best L, fit to the
piecewise linear recovered function (standing in lieu of the exact solution) at time

level n + 1.

3 Monotonicity of the Algorithm

The algorithm of section 2 is

n 1 62an n n n n
X+ U = Uy | = Uy = UT

J 4 M™ J

n+1 J—3

n 62an n n n n
X; ‘I'}IMJ"Jrl \Ur —ur | < Ur, = Ur
XM X At
n+1 n n ( n n
U],+ =U'—|Ur — - J AOX]”(Uj —-Ur,) (3.2)

where

oo (3.3)
AKX} = 5 (X = X7y
The geometrical construction of X;“"1 ensures that
X7 < XIS LN 4 X (3.4
for
Mf_% < M]Z_%, Uy, = U > U = U |
and
SOV ) S XY < X (3.5)
for
M]ﬁ_% > M]Z_%, U = U | < U, = UY

These inequalities can also be proved analytically from (3.1). No tangling

is therefore possible and monotonicity of the mesh is achieved. Moreover the



upwinded nature of the scheme (3.2) means that, provided that a CFL limit is

respected, monotonicity of u; is also preserved. The CFL restriction is that

(X X At .
U = g S 1V (3.6)
0%y

The mesh movement is always towards the steeper part of the profile and,
with monotonicity in both the solution and the grid, the profile is literally forced
into a corner. We illustrate this phenomenon on equation (2.1) with the initial
data

1

up(x) = —a + 3 (3.7)

on (0,1), with Dirichlet boundary conditions taken from the initial data. Figures
5-12 show the initial data and the solution after 5, 10, 15, 20, 25, 30, and 35 time

steps.

4 Conservation of the Algorithm and Higher
Order

In the scheme (2.3), (2.8) and (2.11) we have concentrated on exhibiting mono-
tonicity preservation and ignored conservation. But we may ensure conservation

instead by replacing (2.3) by the conserved form of the same scheme, namely,

Ut = Ul — pUfw AoA)t(f (Uj = U, (4.1)
where
U w = ;(Uf +U,). (4.2)
(= Sgn(U]ﬁ_%) (4.3)
or, equivalently,
U = U i (507~ (U5 (1)

where terms are included for all g = 41 (usually one or the other) which satisfy
(4.3).
Similarly, (2.8) becomes

" . At L. . | R
U = U7 = ngo {00~ 30}
04y



+ “A Xn {(xur - X0} (4.5)

where now

p= sgn(Uf_% —X,). (4.6)

In the final bracket of (4.5) the term du, in the differential equation has been
written as (Zu), to render the equation (4.5) conservative. There is no loss of
generality here since the additional term incurred, even if non-zero in its numerical
form, disappears in the analytic limit (Hyman [16]). In the numerical scheme the
effect of the term (iu), in the PDE is simply to modify the wavespeed.

The form of (2.11) is then

U = 0 =g {0 - 51000}
At
g VXY = X007 = (X5 = XU (4.7)
with
p=sen {[U7g = (X7 = Xy)l/Ar) (1.9
where
Xj-g = ;<Xj + Xjou). (4.9)

Monotonicity depends on satisfying a CFL condition, which is now

U7 — (X7 — X /At\ _ <1 (4.10)

A, X

for any p = +1 satisfying (4.8).

Second order accuracy on a uniform grid may be achieved using flux limiters
(Smolarkiewicz & Margolin [17]). However, the irregularity of the grid and in-
deed its capacity to adapt in the present manner may replace the need for this

refinement near to a shock.

5 Relationship With Modified Equation

For the first order upwind scheme (2.3) applied to

uy +au, =0 (5.1)



with ¢ > 0, Taylor expansion gives

(A~X)? 82X L
Ao X (1 — l/)um + maux + O((A;p) , (At) ) (5‘2)

Uy + au, = ia

where A7 X = X]‘ — X]‘_l, AOX = %(Xj-l-l — X]‘_l), 52X = Xj-l-l — QX] + X]‘_l,

and

alt
{(AX)?/Ag X}

In a Langragian frame the extra terms iu, match the additional term in (5.2) if

vV _=

.1 (ATX)? Uy ad*X 5 5
i 1 — = A At
P = ol 1) T oA ()
1 (A~X)? _ 68U ad’X
== 1— :
2 Ay TR T A (5:3)
where AU = U; — U;_4, or to the same order,
Xn-l—l X" — 1 A™X ’ —(1 —) 52U] ATX ’ _52X (5 4)
i T2 | AgX Y Y M; . AogX Y ‘
c.f. (2.5). This is related to the idea of Smolarkiewicz and Margolin [17].
Similarly, for @ > 0, to the same order,
1[AtX ]’ 82U, [ArX])
Xt X = 1 —vt ! t6EX :
ST T [AOX] A T [AOX] ’ (5:5)

where vt = aAL /(X7 — X7).
Comparing (5.4), (5.5) with (2.5), we see that the displacement of (2.5) also
represents a diffusive correction. Moreover, the terms (1 — v*) in (5.4) or

(5.5) lie betwen 0 and & (with [v*| < 1) and non-overtaking property inherent in

(2.5) is enforced in the appropriate terms of (5.4), (5.5) a fortiori.

6 Alternative Representation

In section 2 we chose piecewise constant representation of the initial data but this
is not the only possibility. A piecewise linear representation (or higher order)
can be used. All that is required is the availability of a best fitting algorithm
with adjustable nodes for a recovered function, as can be found in Baines [5] for
piecewise linears, and Loach [18] for higher order splines, and a monotonicity-

preserving algorithm (Leonard et al. [19], Priestly [20]). For example, recovery



of piecewise linears can be achieved using limited Hermite cubics as in Priestly
[21] and all the ingredients of the method are then in place. The piecewise linear
best fit algorithm of Baines [5] again involves no tangling of the grid, but this
time the movement of the grid is towards greater curvature in the profile rather
than greater steepness (Baines [3]).

While the method presented here is directed mainly at convective equations
where node clustering is required near fronts, there is no reason why other equa-

tions cannot be treated by the same method.

References

[1] de Boor, C. (1973). Good approximation by splines with variable knots, In
Spline Functions and Approximation Theory, Int. Ser. Num. Meths., 21,
Basel, Birkhauser.

[2] Chui, C.K., Smith, PW. & Ward, J.D. (1977). On the Smoothness of Best
Ly Approximants from Nonlinear Spline Manifolds, Math. Comp., 31, 17-23.

[3] Loach, P.D. & Wathen, A.J. (1991). On the Best Least Squares Approxi-
mation of Continuous Functions using Linear Splines with Free Knots, IMA

Journal of Num. An., 11, 393-4009.

[4] Farmer, C.L., Heath, D. and Moody, R.O. (1991). A Global Optimisation
Approach to Grid Generation, SPE 21236. In Proc. of 11th SPE symposium

on Reservoir Simulation, Anaheim.

[5] Baines, M.J. (1991). Algorithms for Best Piewise Discontinuous Linear and
Constant Ly Fits to Continuous Functions with Adjustable Nodes in One
and Two Dimensions. Submitted to STAM J. of Scientific and Statistical

Computing.

[6] Dorfi, E.A. & Drury, LO’C. (1987). Simple Adaptive Grids for 1-D Initial
Value Problems. J. Comput. Phys. 69, p 175.

[7] Petzold, L. (1987). Observations on an Adaptive Moving Grid Method for
1-D systems of PDE’s; Appl. Num. Math., 3 p 347.



[3]

[12]

[13]

[14]

[15]

[16]

[17]

Miller, K., (1981). Moving Finite Elements I (with R.N. Miller), Moving
Finite Elements I1, STAM J. Num. Anal. 18, p1019-1957.

Blom, J.G., Sanz-Serna, J.M. and Verwer, J.G., (1988). On Simple Moving
Gris Methods for One Dimensional Evolutionary PDE’s, J. Comput. Phys.
46, p 342-368.

Baines, M.J. (1991). An Analysis of the Moving Finite Element Procedure,
SIAM J. Num. Anal. 28, p1323-1349.

Miller, K. (1986). Alternative Modes to Control the Nodes in the Moving
Finite Element Method. In Adaptive Computational Methods for PDE’s
(Ed. Babuska, Chandra & Flaherty). SIAM p 165-182.

Baines, M.J. (1992). On the Relationship between the Moving Finite Element
Method and the Best Fits to Functions with Adjustable Nodes, Numerical
Analysis Report 2/91, Dept. of Mathematics, University of Reading, U.K.

Jimack, P. (1992). Large Time Solutions of the Moving Finite Element Equa-
tions for Linear Diffusion Problems in 1-D, IMA J. Num. Anal. (to appear).

Wathen, A.J. & Baines, M.J. (1985). On the Structure of the Moving Finite
Element Equations. IMA J. Num. Anal. 5, p 161-182.

Johnson, .W., Wathen, A.J. & Baines, M.J. (1988). Moving Finite Element
Methods for Evolutionary Problems II, Applications. J. Comput. Phys. 79,
p 270.

Hyman, J.M., (1989). Private Communication, STAM Conference, San Diego.

Smolarkiewicz, P. & Margolin, L., (1989). Antidiffusive Velocities for Multi-
Pass Donor Cell Advection. Report No. UCID 21866. Lawrence Livermore

National Laboratory.

Loach, P., (1992). Private Communication, School of Mathematics, Univer-

sity of Bristol.

Leonard, B.P., et al. (1991). Sharp Monotonic Resolution of Discontinuities
Without Clipping of Narrow Extrema. Computers and Fluids 19, p 141-154.



[20] Priestly, A. (1990). A Quasi-Riemann Method for the Solution of One-
Dimensional Shallow Water Flow. Numerical Analysis Report 5/90, Dept.
of Mathematics, University of Reading, U.K.

[21] Priestly, A. (1991). PLAGIARISM - The Monotonic and Nearly Conserva-
tive Lagrange-Galerkin Method. Numerical Analysis Report 15/91, Dept. of
Mathematics, University of Reading, U.K.



