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1 Introduction

This paper is concerned with the approximation of integrals of the form

Mψ(x) :=
∫

∂D

m(x,y)

|x− y|
eik[|x−y|+d̂.(y−x)]ψ(y) ds(y), x ∈ ∂D, (1)

where m(x,y), ψ(y) are smooth and slowly oscillating functions, d̂ is a fixed
unit vector (the incident wave direction), and ∂D is the surface of a three di-
mensional convex obstacle D. Such integrals arise in boundary integral meth-
ods for acoustic scattering problems, and if the acoustic size kA is large (where
A is the size of obstacle), corresponding to the high frequency problem, the
integrand will be highly oscillatory. For simulation of scattered acoustic waves,
evaluation of (1) is required for many observation directions x, and when kA
is large the cost of doing this by standard quadrature schemes is prohibitive.

Much recent research has focused on developing efficient quadratures for highly
oscillatory integrals (see for example [5] and the references therein). Although
many excellent schemes have been developed, their application to weakly sin-
gular surface integrals of the form (1) is still being investigated.

Here, instead of evaluating (1) using quadrature, we consider ideas based on a
rotated coordinate system and a localized Method of Stationary Phase (MSP).
In general, a direct MSP evaluation of (1) breaks down because of the weak
singularity. Our rotated coordinate system approach avoids this difficulty and
leads to an asymptotic expansion of (1) in ascending powers of 1/k. Approxi-
mating (1) by the first few terms in the expansion we can determine a bound
on the error converging to zero as k tends to infinity.

For a given wavenumber k and observed direction x ∈ ∂D, the main aim of
this paper is to devise a formula to compute (1) within a few seconds, with
the CPU time not increasing as the frequency increases. First we describe the
acoustic scattering problem leading to (1).

Consider scattering of a time-harmonic acoustic plane wave ui by a sound
soft bounded convex obstacle D ⊂ R3 with smooth surface ∂D described in
spherical coordinates. We seek an approximation to the radiating solution u
of the exterior Helmholtz problem

∆u+ k2u = 0, in R3\D, u = −ui := −eikx.d̂, on ∂D. (2)

Although problems such as this have a long pedigree, there is considerable
interest in establishing reliable numerical schemes for the high frequency case.
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In particular, for scattering by convex three dimensional obstacles with smooth
boundaries a number of very efficient high order boundary integral schemes
have recently been proposed [2,4]. These schemes exhibit extremely fast (su-
peralgebraic or even exponential) convergence rates for frequencies starting
from the resonance region to a medium level (size of the obstacle is about a
hundred times the wavelength). But they break down for shorter wavelengths.
One of the main reasons for this is the expense of evaluating many highly
oscillatory integrals of the form (1) in the scheme.

The unique radiating solution u of (2) can be represented as [3, p.59]

u(x) = −
∫

∂D

Φ(x,y)v(y) ds(y), x ∈ R3\D,

where Φ(x,y) := eik|x−y|/(4π|x− y|), and the unknown density v ∈ C(∂D) is
the unique solution of the boundary integral equation

1

2
v(x) +

∫
∂D

[
∂Φ(x,y)

∂n(x)
− iΦ(x,y)

]
v(y) ds(y) =

∂ui

∂n
(x)− iui(x), x ∈ ∂D. (3)

We write v(x) = φ(x)eikx.d̂, where φ is slowly oscillating compared to eikx.d̂

(see e.g. [1]). This reduces (3) to the second kind boundary integral equation

φ(x) +
∫

∂D

m(x,y)

|x− y|
eik[|x−y|+d̂.(y−x)]φ(y) ds(y) = 2i(kn(x) · d̂− 1), (4)

where n(x) is the unit outward normal vector to the surface ∂D at x and
m(x,y) is a smooth function, given by

m(x,y) :=
1

4π

[
n(x)(y − x)T

|x− y|2
(1− ik|x− y|)− i

]
. (5)

In any numerical scheme to solve (4), with unknown function φ(x) approxi-
mated in a finite dimensional space by φL(x) :=

∑L
j=1 vjρj(x), we are faced

with the difficulty of evaluation of highly oscillatory integrals of the form (1)
with density ψ replaced by the basis function ρj, j = 1, . . . , L.

We carry out the approximation of (1) in a two step process. We begin in §2
with an exact treatment of the singularity, using a singularity division tech-
nique in an appropriate coordinate system. This gives us an explicit repre-
sentation of the phase function required for MSP, and in §3 we describe the
location of the critical points. In §4 we then proceed by applying a localized
MSP approximation in the translated rotated coordinate system, which al-
lows us to express (1) as an asymptotic series in ascending powers of 1/k.
We can also derive estimates for the remainder terms, and numerical results
demonstrating the validity of these estimates appear in §5.
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2 Singularity-free formulation

Under the assumption that the surface ∂D of the convex scatterer can be
described globally in spherical coordinates, we write x ∈ ∂D as

x = q(x̂) = r(θ, φ)p(θ, φ), θ ∈ [0, π], φ ∈ [0, 2π], (6)

where x̂ ∈ ∂B (the unit sphere), is given by

x̂ = p(θ, φ) := (sin θ cosφ, sin θ sinφ, cos θ)T, θ ∈ [0, π], φ ∈ [0, 2π].

With J being the Jacobian of q, we get for any integrable ψ on ∂D,∫
∂D

ψ(x) ds(x) =
∫

∂B

ψ(q(x̂))J (x̂) ds(x̂), (7)

and using (6) and (7), we rewrite (1) as

Mψ(q(x̂))=
∫

∂B

m(q(x̂),q(ŷ))

|q(x̂)− q(ŷ)|
eik[|q(x̂)−q(ŷ)|+d̂.(q(ŷ)−q(x̂))]ψ(q(ŷ))J (ŷ) ds(ŷ).(8)

Recalling that d̂ is a fixed unit direction vector, |d̂| = 1, we write d̂ = p(θd, φd),
for some θd ∈ [0, π], φd ∈ [0, 2π]. To simplify the weak singularity in (8), we
then use the same transformation matrix as in [4]. For each x̂ ∈ ∂B, we
introduce the 3 × 3 orthogonal matrix Tx̂ which carries x̂ to the north pole:
Tx̂x̂ = [0, 0, 1]T =: n̂. If x̂ = p(θ, φ), an explicit form of Tx̂ is

Tx̂ :=


cosφ − sinφ 0

sinφ cosφ 0

0 0 1




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 . (9)

Then writing ŷ = T−1
x̂ ẑ, we have |x̂− ŷ| = |x̂−T−1

x̂ ẑ| = |T−1
x̂ (n̂− ẑ)| = |n̂− ẑ|.

Since surface measure on ∂B is invariant under orthogonal transformations,
we can rewrite (8) as

Mψ(q(x̂)) =
∫

∂B

m(q(x̂),q(T−1
x̂ ẑ))

f̃1(x̂, ẑ)
eik[f̃1(x̂,ẑ)+f̃2(x̂,d̂,ẑ)]ψ(q(T−1

x̂ ẑ))J (T−1
x̂ ẑ) ds(ẑ),

where f̃1(x̂, ẑ) := |q(x̂)−q(T−1
x̂ ẑ)| and f̃2(x̂, d̂, ẑ) := d̂ · (q(T−1

x̂ ẑ)−q(x̂)). We
proceed by working out each term in the integrand using spherical coordinates.
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With ẑ = p(θ′, φ′) (and noting that θ′ is then the angle between n̂ and ẑ,
equivalently the angle between x̂ and ŷ), and recalling (9) and that Tx̂ is an or-
thogonal transformation, it is straightforward to show that T−1

x̂ ẑ = p(θ′x, φ
′
x),

where θ′x and φ′x are functions of θ, φ, θ′, φ′ satisfying

sin θ′x cosφ′x = sin θ′(cos θ cosφ cos(φ−φ′)+sinφ sin(φ−φ′))+cos θ′ sin θ cosφ,

sin θ′x sinφ′x = sin θ′(cos θ sinφ cos(φ−φ′)−cosφ sin(φ−φ′))+cos θ′ sin θ sinφ,

cos θ′x = cos θ cos θ′ − sin θ sin θ′ cos(φ− φ′).

Using (6), we then get the following equalities;

f̃1(x̂, ẑ) =
√

[r(θ′x, φ
′
x)−r(θ, φ) cos θ′]2+[r(θ, φ)]2 sin2 θ′=:f1(θ, φ, θ

′, φ′),(10)

f̃2(x̂, d̂, ẑ) = r(θ′x, φ
′
x)h(θd, φd, θ

′
x, φ

′
x)− r(θ, φ)h(θd, φd, θ, φ),

=: f2(θ, φ, θd, φd, θ
′, φ′). (11)

where h(a, b, c, d) := sin a sin c cos(b−d)+cos a cos c. Hence using the notation

f(θ, φ, θd, φd, θ
′, φ′) := f1(θ, φ, θ

′, φ′) + f2(θ, φ, θd, φd, θ
′, φ′), (12)

H(θ, φ, θ′, φ′) := m(r(θ, φ)p(θ, φ), r(θ′x, φ
′
x)p(θ′x, φ

′
x))

2 sin(θ′/2)

f1(θ, φ, θ′, φ′)
J (p(θ′x, φ

′
x)),

(13)

and noting the 2π periodicity of the integrand with respect to φ′, we get

(Mψ)(r(θ, φ)p(θ, φ)) =
2π+φ∫
φ

π∫
0

H(θ, φ, θ′, φ′)eikf(θ,φ,θd,φd,θ′,φ′)ψ(r(θ′x, φ
′
x)p(θ′x, φ

′
x)) cos

θ′

2
dθ′ dφ′. (14)

Recalling the smoothness of m(·, ·) and J (·), and noting that

∣∣∣∣∣ 2 sin(θ′/2)

f1(θ, φ, θ′, φ′)

∣∣∣∣∣ ≤ min

(
1

|r(θ, φ) cos(θ′/2)|
,

1

|r(θ′x, φ′x)− r(θ, φ) cos θ′|

)
,

we have that H(θ, φ, θ′, φ′) is a smooth (analytic) function in θ, φ, θ′, φ′.
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3 Evaluation of critical points

It is well known (see e.g. [6]) that the main contribution to the generalized
Fourier integral (14) comes only from the values of the integrand at three
types of critical points:

(i) Stationary points, at which ∇f :=
(

∂f
∂θ′ ,

∂f
∂φ′

)T
= 0.

(ii) Points on the boundary, at which one of the following equations holds.

∂f(0, φ′)

∂φ′
= 0;

∂f(π, φ′)

∂φ′
= 0;

∂f(θ′, φ)

∂θ′
= 0;

∂f(θ′, 2π + φ)

∂θ′
= 0. (15)

(iii) Corner points, namely (0, φ), (0, 2π + φ), (π, φ), (π, 2π + φ).

Here, we have written the phase f as a function of two (integration) variables
θ′, φ′, using the fact that incident direction (θd, φd) and observed direction
(θ, φ) are fixed. For closed surface scatterers, f(0, φ′) and f(π, φ′) are constant
functions (see (10)–(12)), and hence the first two equations in (15) hold for all
φ′ ∈ [φ, 2π + φ]. Since the phase function f is 2π periodic, to find remaining

type (ii) critical points, we need to solve the scalar equation ∂f(θ′,φ)
∂θ′ = 0.

Next we consider critical points of type (i). For a fixed incident direction
(θd, φd) and observed direction (θ, φ), using (10)–(12) and the notation

A := sin θd cos θ cos(φ− φd)− cos θd sin θ, B := sin θd sin(φ− φd),

C(θ′, φ′) :=
r(θ′x, φ

′
x)− r(θ, φ) cos θ′

r(θ, φ) sin θ′
, D(φ′) := A cos(φ− φ′) +B sin(φ− φ′),

S(θ′, φ′) := sin θ cos θ′ cos(φ− φ′) + cos θ sin θ′, T (φ′) := sin θ sin(φ− φ′),

a little algebra (with each term evaluated at a = θ′x, b = φ′x) reveals that

∂f

∂θ′
=

[
1

[1 + C(θ′, φ′)2]1/2
+ cos θ′D(φ′)− sin θ′h(θ, φ, θd, φd)

]
r(θ′x, φ

′
x)

+

[
C(θ′, φ′)

[1 + C(θ′, φ′)2]1/2
+ sin θ′D(φ′) + cos θ′h(θ, φ, θd, φd))

]

×

 S(θ′, φ′)√
[T (φ′)]2+[S(θ′, φ′)]2

∂

∂a
r(a, b)− T (φ′)

[T (φ′)]2+[S(θ′, φ′)]2
∂

∂b
r(a, b)

 ,(16)

∂f

∂φ′
= sin θ′ {(A sin(φ− φ′)−B cos(φ− φ′))r(θ′x, φ

′
x)

+

[
C(θ′, φ′)

[1 + C(θ′, φ′)2]1/2
+ sin θ′D(φ′) + cos θ′h(θ, φ, θd, φd))

]

×

 T (φ′)√
[T (φ′)]2+[S(θ′, φ′)]2

∂

∂a
r(a, b)+

S(θ′, φ′)

[T (φ′)]2+[S(θ′, φ′)]2
∂

∂b
r(a, b)

 .(17)
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In general, the nonlinear system (16)–(17) cannot be solved analytically. For
notational simplicity and analytical calculations, in the remainder of this paper
we will assume r ≡ 1 and d̂ = [0, 0, 1]T . Using (11)–(13), we get

H(θ, φ, θ′, φ′) =H(k, θ′) :=
1

4π

[
−1

2
+ i

(
k sin

θ′

2
− 1

)]
, (18)

f(θ, φ, θ′, φ′) = 2 sin
θ′

2
+ cos θ(cos θ′ − 1)− sin θ sin θ′ cos(φ− φ′), (19)

∂f

∂θ′
= cos

θ′

2
− cos θ sin θ′ − sin θ cos θ′ cos(φ− φ′), (20)

∂f

∂φ′
=− sin θ sin θ′ sin(φ− φ′) (21)

In the following theorem, we describe critical points of type (i).

Theorem 3.1 The stationary points (θ′, φ′) ∈ [0, π]× [φ, 2π+φ) of the phase
function in (19) are as follows:

• If θ = 0 then ∇f = 0 for (θ′, φ′) = (π/3, φ′), (π, φ′).
• If θ ∈ (0, π/2) then there are five solutions of ∇f = 0, given by (θ′, φ′) =

(π−2θ, φ), ((π−2θ)/3, φ), ((π+2θ)/3, φ+π), (π, φ+π/2) and (π, φ+3π/2).
• If θ = π/2 then there are four solutions of ∇f = 0, given by (θ′, φ′) = (0, φ),

(2π/3, φ+ π), (π, φ+ π/2) and (π, φ+ 3π/2).
• If θ ∈ (π/2, π) then there are three solutions of ∇f = 0, given by (θ′, φ′) =

((π + 2θ)/3, φ+ π), (π, φ+ π/2) and (π, φ+ 3π/2).
• If θ = π then ∇f = 0 for (θ′, φ′) = (π, φ′).

Proof: First, suppose θ = π. Then ∂f/∂φ′ = 0 for all θ′, φ′, and ∂f
∂θ′ =

cos θ′

2

(
1 + 2 sin θ′

2

)
= 0 if and only if θ′ = π. Next, suppose θ = 0. Then again

∂f/∂φ′ = 0 for all θ′, φ′, and ∂f
∂θ′ = cos θ′

2

(
1− 2 sin θ′

2

)
= 0 for θ′ = π or

θ′ = π/3. Now, suppose θ ∈ (0, π). Then for ∂f/∂φ′ = 0 to be satisfied, we
must either have θ′ = 0, θ′ = π, or sin(φ−φ′) = 0. First, suppose θ′ = 0. Then
∂f/∂φ′ = 0 for all φ′, and ∂f/∂θ′ = 1 − sin θ cos(φ − φ′) = 0 if and only if
θ = π/2 and cos(φ− φ′) = 1, which is satisfied only for φ′ = φ. Next, suppose
θ′ = π. Then again ∂f/∂φ′ = 0 for all φ′, and ∂f/∂θ′ = sin θ cos(φ − φ′) = 0
if and only if cos(φ−φ′) = 0, i.e. if and only if φ′ = φ+ π/2 or φ′ = φ+ 3π/2.
Finally, suppose θ′ ∈ (0, π). Then for ∂f/∂φ′ = 0 to be satisfied we must have
sin(φ− φ′) = 0, and hence φ′ = φ or φ′ = φ+ π. Supposing first that φ′ = φ,

we have ∂f
∂θ′ = sin

(
θ′+π

2

)
− sin(θ + θ′) = 0 either if

θ′ + π

2
= θ + θ′ + 2nπ, n = 0,±1,±2, . . . , (22)

i.e. if θ′ = π(1− 4n)− 2θ, n = 0,±1,±2, . . ., or if

θ′ + π

2
= π − (θ + θ′) + 2nπ, n = 0,±1,±2, . . . , (23)
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i.e. if θ′ = (π(1 + 4n) − 2θ)/3, n = 0,±1,±2, . . .. For n = 0 we then have
θ′ = π − 2θ or θ′ = (π − 2θ)/3, each of which satisfies θ′ ∈ [0, π] if and only if
θ ∈ [0, π/2]. For n 6= 0, all solutions θ′ of (22) or (23) lie outside [0, π]. Finally

we suppose that φ′ = φ+ π. Then ∂f
∂θ′ = sin

(
θ′+π

2

)
− sin(θ′ − θ) = 0 either if

θ′ + π

2
= θ′ − θ + 2nπ, n = 0,±1,±2, . . . , (24)

i.e. if θ′ = π(1− 4n) + 2θ, n = 0,±1,±2, . . ., or if

θ′ + π

2
= π − (θ′ − θ) + 2nπ, n = 0,±1,±2, . . . , (25)

i.e. if θ′ = (π(1 + 4n) + 2θ)/3, n = 0,±1,±2, . . .. For n = 0 we then have
θ′ = π+2θ, which always lies outside [0, π], or θ′ = (π+2θ)/3, which satisfies
θ′ ∈ [0, π]. For n 6= 0, all solutions θ′ of (24) or (25) lie outside [0, π]. �

4 Localized method of stationary phase and error analysis

Assuming for simplicity that θ ∈ (0, π/2) ∪ (π/2, π), it follows from Theo-
rem 3.1 that there are three stationary points, at

(θ1
s , φ

1
s) :=

(
π + 2θ

3
, φ+ π

)
, (θ2

s , φ
2
s) :=

(
π, φ+

π

2

)
, (θ3

s , φ
3
s) :=

(
π, φ+

3π

2

)
,

and if θ ∈ (0, π/2) then there are two more stationary points at

(θ4
s , φ

4
s) := (π − 2θ, φ) , (θ5

s , φ
5
s) :=

(
π − 2θ

3
, φ

)
.

Next we isolate these stationary points using a partition of unity. Taking
pairwise disjoint neighborhoods Ω′

j of (θj
s, φ

j
s), j = 1, . . . , N(θ), where

N(θ) =

 3 if π/2 < θ < π,

5 if 0 < θ < π/2,
(26)

and letting Ωj be a small neighborhood of (θj
s, φ

j
s) such that Ωj ⊂ Ω′

j, we can
construct a C∞ neutralizing function χj (see [6, Ch.V, ex.7]) such that χj ≡ 1
on Ωj, χj ≡ 0 outside Ω′

j. We then rewrite (14) as

(Mψ)(p(θ, φ)) =
N(θ)+1∑

j=1

(Mjψ)(p(θ, φ)), (27)

where
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(Mjψ)(p(θ, φ)) :=


∫ 2π+φ
φ

∫ π
0 Gj(θ, φ, θ

′, φ′)eikf(θ,φ,θ′,φ′) dθ′ dφ′, j = 1, . . . , N(θ),∫ 2π+φ
φ

∫ π
0 g(θ, φ, θ

′, φ′)eikf(θ,φ,θ′,φ′) dθ′ dφ′, j = N(θ) + 1,

Gj(θ, φ, θ
′, φ′) :=χj(θ, φ, θ

′, φ′)H(k, θ′)ψ(p(θ′x, φ
′
x)) cos(θ′/2), j = 1, . . . , N(θ),

g(θ, φ, θ′, φ′) :=

1− N∑
j=1

χj(θ, φ, θ
′, φ′)

H(k, θ′)ψ(p(θ′x, φ
′
x)) cos(θ′/2).

Thus for j = 1, . . . , N(θ) the domain of integration of Mj is a small region Ωj,
and the integrand of MN(θ)+1 is a C∞ function with no stationary points.

We approximate (Mjψ)(p(θ, φ)), j = 1, . . . , N(θ) using asymptotic expansions
about each stationary point. First we define

(M̂1ψ)(p(θ, φ)) :=− 2πiG1(θ, φ, θ
1
s , φ

1
s)e

ikf(θ,φ,θ1
s ,φ1

s)

k
[
k 3

2
cos

(
θ−π

3

)
sin θ sin

(
π+2θ

3

)]1/2
, (28)

(M̂2ψ)(p(θ, φ)) := 0, (M̂3ψ)(p(θ, φ)) := 0, (29)

(M̂4ψ)(p(θ, φ)) :=
2πiG4(θ, φ, θ

4
s , φ

4
s)e

ikf(θ,φ,θ4
s ,φ4

s)

k
[

1
2
cos θ sin θ sin 2θ

]1/2
, (30)

(M̂5ψ)(p(θ, φ)) :=
2πG5(θ, φ, θ

5
s , φ

5
s)e

ikf(θ,φ,θ5
s ,φ5

s)

k
[

3
2
cos

(
θ+π

3

)
sin θ sin

(
π−2θ

3

)]1/2
. (31)

The following result gives the power of approximating (Mjψ) by M̂jψ, for
j = 1, . . . , N(θ).

Theorem 4.1 For j = 1, . . . , N(θ), and for large k,

(Mjψ)(p(θ, φ))− (M̂jψ)(p(θ, φ) = O
(

1

k2

)
.

Proof: First we note that, with f := f(θ, φ, θ′, φ′),

∂2f

∂θ′2
∂2f

∂φ′2
− ∂2f

∂θ′∂φ′

> 0 if (θ′, φ′) = (θi
s, φ

i
s) i = 1, 4

< 0 if (θ′, φ′) = (θj
s, φ

j
s) j = 2, 3, 5

Thus (θ1
s , φ

1
s) is a local maximum, (θ4

s , φ
4
s) is a local minimum, and (θj

s, φ
j
s),

j = 2, 3, 5, are each saddle points. Following [6, Chapter VIII] we can write a
series expansion for Mj, j = 1, . . . , N , in increasing powers of 1/k, with in each

case the leading order term given by M̂j. Noting that cos θ2
s/2 = cos θ3

s/2 = 0,
the result follows. 2

To evaluate (MN+1ψ)(p(θ, φ)), we take advantage of the fact that ∇f is
bounded away from zero on the range of integration to write the integral
as a series of line integrals, increasing in powers of 1/k, and define

9



(M̂N(θ)+1ψ)(p(θ, φ)) =

2πiH(k, 0)ψ(p(θ, φ))

k| cos θ|
− 2πH(k, 0)ψ(p(θ, φ))

k2 cos4 θ

[
1+

1

2
sin2 θ

]
−

2π ∂H
∂θ′ (k, 0)ψ(p(θ, φ))

k2| cos3 θ|

−H(k, 0)

k2

2π+φ∫
φ

∂ψ(p(θ′x, φ
′
x))

∂θ′

∣∣∣∣∣
θ′=0

dφ′

(1−sin θ cos(φ−φ′))2
. (32)

To analyze the error in approximation of (MN(θ)+1ψ)(p(θ, φ)) by (M̂N(θ)+1ψ)(p(θ, φ)),
we require the following result.

Lemma 4.2 For any constant c,

Km(θ) :=

2π+c∫
c

1

(1− sin θ cos(y − c))m
dy =

2π

| cos θ|2m−1

m−1∑
j=0

(2j − 1)!!

j!

m− 1

j

 sinj θ(1− sin θ)m−1−j, m = 1, 2, · · · ,

where (2j−1)!! = 1 if j = 0, and (2j−1)!! := 1.3.5 . . . (2j−3)(2j−1), j ≥ 1.

Proof: Making the substitution t = tan((y− c)/2), and defining a2 := 1−sin θ
1+sin θ

,

Km(θ) =
4

(1 + sin θ)m

m−1∑
j=0

m− 1

j

 (1− a2)j

∞∫
0

1

(a2 + t2)j+1
dt.

Noting that
∫∞
0

1
(a2+t2)j+1 dt = 1

a2j+1
(2j−1)!!π

2j+1j!
, the result follows. �

We are now ready to prove the main result of this section.

Theorem 4.3 For fixed θ ∈ (0, π/2) ∪ (π/2, π) and φ ∈ [0, 2π], there exist
constants C1 > 0, C2(θ, φ) > 0, each bounded independently of k, such that
for k sufficiently large

∣∣∣(MN+1ψ)(p(θ, φ))− (M̂N(θ)+1ψ)(p(θ, φ))
∣∣∣ ≤ 1

k

(
C1

sin2 θ
+
C2(θ, φ)

k

)
. (33)

Proof: Since ∇f 6= 0 for (θ′, φ′) ∈ supp(g), it follows from the divergence
theorem and the identity ∇.(ueikf ) = (∇.u)eikf + ikgeikf , where u = u0 :=
∇f
|∇f |2 g, g := g(θ, φ, θ′, φ′), that for n = 1, 2, . . .,

(MN+1ψ)(p(θ, φ))=−J(n) +
(

i

k

)n∫ ∫
supp(g)

gneikf dθ′ dφ′, (34)
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where

J(n) :=
n−1∑
s=0

(
i

k

)s+1∫
Γ

(us.n)eikf dσ, gs+1 := (∇.us), us+1 :=
∇f
|∇f |2

gs+1,(35)

Γ is the positively oriented (anticlockwise) boundary of supp(g), σ is the arc
length of Γ, and n := (n1, n2) is the unit outward normal vector to Γ. We
immediately deduce that for n = 1, 2, . . .,

|(MN+1ψ)(p(θ, φ)) + J(n)| ≤ 1

kn

∣∣∣∣∣∣∣
∫ ∫
supp(g)

gneikf dθ′ dφ′

∣∣∣∣∣∣∣ ≤
C(θ, φ)

kn+1
‖gn‖∞. (36)

Next we evaluate∫
Γ

(us.n)eikf dσ =
∫
Γ

n1fθ′ + n2fφ′

f 2
θ′ + f 2

φ′
eikfgs dσ, for s = 0, 1. (37)

As shown in Figure 1 (for θ ∈ (π/2, π)), supp(g) is bounded by the lines
φ′ = φ, φ′ = 2π + φ, θ′ = 0, θ′ = π and the supports of 1 − χj(θ, φ, θ

′, φ′),
j = 1, . . . , N .

PSfrag replacements

a

a

b

b

n1 = (0,−1)

n2 = (0, 1)

n3 = (−1, 0)

n4 = (1, 0)

n5 = (1, 0)

n6 = (1, 0)

n7

n8

n9

Γ1

Γ2

Γ3

Γ4

Γ5

Γ6

Γ7

Γ8

Γ9

θ′ = 0 θ′ = π
φ′ = φ

φ′ = 2π + φ

Figure 1: Domain of integration supp(g), for θ ∈ (π/2, π).

The contributions to (37) from the sections of Γ corresponding to φ′ = φ and
φ′ = 2π + φ (Γ1 and Γ2 in Figure 1) are both zero, since for φ′ = φ and
φ′ = 2π + φ we have n1 = 0 and fφ′ = 0. On the sections of Γ corresponding
to θ′ = 0 and θ′ = π (Γ3, Γ4, Γ5 and Γ6 in Figure 1) we have

n1fθ′ + n2fφ′

f 2
θ′ + f 2

φ′
eikf =

−1/(1− sin θ cos(φ− φ′)), on θ′ = 0,

eik(2−2 cos θ)/ sin θ cos(φ− φ′), on θ′ = π.
(38)

Recalling (35),

gs+1 = P (θ′, φ′)gs +
fθ′

f 2
θ′ + f 2

φ′

∂gs

∂θ′
+

fφ′

f 2
θ′ + f 2

φ′

∂gs

∂φ′
, (39)
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where

P (θ′, φ′) :=
fθ′θ′ + fφ′φ′

f 2
θ′ + f 2

φ′
− 2

f 2
θ′fθ′θ′ + 2fθ′fφ′ + f 2

φ′fφ′φ′

(f 2
θ′ + f 2

φ′)2
.

From the definition of χj, j = 1, . . . , N , g and all its derivatives, and hence gs,
s = 0, 1, . . ., then vanish on all other sections of Γ (Γ7, Γ8 and Γ9 in Figure 1,
plus four other semicircles in the case θ ∈ (0, π/2)). Thus

∫
Γ

(us.n)eikf dσ=

2π+φ∫
φ

gs(θ, φ, 0, φ
′)

1−sin θ cos(φ−φ′)
dφ′+

eik(2−2 cos θ)

sin θ

2π+φ∫
φ

gs(θ, φ, π, φ
′)

cos(φ−φ′)
dφ′.(40)

Using (39),

gs+1(θ, φ, 0, φ
′) =

cos θ

(1− sin θ cos(φ− φ′))2
gs(θ, φ, 0, φ

′) +
∂gs

∂θ′ (θ, φ, 0, φ
′)

1− sin θ cos(φ− φ′)
,

(41)

gs+1(θ, φ, π, φ
′) =

(
1/2− cos θ

sin2 θ cos2(φ− φ′)

)
gs(θ, φ, π, φ

′) +
∂gs

∂θ′ (θ, φ, π, φ
′)

sin θ cos(φ− φ′)
, (42)

and since p(θ′x, φ
′
x)|θ′=0 = p(θ, φ) and p(θ′x, φ

′
x)|θ′=π = p(π − θ, φ),

g(θ, φ, 0, φ′) = H(k, 0)ψ(p(θ, φ), g(θ, φ, π, φ′) = 0,

g1(θ, φ, 0, φ
′) =

[
H(k, 0) cos θ

(1− sin θ cos(φ− φ′))2
+

H ′(k, 0)

(1− sin θ cos(φ− φ′))

]
ψ(p(θ, φ))

+

[
H(k, 0)

(1− sin θ cos(φ− φ′))

]
∂ψ(p(θ′x, φ

′
x))

∂θ′

∣∣∣∣∣
θ′=0

,

g1(θ, φ, π, φ
′) =

−
[
1−∑N

j=1 χj(θ, φ, θ
′, φ′)

]
H(k, π)ψ(p(π − θ, φ)

2 sin θ cos(φ− φ′)
.

Using these in (40), for s = 0, 1,∫
Γ

(u0.n)eikf dσ = H(k, 0)ψ(p(θ, φ))

2π+φ∫
φ

1

(1− sin θ cos(φ− φ′))
dφ′, (43)

∫
Γ

(u1.n)eikf dσ =

2π+φ∫
φ

H(k, 0)ψ(p(θ, φ)) cos θ

(1− sin θ cos(φ− φ′))3
dφ′+

2π+φ∫
φ

H ′(0)ψ(p(θ, φ))

(1− sin θ cos(φ−φ′))2
dφ′

+

2π+φ∫
φ

∂ψ(p(θ′x, φ
′
x))

∂θ′

∣∣∣∣∣
θ′=0

H(k, 0)

(1− sin θ cos(φ− φ′))2
dφ′
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+
eik(2−2 cos θ)H(k, π)ψ(p(π−θ, φ))

2 sin2 θ

2π+φ∫
φ

[
1−∑N

j=1 χj(θ, φ, θ
′, φ′)

]
cos2(φ− φ′)

dφ′. (44)

Applying Lemma 4.2 and the fact that H(k, π) is of order k in (43) and (44),
the result (33) follows from (35) (with n = 2), (34) and (32). 2

Remark 4.4 Using (40), (41) and Lemma 4.2, we see that for θ = π/2± δ,
the leading order term of

∫
Γ(us.n)eikf dσ for fixed k as δ → 0 is of order

2π+φ∫
φ

coss θ

(1− sin θ cos(φ− φ′))2s+1
dφ′ ∼ coss θ

| cos θ|4s+1
∼ 1

δ3s+1
.

Thus as δ → 0, with k fixed, each term in J(n) (see (35)) is of order 1
ks+1δ3s+1 =

δ2

(kδ3)s+1 . Hence for fixed k, we require δ ≥ Ck−1/3, for some constant C > 0.

5 Numerical results

We demonstrate our approach by computing efficient approximations to highly
oscillatory weakly singular integrals Mψ(x) in (1), with m given by the acous-
tic scattering kernel (5), for a spherical scatterer of radius 1 at 1000 observed
directions x = p(θ, 0), for various wavenumbers k > 10000.

Analytical solutions of these integrals are not known even for the constant
density ψ ≡ 1. However, in the rotated coordinate system the outer part of
these surface integrals (see (14)) can, for the case of a sphere and ψ ≡ 1, be
evaluated exactly using the Bessel functions of order zero:

∫ 2π
0 eika cos y dy =

2πJ0(ka). For comparison purposes, we evaluated the inner part of the surface
integrals to a very high accuracy, using the Gaussian quadrature with 30 nodes
per half wavelength. In this section, we take the resulting computed number
to be the exact value of (Mψ)(p(θ, 0)), with ψ ≡ 1.

Using (27), Theorems 4.1 and 4.3, our approximation (Mappψ)(p(θ, 0)) to
(Mψ)(p(θ, 0)) for θ ∈ (0, π), θ 6= π/2, is defined by

(Mappψ)(p(θ, 0)) :=
N(θ)+1∑

j=1

(M̂jψ)(p(θ, 0)), (45)

where M̂jψ for j = 1, · · ·N(θ) + 1 are given by (28)–(32), and N(θ) is as
defined in (26). ¿From Theorems 4.1 and 4.3 and recalling Remark 4.4, we
would expect that for |θ − π/2| > Ck−1/3 for some fixed constant C > 0,

E(k, θ) :=
|(Mψ)(p(θ, 0))− (Mappψ)(p(θ, 0))|

|(Mψ)(p(θ, 0))|
≤ c(θ)

k
. (46)
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We computed the exact value of (Mψ)(p(θ, 0)) for θ ∈ S1001, where the set
S1001 consists of 1001 equally spaced points on [0, π], including the end points.
We computed the approximation (Mappψ)(p(θ, 0)) with θ ∈ S1001 \{0, π/2, π}.

In Figures 2 and 3, we plot the exact value (Mψ)(p(θ, 0)) for θ ∈ S1001\{0, π},
and approximate solution (Mappψ)(p(θ, 0)) for θ ∈ S1001 \ {0, π}, |θ − π/2| >
10k−1/3, for k = 1, 310, 720 and k = 2, 621, 440. Our approximations are seen
to be qualitatively correct (in the sense that the crosses for the approximate
values lie inside the circles representing the exact values) outside a region
of width of the order of k−1/3 around θ = π/2. Evaluation of just the one
dimensional inner integral for the exact solution of (Mψ)(p(θ, 0)) with θ ∈
S1001, k = 1, 310, 720 and k = 2, 621, 440 took over 44 hours and 94 hours
of CPU time respectively on a AMD Opteron 2.0Ghz computer, while our
approximation (Mappψ)(p(θ, 0)) with θ ∈ S1001 \ {0, π/2, π} was computed for
both the cases in less than 0.03 seconds.

In Figure 4 we plot the error E(k, θ) for |θ − π/2| > 10k−1/3, for k = 10240,
k = 40960, k = 163840, k = 655360 and k = 1, 310, 720, to demonstrate
efficiency of our formula for computing (1) within a few seconds of CPU time.

Figure 2: Exact and approximate solutions for k = 1, 310, 720.

Figure 3: Exact and approximate solutions for k = 2, 621, 440.
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Figure 3: Errors E(k, θ) for |θ − π/2| > 10k−1/3, various k > 10000.

6 Conclusions

Outside of a band of width Ck−1/3 around the shadow boundary θ = π/2, our
approximation scheme is very accurate. The computational time required to
approximate the integral at a thousand points remains constant for all values
of k, in stark contrast to the severe increase in computational cost needed
to maintain accuracy as k increases for standard quadrature schemes. The
application of our integration scheme to the solution of the full scattering
problem (2) will be considered in a future work.

References

[1] O. P. Bruno, C. A. Geuzaine, J. A. Monro Jr, and F. Reitich. Prescribed error
tolerances within fixed computational times for scattering problems of high
frequency: the convex case. Phil. Trans. R. Soc. Lond A, 362:629–645, 2004.

[2] O. P. Bruno and L. A. Kunyansky. Surface scattering in three dimensions: an
accelerated high-order solver. Proc. R. Soc. Lond. A, 457:2921–2934, 2001.

[3] D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering
Theory. Springer-Verlag, 1998.

[4] M. Ganesh and I. G. Graham. A high-order algorithm for obstacle scattering
in three dimensions. J. Comput. Phys., 198:211–242, 2004.

[5] A. Iserles and S. Norsett. On quadrature methods for highly oscillatory integrals
and their implementation. BIT Numerical Mathematics, 44(4):755–772, 2004.

[6] R. Wong. Asymptotic Approximations of Integrals. Academic Press Inc., 1989.

15


