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Abstract

A model for saline intrusion - an example of non-passive, non-reactive, single-
species contaminant transport in a porous medium - is presented. A computa-
tional algorithm for approximating the solution of this contaminant transport
model is given.

An implicit Taylor-Galerkin method is used to discretise the contaminant
continuity equation (which takes the form of an advection-diffusion equation).
This discretisation method gives a non-symmetric matrix system (due to the fully
implicit treatment of the advection term) which is solved by the Bi-CGSTAB non-
symmetric iterative method. The performance of the Bi-CGSTAB solver is not
considered in this work.

This algorithm is tested on two test cases from the literature; the first involves
the 1-D transport of a tracer in a vertical column (for which an analytic solution is
available) and the second, which is more specific to the problem of saline intrusion,
is the Henry problem. The method is shown to give transient results which agree

well with both analytic solutions and those from the literature.
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1 Introduction

This report is concerned with the numerical modelling of non-passive, non-reactive,
single-species contaminant transport in saturated porous media. In this type of
flow, a contaminant is carried through a porous medium by a fluid; the contami-
nant does not undergo any chemical or biological reactions but its presence does
affect the physical properties of the fluid, e.g. density, viscosity.

A common example of this type of flow is saline intrusion - saltwater moving
inland and mixing with less dense freshwater. In regions where coastal aquifers are
utilised for water supply, saline intrusion leads to a degradation of groundwater
quality. To control this, an accurate and reliable model for the shape and position
of the saltwater front is required to predict the response to changes in usage
patterns. A solution of this type of problem is the object of this work.

There is a transition zone between the freshwater and the saltwater caused by
hydrodynamic dispersion. In some circumstances, the width of this zone is small
relative to the thickness of the aquifer so that it may be approximated as a sharp
interface [1]. This report is concerned with flows in which the sharp interface
approximation is not valid and a full variable density model must be used.

Variable density transport models are well documented in the literature. They
consist of three main components : a fluid continuity equation which models the
fluid flow, a contaminant continuity equation which models the contaminant be-
haviour, and a constitutive equation which relates the contaminant concentration
to the fluid density. In general, it is not possible to solve these governing equations
analytically so numerical methods are necessary to approximate the solution.

Most of the current approaches use the finite element method to discretise the
problem spatially, since this allows good representation of geometrically complex
physical features in the domain. The finite element method is used to perform
the spatial discretisation in this work.

One of the main differences between the numerical schemes in the literature
is the approach used to treat the contaminant transport part of the model. A
standard Galerkin finite element spatial approximation with fully implicit time-
stepping leads to a discretised system which is non-symmetric due to the implicit
treatment of the advection term [9, 15, 17]. These non-symmetric matrix systems
tend to be more computationally expensive to solve than symmetric ones.

Symmetry can be achieved by the use of fully explicit methods, but these lead



to restrictions on the size of the discrete time step to ensure stability - making
these methods unfeasible for long term transient calculations. Symmetry is also
possible by the use of operator splitting which allows the advection component of
the equation to be treated explicitly while the other terms are treated implicitly
(e.g. [3,10]) or by the use of Lagrangian methods which effectively follow particles
along characteristics to solve the advection component (e.g. [7]).

However, due to recent developments in non-symmetric matrix solvers (e.g.
GMRES [14], Bi-CGSTAB [16]), the solution of non-symmetric matrix systems
is not as computationally expensive as was once the case. In this report, an im-
plicit Taylor-Galerkin method [5] is used to discretise the contaminant continuity
equation, the non-symmetric system which results is solved using Bi-CGSTAB.
The performance (i.e. convergence, stability, computational efficiency, etc.) of
the Bi-CGSTAB method will be investigated in a future report and so is not
considered here.

In the following section, a mathematical model for non-passive, non-reactive,
single-species contaminant transport in saturated porous media is described. In
Section 3 an implicit Taylor-Galerkin method for advection-diffusion equations is
introduced. It is shown that this scheme is equivalent to the well-known Crank-
Nicolson finite element method. A full description of the numerical scheme for
solving the equations which comprise the mathematical model is given in Section 4

and the performance for two test problems is presented in Section 5.



2 Governing Equations

In non-passive contaminant transport, the presence of the contaminant affects
the properties of the fluid; it is assumed that only the density of the fluid is
affected in this work. The contaminants considered are non-reactive so there are
no chemical effects to consider. A mathematical model which governs flows of

this type in porous media can be formulated in terms of

1. a continuity equation for the fluid,
2. a continuity equation for the contaminant, and

3. a constitutive equation,

with the relevant initial and boundary conditions.

2.1 Fluid Continuity Equation

It is convenient to write the fluid continuity equation in terms of either the pres-

sure, p, or the piezometric head, h, defined as

hzﬁ—l—z,
Py

where p = p(c) is fluid density (ML™?)
¢ is the (dimensionless) contaminant concentration

g is acceleration due to gravity (MLT™?)

z is the elevation above a datum (positive upwards) (L) ,

since these variables are continuous across the contaminated/contaminant-free
interface and so apply as single state variables over the whole domain.

If it is assumed that the porous medium is non-deformable and the Reynolds
number of the flow is not so large as to invalidate Darcy’s law, then the fluid flux

equation is given by a generalised form of Darcy’s equation [1],

qa=—-k(Vp+p9Vz)/p,

where q is the Darcy velocity vector (LT™!)
k is the permeability tensor (L?)
1t is the dynamic viscosity of the fluid (ML™'T™!).



In this work, it is assumed that p is constant and equal to the viscosity of the
non-contaminated fluid, po. Hence the fluid flux equation can be written in terms

of the piezometric head as

\Y
a=-K{vi+i-9"} 1)
T P
kog . . .. .
where K = % is the hydraulic conductivity tensor (LT™'). From [1], in the
absence of source terms the fluid mass balance equation for saturated flow (i.e.
flow in which the moisture content is equal to the porosity and hence independent

of time) is
dp B

where ¢ is the porosity of the porous medium. Substitution of q from (1) into

(2) constitutes the fluid continuity equation.

2.2 Contaminant Continuity Equation

From [1], in the absence of source terms the contaminant mass balance equation
for saturated flow is
d(pe)
qﬁW + V. {pcq — qﬁQV(pc)} =0, (3)
where D = D(q) is the dispersion tensor (L*T~!). The (¢, j) entry in the disper-
sion tensor is related to the ¢ and 5 components of the fluid velocity vector, v

(: q/¢)7 by

V05

Dij = (OéT|V| —|— Dm) 52']‘ —|— (OéL — OéT) |V| 5

where ag is the transverse dispersivity (L)
ag, is the longitudinal dispersivity (L)
D,, is the coefficient of molecular diffusion (L*T~!)

0;; = 1 for © = j, zero otherwise.

Substitution of g from (1) into (3) constitutes the contaminant continuity equa-

tion.



2.3 Constitutive Equation

The constitutive equation relates the fluid density to the contaminant concentra-
tion. In this work the density is assumed to be a linear function of the concen-

tration, i.e.

0
p=po+ a{c, (4)

where pg is the density of the non-contaminated fluid (ML)

0
g is treated as a constant (ML™?) .

Jc

2.4 Initial and Boundary Conditions

For the fluid continuity equation, the initial condition is

h=h on I (prescribed head)

—qn=yg¢, on Iy (prescribed fluid flux),

where n is the unit outward normal vector and I' is the boundary of © (and

I't + 'y =T'). For the contaminant continuity equation, the initial condition is

and the boundary conditions are

c=¢ on I (prescribed concentration)

—¢DV(pc)n = ¢, on I} (prescribed dispersive solute mass flux)
(where I, + T, =T).
The convention used for the sign of both the prescribed fluid flux and the pre-

scribed dispersive solute mass flux is that they are positive if the flow is directed

into the region.



3 The Taylor-Galerkin Method

The contaminant mass balance equation (3) is an advection-diffusion equation. In
this report, the advection-diffusion equation is discretised by the Taylor-Galerkin
method [5, 6]. This method for generating a fully discretised equation consists of
three stages. In the first stage, the first order temporal derivative is approximated
using a Taylor series expansion of the solution variable in time (including higher
order temporal derivatives). In the second stage, as many of the temporal deriva-
tives as possible are replaced by spatial derivatives using the advection-diffusion
equation itself, the remaining temporal derivatives being neglected. This leads to
a temporally discretised equation. In the final stage, the spatial derivatives are
discretised by the standard Galerkin finite element method.

In the literature the Taylor-Galerkin method has already been applied to envi-
ronmental modelling problems with some degree of success, e.g. the shallow water
equations [13]. Essentially, it is the finite element version of the well-known Lax-
Wendroff scheme; hence it is also susceptible to oscillations near discontinuities.
These situations are not expected in the flows considered in this work so this is
not a serious problem.

In this section, the Taylor-Galerkin method is introduced for the scalar wave
equation and applied to the scalar advection-diffusion equation, results being

given on the accuracy and stability of the method.

3.1 Pure Advection Equation

As the Taylor-Galerkin method was originally introduced for the pure advection
problem [5], it is most natural to introduce the method in this framework. Con-

sider the one-dimensional scalar wave equation,

du Ju
E—I_a%—o OHJ?EQ, (5)

where a is a constant and u = u(x,t). The Taylor series expansion of u(x,t+ At)

about t is

(A1 o
20 01?

Jdu

u(x,t 4+ At) = ul(x,t) + At T

(w,t) + (z,t) + O(At)°.




Using (5) to replace the temporal derivatives by spatial ones gives (to O(At)?)

u(z,t + At) —u(z,t) 8u , At 62

This is an explicit temporally discretised form of (5). Any spatial discretisation
can be chosen at this stage; centred finite differences lead to the Lax-Wendroff
scheme. For the Taylor-Galerkin method, the spatial discretisation is by the stan-
dard Galerkin finite element method, i.e. take the weak form of (6) (obtained by
multiplying it by a test function, V;, and integrating over the spatial domain, {2

) and approximate u(x,?) by the finite dimensional expansion

nodes

B Y N,

where NN, are finite element basis functions (which are the same as the test func-
tions) and U; are nodal approximations to the variable u. This leads to the fully

discretised equation

nodes
5 L AU+ A) = U0} [ NN =
J
nodes nodes 2
—aZU /N ]dﬂ—l—a Al /NaNfdQ Vi,

The term which contains the second order spatial derivative can be integrated by
parts to yield a new term which only contains first order spatial derivatives (and
a boundary term).

It piecewise linear basis functions are used on a regular mesh and boundary
effects are ignored, a Taylor series expansion shows that this scheme is third or-

der accurate in space and second order accurate in time and a Fourier stability

At

A ), to ensure

analysis shows that the restriction on the Courant number, v (= a £t

that the numerical solution is always bounded is

Qo —



3.2 Advection-Diffusion Equation

A Taylor-Galerkin method for the advection-diffusion equation was given in Donea
et al[6] and proceeds in the same way as the method for the pure advection equa-
tion. The example for the pure advection case given in the previous section used
a Taylor series expansion of u(x,t+ At) about ¢ and this led to an explicit scheme.
In this section, a Taylor series expansion of u(x,t) about (£ + At) (which leads
to an implicit scheme) is used.

Consider the one dimensional constant-coefficient advection-diffusion equa-

tion,

ou ou  0%u
E—FG%—Z}@—O OanQ, (7)
where a and b (> 0) are constants and u = u(x,t). The Taylor series expansion
of u(x,t) about (¢t + At) is

(At)? 9*u

T w(:p,t + At) — O(At)?

u(ax,t) = u(x,t + At) — At?;(x,t + At) +

From (7), the first partial derivative with respect to time is known, and the sec-

ond temporal derivative with respect to time is given by
Pu 0 (0Ou
oz ot \

_ _ g + bﬁ _ aﬁ + b@
N aa:z: Ox? aax Ox?

0*u Pu o0*u
I 2ab—— + b —.
“ Ox? “ ox3 + Ozt

Replacing these temporal derivatives in the Taylor series leads to an implicit,
temporally discretised equation, but this contains third- and fourth-order spatial
derivatives. The existence of these higher order derivatives prevents the use of
linear basis functions. To avoid this problem, the second temporal derivative is

replaced by the O(At) approximation



2y 1 [0du ou
52 —(x,t 4+ At) = At{at(aj,t—l—At)—at(x,t)},

so that the Taylor series becomes

ufe,t) = ula,t 4 At) = - {681;(:1; t—|—At)—|—?;( ,t)}+O(At)3. (8)

It is interesting to note that the Taylor-Galerkin formulation used here for the
advection-diffusion equation leads to a standard Crank-Nicolson temporal dis-
cretisation. Using (7) to replace the temporal derivatives by spatial ones gives

(to O(At)?) the temporally discretised equation

u(z,t + At) —u(z,t)  a[0u du
Al = 73 %($7t+At)+%($at)

0%y 0*u
{a 2(:1; t—l—At)—l—axQ(x,t)}.

Applying a Galerkin finite element spatial discretisation gives the fully discretised
equation

nodes

> Alt{Uj(tJrAt) —Uj(t)}/QNideQ

J

nodes

= 3 U+ An) + U(1) (—/N fdﬂ+2/zv

J

9*N,

dﬂ) Vi)

For linear basis functions on a regular mesh, Fourier stability analysis shows that
the scheme is unconditionally stable (as expected for an implicit method), and a
standard Taylor series expansion shows that the scheme is second order accurate
in both space and time, the truncation error, 7, having the form,

b , 0% ,0Pu

= E(A;p) e (At) vy + (higher order terms).

An implicit Taylor-Galerkin method is also used in Brusa et al [3], but this is an

operator splitting implementation in which the advective part is treated explicitly.

9



Although this leads to a symmetric system, it has the stability restriction of the
explicit Taylor-Galerkin method.

In the remainder of this report, the un-split implicit Taylor-Galerkin method
for the advection-diffusion equation given by (9) is used in the solution of prob-
lems involving transport of non-reactive, single-species contaminants in saturated

porous media.

10



4 Numerical Solution of the Governing

Equations

In this section, the methods used to discretise and solve the governing equations

from Section 2 are described.

4.1 Partial Coupling

Owing to the dependency of the fluid density, p, on the contaminant concentra-
tion, ¢, in the constitutive equation (4), the fluid mass and contaminant mass
balance equations are coupled (and the contaminant mass balance equation is
non-linear).

In order to solve such a problem, the mass balance equations must either be
solved simultaneously with a non-linear iteration (which doubles the order of the
problem) or an iteration must be performed between them at each time step,
with a non-linear iteration performed on the contaminant mass balance equation
during each coupling iteration.

However, in the types of problems considered in this report, the coupling is
of a relatively weak nature (i.e. g—i is small). Hence, for transient computations,
a “partially coupled” approach is adopted in which the term that causes the
coupling (the density) is treated explicitly. This linearises the contaminant mass
balance equation and also allows the two mass balance equations to be solved
separately during each time step [7], dramatically decreasing the complexity and

computational cost.

With this partially coupled approach, the structure of each time step is

1. The fluid density at this time step is approximated explicitly by lin-

ear extrapolation of the densities from the two previous time steps, i.e.

At n+1 B
P ((A)t)n (0" = "),

2. The fluid continuity equation ( (1) & (2) ) is solved for the piezometric
head.

3. The Darcy velocity field is calculated using the fluid flux equation (1).

11



4. The contaminant mass balance equation (3) is solved for the contam-

inant concentration.

5. The fluid density is re-calculated from the contaminant concentration

using the constitutive equation (4).

The remainder of this section is devoted to the description of steps 2,3 and 4

(steps 1 and 5 being trivial calculations).

4.2 Fluid Continuity Equation

The fluid mass balance equation is spatially discretised using the standard Galerkin
finite element method. The weak form of (2) is obtained by multiplying by a test

function, w, and integrating over the whole spatial domain, 2, i.e.
dp
— + V. dS) = 0.
/Q{%t + (pq)}w

Applying Green’s first identity to the advective term and substituting for q from

(1) gives the weak form of the fluid continuity equation,
d
/ {wqﬁa;) + VwA{KpVh + K(h — Z)Vp}} dQ) = / wpgtdl,
Q = = r

where h is the required solution variable and I' is the boundary of the region
Q. Due to the presence of the AVw term, a standard Galerkin finite element
spatial discretisation of this equation results in a non-symmetric matrix system.

However, following Brusa et al [3], this is avoided by making the change of variable

(I):p(h—Z),

so that the weak form becomes
dp _ h
wgba + Vw K(V® + pVz) s d) = | wpq,dl.
Q = r

This weak form is temporally discretised by a fully implicit finite difference

12



method to give

/ Vo K" (VO + prtivz)dQ + / wﬁ(p”“ — p")dQ) = / wp™ gl
Q — o At r

where the superscripts denote the discrete time level. This weak form is then

spatially discretised by the standard Galerkin finite element method, i.e.
w = Ny I=1,...,nodes,

and ® is replaced by the finite dimensional expansion

nodes

P ~ Z(I)JNJ

J=1

where nodes is the number of nodes in the finite element mesh
®; are the nodal approximations to ®

Nj are the basis functions .

Approximating the material and fluid properties by their average values on ele-
ments (or element faces depending on the region of integration) denoted by ()

gives the fully discretised equation

1
AR —F — (G —G"
At( )7
where
A= {AIJ}I,J:L...,nodes F= {FI}I:L...,nodes
"t = {(I)7}+1}J:1,...,nodes G' = {G3}1217~~~7n0d557
and

A = YA =Y [ VNLK)H VN0
e e /e -

Fro= 3 I = Z{<p>”+l<q2>”+l [ Ndre = () VNI.<K>”+1vdee}
€ e I'e Qe —

Gy = LG =) [ Neder.

€

After the Dirichlet boundary conditions are applied, the matrix in this system

13



is symmetic and positive definite if the tensor (K)"*! is symmetric and positive
definite ([4], p212). For a reasonably fine spatial discretisation, the system is also
large and sparse so an iterative solution method is preferable. A suitable solution

technique is the incomplete Cholesky preconditioned conjugate gradient method

(ICCG) [11] which is used in this work.

4.3 Darcy Velocity Calculation

An average value of the Darcy velocity of the fluid on each element, which is
needed in the contaminant mass balance part of the model, is calculated using
the fluid flux equation (1).

Expressed in terms of the transformed variable, ®, which is calculated in the

solution of the fluid continuity equation, the fluid flux equation is

Vo
RN 4

This equation is discretised by the standard Galerkin finite element method.
Treating the material and fluid properties in the same manner as for the fluid

continuity equation then leads to the matrix system

nodes nodes <K>n—|—1
Sty [ NN = = 3 et Y [ NN
J=1 e JO° J=1 e <p>n Qe
— 3KV / NydQe
106 o

€

(I =1,2,...,nodes).

The matrix in this system is the finite element mass matrix. The diagonally
preconditioned conjugate gradient method, which is very effective for these types
of problem [18], is used to solve this system.

The solution of this system gives the nodal approximations to the Darcy
velocity vector, which are averaged on each element to generate the elemental

approximations, (q)"*!.

14



4.4 Contaminant Mass Balance Equation

Substituting (2) into (3) leads to the following form of the contaminant mass
balance equation,
p(/ﬁg; +(pq).Ve = V. {¢DV(pc)} . (10)
This is an advection-diffusion equation, which is discretised by the implicit Taylor-
Galerkin method outlined in Section 3 by using (10) to replace the tempo-
ral derivatives in an approximate Taylor series expansion of the form (8), and
then performing a spatial discretisation by the standard Galerkin finite element
method.
This leads to the following matrix system which is the fully discretised form

of the contaminant mass balance equation

1 1 1 1 1
{A_I_(Bn—l—l_l_cn—l—l)}cn—l—l :{A_(Bn+cn)}cn_2(Fn+l_|_Fn)7

At 2 At 2
where
A= {AZ}J}I,JZI,...,nodes
Bi = {B}J}I,JZL...,nodes Ci = {CS}J:L...,nodes
Ci = {C;J}I,JZL...,nodes FZ = {F;}I:17~~~7n0d557
and

Ay = S A, =% /Q NN

B, = ZB;;;’:Z/QEVNI.QVVNJCZQS

Cry = ZC?:}':Z@- /Q NIV N9

T eq <qz>2 e
= 0= gy et

The angled brackets have the same meaning as in the discretisation of the fluid
continuity equation.
The matrix in this system has three components, the mass matrix A which

is symmetric and positive definite, the stiffness matrix B"*! which is symmetric

15



and positive definite (with the same assumptions on the structure of (D)"*! as

for (K)"*! in Section 4.2) and the advection matrix C"*! which is non-symmetric
and indefinite. Hence the system is non-symmetric and, as with the discrete fluid
continuity equation, it is large and sparse.

While a great deal of effort has been expended in the past to avoid producing
large sparse non-symmetric matrix systems during numerical algorithms, recent
developments in applied linear algebra (e.g. GMRES [14], Bi-CGSTAB [16]) have
made it possible to solve such systems efficiently. Bi-CGSTAB is the method used
to solve the non-symmetric matrix in this work, with diagonal preconditioning
being used to improve the convergence rate.

In all the cases presented in Section 5, the non-symmetric solver converges
(where convergence for the system Au = f is taken to be when ||r||5/||f]]s < 107®
and r = f — Au) in an acceptable number of iterations (e.g. \/n, where n is the
order of the matrix A). Hence the properties of the discretisation are the only

issue considered in the next section.

16



5 Results

In this section, the algorithm outlined in Section 4 is applied to two standard
test cases from the literature; the first involves the 1-D transport of a tracer in a
vertical column and the second, which is more specific to the problem of saline

intrusion, is the Henry problem.

5.1 Transport of a Tracer in a Vertical Column

This problem involves the 1-D transport of a tracer in a vertical column through
which there is a constant fluid flow rate. The physical region, with boundary
conditions, for the equivalent 2-D problem is shown in Figure 1 and the data for

this problem is :

Kyy=K,.,=K.,=0,K,,=10""m/s

0=02,a,=bm,ar=0,D,=0

h=700m ¢=1
A
h h
q,=0 q,=0
2000 . ,
" =0 4,=0
ﬁz
AA x
4%
h=500m ¢, =0

- [Om —

Figure 1: Physical domain and boundary conditions for 1-D problem

In this problem, the transport is passive (i.e. p is constant), hence the fluid
density cancels from (1), (2) and (3) and does not affect the problem so this
quantity is given an arbitrary value. These conditions gives rise to the constant

flow field
g =0 4. = —10_5m/s

17



The Courant and mesh Peclet numbers for this problem are

lg.| At Az
= _ P = —
g o Az ‘ ar,

where At is the time step and Az is the vertical mesh size.

Initially, the concentration of the tracer is zero everywhere inside the region.
The tracer front moves down the column under the action of gravity and this front
disperses as it moves. Until the tracer reaches the bottom of the column, this
problem can be analysed as one on a semi-infinite domain in which the boundary

conditions are,

&(x,2000,1) = 1
é(x,—o0,t) = 0
¢,(0,y,t) = 0
¢ (10,y,t) = 0

The analytic solution to this problem has been derived in [12] as

( 5= 1 v,(2000 — z) . 2000 — z — vt oerd 2000 — z + v,t
ez, z,1) = 5 |exp .. erfc NI erfc N

where v, is the z-component of the fluid velocity vector and erfc is the comple-

mentary error function, given by

erfc(s) = — e " du

In this work, the complementary error function is computed using the SUNOS C
library intrinsic function on a SPARCstation 1+. This problem is solved numeri-
cally on a uniform rectangular grid with 401 nodes in the z-direction (and 2 nodes
in the z-direction) by the Taylor-Galerkin method from Section 3.2. Figures 2 to
4 show both the approximate (dotted line) and analytic (solid line) solutions, and
the error in the solution (defined as the approximate solution minus the analytic
solution) for At =5 x 10* s after 150, 300 and 450 time steps respectively. This
corresponds to a Courant number , v , of 0.5 and a mesh Peclet number, Pe , of

1.0 .

18
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Figure 2: v = 0.5, Pe = 1.0, t = 7.5 x 10° s.
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Figure 4: v = 0.5, Pe = 1.0, t = 2.25 x 107 s.
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Due to the accuracy of the approximate solution, it is hard to distinguish
it from the analytic one at each of the times shown. The graphs of the error
show the difference more clearly. The solution is monotone and has the correct
maximum and minimum values.

Table 1 shows the behaviour of the approximate solution as the Courant num-
ber is increased. The maximum and minimum of the approximate solution are
shown (to illustrate the possible existence of oscillations). Also shown in the Ta-

ble is the relative error in the approximate solution

; UZ — Uy 2
Relative Error = M,
Yoiui)?
where U is a discrete approximation to u and the subscripts ¢ denote nodal

values. For the range of values of Courant number used, the accuracy in the

approximation (measured by the relative error) is good.

v [ Solution Relative

(s) Minimum | Maximum | FError

7.5 x 10% | 0.00000 1.00000 | 0.007085
0.5 1.5 x 107 | 0.00000 1.00000 | 0.006556
2.25 % 107 | 0.00000 1.00000 | 0.004841

7.5 x 10% | 0.00000 1.00000 |0.016110
1.0| 1.5 x 107 | 0.00000 1.00000 | 0.001486
2.25 x 107 | 0.00000 1.00000 | 0.000988

7.5 x 10% | 0.00000 1.00098 | 0.030720
5.0 | 1.5 x 107 | 0.00000 1.00030 |0.010144

2.25 x 107 | 0.00000 1.00010 | 0.007561

Table 1: Effect of varying the Courant number, v , at Pe =1

It is known that the Crank-Nicolson method is prone to oscillations in front
of discontinuities when the Courant number exceeds unity (see e.g. [10]). When

the tracer first enters the region, this problem is quite stiff and the tracer front
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is almost a discontinuity. To reduce the oscillations this may cause, for the case
with v = 5, the time step is started from At = 5 x 10* s. (corresponding to
v = 0.5) and increased by a factor of 1.2 at each time step to a maximum value

of At =5 x 10° s. (corresponding to v = 5).

i.e. (At)pew = min(1.2 x (At)oa, 5 x 10° s.)

From Table 1, for v = 0.5, 1 the solution is monotone, but for v = 5 oscillations
in the solution cause un-physical extrema to be created (the maximum value of
the dimensionless concentration is greater than one).

Non-physical concentrations can be disastrous in reactive transport models
where they affect the chemical terms. Flux-corrected transport methods [2, 19]
- i.e. local averaging of the scheme with a positive! lower order scheme - may
be used in these cases to control the oscillations. However, as this report is not
concerned with reactive transport, oscillations are regarded as acceptable as long

as they do not cause a serious degradation in the overall quality of the solution.

v [ Solution Relative

(s) Minimum | Maximum | FError

7.5 x 10% | 0.00000 1.00000 | 0.025344
0.5 1.5 x 107 | 0.00000 1.00000 | 0.005120
2.25 x 107 | 0.00000 1.00000 | 0.003764

7.5 x 10% | 0.00000 1.00032 | 0.078231
1.0| 1.5 x 107 | 0.00000 1.00000 | 0.036470

2.25 x 107 | 0.00000 1.00000 | 0.026809

7.5 x 10% | 0.00000 1.05339 | 0.229653
5.0 | 1.5 x 107 | 0.00000 1.13996 |0.111016
2.25 x 107 | 0.00006 1.15274 | 0.103036

Table 2: Effect of varying the Courant number, v , at Pe =5

In order to investigate the behaviour of the scheme at higher mesh Peclet

number (corresponding to problems which are more advection dominated), the

1 Positivity is the multidimensional generalisation of monotonicity.
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grid is changed to one with 81 nodes in the z-direction (this corresponds to a mesh
Peclet number of 5). Table 2 shows the behaviour of the approximate solution as
the Courant number is increased at Pe = 5.

The error in the solution is greater than that in the cases with Pe = 1 is
expected since both the time step and mesh size are five time greater at Pe = 5
than in the equivalent tests at Pe = 1.

As before, the scheme is relatively immune to non-physical oscillations when
v = 0.5,1. However, the scheme is generally more prone to oscillations at this
higher mesh Peclet number. This is because the change in concentration at the
front is effectively “closer” to a discontinuity since it is resolved on fewer elements.
Figure 5 shows the extent of these oscillations in the solution for the case with

v = 5.0 at the intermediate time (f = 1.5 x 107 s.).
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o
p |
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0
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<
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0 1000 2000 0 1000 2000
Distance from top (m) Distance from top (m)

Figure 5: v = 5.0, Pe = 5.0, t = 1.5 x 107 s.
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5.2 The Henry Problem

The Henry problem [§] is a 2-D, saturated, groundwater flow problem which in-
volves fresh-water in a confined aquifer discharging to a vertical open sea bound-
ary over a diffuse wedge of sea-water that has intruded into the aquifer. An
approximate analytic solution to the Henry problem was given in the original
paper but no known numerical model matches this solution.

In [17] it is suggested that there may be an inaccuracy in the approximate
analytic solution caused by missing higher-order terms which were originally dis-
carded to reduce computation time. Since a large number of numerical models
give nearly identical results, this problem has been widely adopted for validation
of variable density transport models by comparison with accepted results from
the literature.

Figure 6 shows the physical domain and boundary conditions for the Henry
problem (where p, is the density of pure sea-water). The confined aquifer is a
2mx1m rectangular region, fresh-water enters on the right side and sea-water
enters from the sea boundary on the left side. There can be no flow of water or

salt through the horizontal faces.

q.'=0 q,'=0
A —
q,=0 .
~ - h 6
P=pgz '« 4,=0.6 x 10°m/s
1.0m ' -
la— =0
4 =loy° -~
.
L X ‘
N
q”h=0 q”1=0
20m —————————————®

Figure 6: Physical Domain and Boundary Conditions for the Henry Problem

In the original problem, the dimensionless salt concentration is set to unity (i.e.
pure sea-water) on the whole of the coastal boundary (the left face). However,
this causes a conflict when the freshwater flowing into the region tries to exit
at the Dirichlet sea-water face. In accordance with other authors [3, 7, 9, 15],

this problem is avoided by changing the coastal boundary condition so that it
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consists of two components as shown in Figure 6. On the lower part of the coastal
boundary (0 < z < z;) the dimensionless salt concentration is set to unity, while
on the remainder of the coastal boundary (z; < z < 1m) the prescribed dispersive
solute mass flux, ¢¢, is set to zero.

Now z; is not known a priori but there are two ways of determining this
value. In the first (used in e.g. [9]), an initial guess for z; is made and a solution
is obtained using this initial guess. This solution is analysed and the problem is
reformulated but this time with z; at the position where the flow on the sea face
boundary changes direction from inflow to outflow, and the problem is solved
again. By repeating this procedure iteratively, the steady state position of z; is
obtained. In the second method, the position of z; is determined dynamically

(i.e. while the time-stepping is being performed) according to

G >0 for 0<2< 2,

¢ <0 for z;<z<1lm

where ¢, is the horizontal component of the velocity vector, q. Hence, when
the flow is directed into the region, there is a Dirichlet boundary condition on
the dimensionless salt concentration, but when the flow is directed out of the
region, a Neumann boundary condition applies. Forms of this dynamic boundary
condition can be found in [7, 15].

The second method for determining z; is used in this work because it allows
transient features which depend on the position of z; to be modelled and only
requires that the problem be solved once.

The values of the physical properties for the standard constant dispersion co-

efficient Henry problem test case are listed below :

g =981 m/s*, po=0.001 Pas,¢=035
po = 1000 kg/m” , 22 = 24.99 kg/m’
k = 1.019368L x 107? m* where I is the 2 x 2 identity matrix

ar=0,ar=0,D, =6.6 x107°% m?/s
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In this test case, a uniform triangular grid is used with 21 nodes in the z-

direction and 11 nodes in the z-direction (giving a total of 400 elements). For

this problem, the Courant number is

¢ Az’
and mesh Peclet number is
q|
Pe = Az,
¢||D[;

assuming Vp and VD are negligible.

Initially, the salt concentration everywhere inside the region is taken to be

zero. As with the test case in Section 5.1, when the salt initially enters the

region, the problem is quite stiff so a similar simple time stepping scheme is

used - an initial time step of 12s. is gradually increased by a factor of 1.2 to a

maximum value of 600s. The initial Courant number and mesh Peclet numbers

are 0.254 and 11.336 respectively. At t=100 min., the maximum Courant number

is which has occurred during the time history is 2.505 and the

Peclet number is the initial value.
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Figure 7: Piezometric pressure head (in m) at =100 min.

The piezometric pressure head (resulting from the solution of the fluid conti-

nuity equation) at t=100 min. is shown in Figure 7 and the Darcy velocity field

is shown in Figure 8.
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— = 4.30*10" m/s

Figure 8: Darcy velocity field (in m/s) at t=100 min.

From Figure 8, the intrusion of the salt-water into the region at the lower
part of the left boundary can be seen, as can the entry of freshwater at the right
boundary. Most of the freshwater leaves in the upper part of the left boundary but
some mixing of the two fluids occurs in the region of varying salt concentration.

Figure 9 shows the positions of the salt isochlors (lines of constant concentra-

tion) at t=100 min. The salt forms the expected wedge shape.
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Figure 9: Salt isochlors at {=100 min.
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A comparison of the position of the 0.5 isochlor at t=100 min. with the result
from [15] is shown in Figure 10 and there is good agreement. A fully coupled
approach (i.e. iterating to convergence between the fluid continuity equation
and the contaminant continuity equation at each time step) is used in [15], so
Figure 10 shows that the partially coupled approach does not seriously affect the

accuracy of the approximation for this problem.
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Figure 10: Comparison of position of 0.5 isochlor with [15] at =100 min.

In order to show the transient accuracy of the algorithm for this problem, the
comparison of the position of the 0.5 isochlor at t=30 min. with the result from

[15] is shown in Figure 11, and again there is good agreement.
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Figure 11: Comparison of position of 0.5 isochlor with [15] at t=30 min.
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6 Concluding Remarks

The variable density model for contaminant transport in porous media with a
Taylor-Galerkin discretisation for the contaminant continuity equation gives tran-
sient results which agree well with analytical solutions and with those from the
literature.

The partially coupled approach, in which the weak dependence of the fluid
density on the contaminant concentration is exploited by treating the term which
causes the coupling between the fluid and contaminant continuity equations (the
density) explicitly, is valid for the problems encountered in transient saline intru-
sion modelling. This approach leads to a substantial decrease in the computa-
tional cost.

The fully implicit Taylor-Galerkin method with linear basis functions is equiv-
alent to the Crank-Nicolson finite element method. Although this discretisation
method is demonstrated for problems on two-dimensional regular grids in this
report, it is fully multi-dimensional and operates on irregular grids in the same
way.

For the test cases presented, the diagonally preconditioned Bi-CGSTAB solver
converges in an acceptable number of iterations (e.g. < \/n, where n is the order
of the matrix). However, as the Courant number is increased, the advection
part of the global matrix (i.e. the component which causes the non-symmetry)
becomes more dominant, which may lead to a degradation in the performance of
the Bi-CGSTAB solver. The performance of the non-symmetric solver has not
been investigated in this report, this aspect of the solution method is the subject

of a future study.
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