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Abstract

We consider the problem of scattering of a time-harmonic acoustic incident plane
wave by a sound soft convex polygon. Standard boundary or finite element methods,
with a piecewise polynomial approximation space, have a computational cost that
grows linearly with respect to the frequency of the incident wave. Recently Chandler-
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problem for which, by incorporating the products of plane wave basis functions with
piecewise polynomials supported on a graded mesh into the approximation space,
they were able to demonstrate that the number of degrees of freedom required to
achieve a prescribed level of accuracy grows only logarithmically with respect to the
frequency. Here we propose a related collocation method, using the same approxi-
mation space, for which we demonstrate via numerical experiments a convergence
rate identical to that achieved with the Galerkin scheme, but with a substantially
reduced computational cost.
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1 Introduction

Consider the problem of scattering of a time-harmonic acoustic incident plane
wave ui by a sound soft convex polygon Ω. The total acoustic field u satisfies

∆u(x) + k2u(x) = 0, x ∈ D := R
2\Ω̄, (1)

u(x) = 0, x ∈ Γ := ∂Ω, (2)

where the wavenumber k > 0 is proportional to the frequency of the incident
wave, together with the Sommerfeld radiation condition

lim
r→∞ r1/2

(

∂us

∂r
− ikus

)

= 0, (3)

on the scattered field us := u−ui, where r := |x| and the limit holds uniformly
in all directions x/|x|. Existence and uniqueness of a solution u ∈ C(D) ∩
C2(D) to (1)–(3) follows from classical results; see [8] for details.

Using Green’s theorem we can represent u(x), x ∈ D, as a combination of
single and double layer potentials, and with the double layer potential disap-
pearing due to (2) we have [11, theorem 3.12]

u(x) = ui(x) −
∫

Γ

Φ(x,y)
∂u

∂n
(y) ds(y), x ∈ D. (4)

Here Φ(x,y) := (i/4)H
(1)
0 (k|x − y|) is the standard fundamental solution

for the Helmholtz equation and n is the normal direction directed out of
Ω. Thus our problem reduces to finding the complementary boundary data
∂u/∂n ∈ L2(Γ), and to do this we solve the well known second kind integral
equation

(I + K)
∂u

∂n
= f, on Γ\{S}, (5)

where S is the set of corners of Ω, f := 2∂ui/∂n + 2iηui, and for v ∈ L2(Γ)

Kv(x) := 2
∫

Γ

(

∂Φ(x,y)

∂n(x)
+ iηΦ(x,y)

)

v(y) ds(y),

where η is a coupling parameter, with η ∈ R\{0} ensuring that (5) has a
unique solution (see [8] for details).
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The kernel, right hand side, and solution of (5) all oscillate rapidly when k is
large, and thus it is well known that the computational cost of solving (5) by
standard schemes, with piecewise polynomial approximation spaces, grows at
least linearly with respect to the frequency k (see e.g. [8,21] and the references
therein). However, by removing the high frequency asymptotics and solving a
modified integral equation whose solution approaches zero almost everywhere
as k → ∞, it is possible to devise numerical schemes for solving integral
equations such as (5) with computational costs that grow at a sublinear rate
as k increases (see e.g. [1,6,8,19]).

In particular, in [8] Chandler-Wilde and Langdon recently proposed a novel
Galerkin boundary element method for solving (5) for which it was demon-
strated via both a rigorous error analysis and numerical simulations that the
number of degrees of freedom required to solve (5) (and thus (1)–(3)) to a
prescribed level of accuracy grows only logarithmically with respect to k. This
appears to be the best result to date for problems of scattering by bounded
obstacles, and was achieved by removing the leading order high frequency
asymptotic behaviour from (5) and using a consideration of a related set of
half plane problems to demonstrate that for s ∈ [0, L], (where x(s), s ∈ [0, L],
parametrises Γ)

1

k

∂u

∂n
(x(s)) = known leading order terms + eiksv+(s) + e−iksv−(s), (6)

with v± and all its derivatives highly peaked near the corners of the polygon,
and rapidly decaying away from the corners. The oscillatory nature of ∂u/∂n
is thus represented exactly in (6) by the known leading order terms and the
terms e±iks, and to approximate ∂u/∂n all that is required is to approximate
the smooth functions v±. These functions decay sufficiently quickly that the
number of degrees of freedom required to maintain the accuracy of their best
L2 approximation from a space of piecewise polynomials supported on a graded
mesh, with a higher concentration of mesh points closer to the corners of the
polygon, grows only logarithmically with respect to k as k → ∞.

The question then arises of how we might go about selecting our best L2 ap-
proximation to v± from the approximation space. In [8] a Galerkin scheme
is used, for which both stability and convergence are proved. However, the
implementation of this scheme requires the evaluation of many highly oscil-
latory double integrals, which can become computationally expensive at high
frequencies. Although there has been some recent work on the efficient eval-
uation of highly oscillatory double integrals (see e.g. [13,15]) many questions
remain unanswered. By contrast, several integration schemes have recently
been proposed in the literature specifically for the evaluation of highly oscil-
latory single integrals, and many of these new schemes have the property that
their performance actually improves as the integrand becomes more oscilla-
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tory (see for example [6,14,16,17] and the references therein). Using this as
our motivation in the current paper, here we investigate the application of a
collocation method for the solution of (5). We use the same approximation
space, and thus we might anticipate achieving a similar sublinear convergence
rate with respect to k as that achieved by the Galerkin scheme in [8], but the
collocation scheme has the advantage that its implementation requires only
the evaluation of highly oscillatory single integrals.

We begin in §2 by defining the approximation space more precisely, introduc-
ing our collocation method, and making some remarks about its conditioning,
stability and convergence properties. We proceed in §3 with a full descrip-
tion of how the scheme is implemented, including a discussion of how we can
evaluate the highly oscillatory single integrals which arise. In §4 we present
some numerical results, demonstrating that the collocation method appears
to converge to the same solution as the Galerkin scheme, for which a full er-
ror analysis has been carried out in [8], but with a significant reduction in
computational cost. Finally in §5 we present some conclusions.

2 The boundary element method

We begin by defining some notation, as in [8]. We write the boundary of the
polygon as Γ = ∪n

j=1Γj, where Γj, j = 1, . . . , n are the n sides of the polygon,
ordered so that Γj, j = 1, . . . , ns are in shadow, and Γj, j = ns + 1, . . . , n
are illuminated. We denote the corners of the polygon by Pj := (pj, qj), j =
1, . . . , n, and we set Pn+1 = P1, so that for j = 1, . . . , n, Γj is the line joining
Pj with Pj+1. We denote the length of Γj by Lj := |Pj+1 − Pj|, the external
angle at each vertice Pj by Ωj ∈ (π, 2π), the normal derivative to the line
Γj by nj := (nj1, nj2), and the angle of the incident plane wave, as measured
anticlockwise from the downward vertical, by θ ∈ [0, π/2]. Writing x = (x1, x2)
we then have

ui(x) = eik(x1 sin θ−x2 cos θ) = eikx.d, (7)

where d := (sin θ,− cos θ). Defining further for j=1, . . . , n,

aj :=
pj+1 − pj

Lj

, bj :=
qj+1 − qj

Lj

, cj := pj − ajL̃j−1, dj := qj − bjL̃j−1,
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where L̃j :=
∑j

m=1 Lm, and noting that nj1 = bj, nj2 = −aj, we can rewrite (5)
in parametrised form as

φ(s) +

L
∫

0

K(s, t)φ(t) dt = f(s), s ∈ [0, L], (8)

where φ(s) := 1
k

∂u
∂n

(x(s)), L := L̃n, and for x(s) ∈ Γl, y(t) ∈ Γj, l, j = 1, . . . , n,

K(s, t) :=−1

2



ηH
(1)
0 (kR)+ik [(albj−blaj)t+bl(cl−cj)−al(dl−dj)]

H
(1)
1 (kR)

R



 ,(9)

with

R = R(s, t) :=
√

(als − ajt + cl − cj)2 + (bls − bjt + dl − dj)2,

and

f(s) := 2i[bl sin θ + al cos θ + (η/k)]eik((als+cl) sin θ−(bls+dl) cos θ). (10)

Recalling (6), the first step in the design of our numerical scheme is to separate
off the leading order behaviour, namely the contribution from the incident field
(see e.g. [6,8]). For s ∈

(

L̃l−1, L̃l

)

, l = 1, . . . , n, we define

Ψ(s) :=











2
k

∂ui

∂n
(x(s)) = 2i(bl sin θ + al cos θ)eik[(als+cl) sin θ−(bls+dl) cos θ], l > ns,

0, l ≤ ns,

and

ϕ(s) := φ(s) − Ψ(s). (11)

Substituting into (8) we have

ϕ(s) + Kϕ(s) = F (s), s ∈ [0, L], (12)

where

Kψ(s) := 2

L
∫

0

K(s, t)ψ(t) dt, F (s) := 2f(s) − Ψ(s) − 2

L
∫

0

K(s, t)Ψ(t) dt.
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This is the integral equation we will solve numerically, with existence and
boundedness for (I + K)−1 following immediately from [8, theorem 2.5].

We now define more precisely our approximation space VN,ν . We begin by
defining the graded mesh we will use, which is the same as in [8].

Definition 1 For A > λ, N = 2, 3, . . ., the mesh

ΛN,A,λ,q := {y0, . . . , yN+N̂A,λ,q
}

consists of the points

yi = λ
(

i

N

)q

, i = 0, . . . , N,

together with the points

yN+j := λ
(

A

λ

)j/N̂A,λ,q

, j = 1, . . . , N̂A,λ,q, (13)

where N̂A,λ,q = ⌈N∗⌉, the smallest integer greater than or equal to N∗, with

N∗ =
− log(A/λ)

q log(1 − 1/N)
. (14)

For j = 1, . . . , n, we define qj := (2ν + 3)/(2π/Ωj − 1), and the two meshes

Γ+
j := L̃j−1 + ΛN,Lj ,λ,qj

, Γ−
j := L̃j − ΛN,Lj ,λ,qj+1

.

Letting e±(s) := e±iks, s ∈ [0, L], we then define

VΓ+
j

,ν := {σe+ : σ ∈ ΠΓ+
j

,ν}, VΓ−

j
,ν := {σe− : σ ∈ ΠΓ−

j
,ν},

for j = 1, . . . , n, where

ΠΓ+
j

,ν := {σ ∈ L2(0, L) : σ|(L̃j−1+ym−1,L̃j−1+ym) is a polynomial of degree ≤ ν,

for m = 1, . . . , N + N̂Lj ,λ,qj
, and σ|(0,L̃j−1)∪(L̃j ,L) = 0},

ΠΓ−

j
,ν := {σ ∈ L2(0, L) : σ|(L̃j−ỹm,L̃j+ỹm−1) is a polynomial of degree ≤ ν,

for m = 1, . . . , N + N̂Lj ,λ,qj+1
, and σ|(0,L̃j−1)∪(L̃j ,L) = 0},
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with the points of the mesh ΛN,Lj ,λ,qj
given by y0, . . . , yN+N̂Lj,λ,qj

, and the

points of the mesh ΛN,Lj ,λ,qj+1
given by ỹ0, . . . , ỹN+N̂Lj,λ,qj+1

.

Our approximation space VN,ν is then the linear span of

⋃

j=1,...,n

{VΓ+
j

,ν ∪ VΓ−

j
,ν}.

Defining PNG to be the operator of orthogonal projection from L2 onto the ap-
proximation space VN,ν , a rigorous error analysis [8, theorem 5.4] demonstrates
that

‖ϕ − PNGϕ‖2,(0,L) ≤ Cν sup
x∈D

|u(x)|n
1/2(1 + log1/2(k maxj=1,...,n Lj))

k1/2N ν+1
. (15)

Moreover defining the Galerkin method approximation ϕNG ∈ VN,ν by

(I + PNGK)ϕNG = PNGF, (16)

it is also shown in [8, theorem 5.5] that

‖ϕ − ϕNG‖2,(0,L) ≤ CνCs sup
x∈D

|u(x)|n
1/2(1 + log1/2(k maxj=1,...,n Lj))

k1/2N ν+1
. (17)

where Cs := ‖(I + PNGK)−1‖2,(0,L) is bounded, for N sufficiently large.

Here, instead of projecting orthogonally onto the approximation space we
instead use the interpolatory projection PNC from L2 onto the same approxi-
mation space VN,ν , and solve

(I + PNCK)ϕNC = PNCF. (18)

For this scheme we are unable to prove an estimate of the form (17), as we
discuss below. However, from (15) we know that the error in the best approx-
imation of ϕ in VN,Γ depends only logarithically on k. Although we cannot
guarantee with the collocation scheme that this best approximation will be
attained, there exists some hope that a similar estimate might hold when PNG

is replaced by PNC .

In order to focus on some of the difficulties involved in the implementation
of (18) we consider from now on only the case ν = 0. Writing ϕN as a linear
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combination of the basis functions of VN,0, we have

ϕN (s) :=
MN
∑

j=1

cjρj (s) , (19)

where ρj is the jth basis function and MN is the dimension of VN,0. For p =
1, . . . , n, where n is the number of sides of the polygon, we define n±

p to be
the number of elements of Γ±

p , so

n+
p := N + N̂Lp,λ,qp

, n−
p := N + N̂Lp,λ,qp+1 ,

and we denote the elements of Γ±
p by s±p,l, for l = 1, . . . , n±

p . Denoting further

the total number of elements supported on Γp by p̂ :=
∑p−1

i=1 n+
p + n−

p , we then
have for p = 1, . . . , n,

ρp̂+j(s) :=











eik(s−x+
p,j

)χ[s+
p,j−1,s+

p,j
)(s), j = 1, . . . , n+

p ,

e−ik(s−x−

p,j
)χ[s−

p,j−1,s−
p,j

)(s), j = n+
p + 1, . . . , n+

p + n−
p ,

(20)

where χ[y1,y2) denotes the characteristic function of the interval [y1, y2), and

x±
p,j =

s±p,j + s±p,j−1

2
, j = 1, . . . , n±

p , (21)

are the collocation points. Substituting (19) into (18) then leads to a linear
system of the form (where MN :=

∑n
p=1 n+

p + n−
p )

MN
∑

j=1

cj

[

ρj(x
±
p,m)+Kρj(x

±
p,m)

]

=F (x±
p,m), for p = 1, . . . , n, m = 1, . . . , n±

p . (22)

Since we have two overlapping meshes, an immediate difficulty presents itself.
If x+

p,j = x−
p,m for any p = 1, . . . , n, j,m = 1, . . . , n±

p then the system (22) will
be singular, and (18) will have no solution. Moreover, if |x+

j −x−
m| < ǫ, for any

j, m, where ǫ is sufficiently small, then the system will be ill conditioned. To
avoid this scenario, one approach would be to do away with the overlapping
meshes. For example, if we took A = Lj/2 in the definition of the mesh,
putting a mesh on [0, Lj/2] and a symmetric mesh on [Lj/2, Lj] on each side
of the polygon, with two basis functions eiks and e−iks on each mesh interval,
then we could force |x+

j − x−
m| > ǫ for any ǫ < min |yj+1 − yj| through an

appropriate choice of two collocation points on each interval. However, this
approach is unsuitable for two reasons

(1) On the very short intervals near the corners of the polygon, eiks and e−iks
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will almost match, leading to ill-conditioned systems (see also [9] where
a related problem was solved using a mesh of this type).

(2) This approach leads to a much larger number of degrees of freedom than
is necessary, with v− being approximated by far more basis functions than
necessary on Γj near Pj, and v+ being approximated by far more basis
functions than necessary on Γj near Pj+1.

Instead we use the mesh described above, as for the Galerkin method of [8]. In
general, it is hard to say much about the spacing of the collocation points, and
hence about the conditioning of the linear system (22) for a general polygon.
However, considering for simplicity the side Γ1 we remark that the collocation
points x+

1,j will be very dense on [0, λ], and sparse on (λ, L1], whilst the collo-
cation points x−

1,j will be very dense on [L1 − λ, L1], and sparse on [0, L1 − λ).
So, provided there are no collocation points x−

1,j in [0, λ] or x+
1,j in [L1 −λ, L1],

then there is a better chance for the system to be well conditioned. Consid-
ering the points of x+

1,j, we require s+
1,n+

p −1
< L1 − 2λ, and recalling (13) this

will be true provided

N̂L1,λ,q0 <
− log(L1/λ)

log(1 − 2λ/L1)
.

Supposing that L1 is k wavelengths long, i.e. L1 = kλ, we would require
N̂L1,λ,q0 < − log k/ log(1 − 2/k), and recalling (14) this holds if

N < q0k/2. (23)

Since the estimate (15) suggests that N need only grow logarithmically with
respect to k as k → ∞ in order to maintain accuracy, this is not a severe
restriction. However, for fixed k (23) suggests that we cannot take N → ∞
without encountering severe conditioning problems. This makes the derivation
of a conventional asymptotic error estimate rather difficult (see e.g. [4]). Col-
location schemes have though been applied very successfully to (1)–(3) in the
past, although not particularly with regard to the case that k is large. But
the success of these schemes (see e.g. [10,7,12] or [5, Chapter 8]) suggests that
provided the collocation points are sufficiently separated, the scheme should
converge in the same manner as the Galerkin scheme. Thus we rely in our im-
plementation on an examination of the mesh to ensure that the conditioning is
not too bad, and we run numerical examples in §4 to demonstrate convergence
to the same solution as the Galerkin scheme.
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3 Implementation

The Galerkin approximation (16) leads to a linear system of the form

NG
∑

j=1

cj [(ρj, ρm) + (Kρj, ρm)] = (f, ρm) , for m = 1, 2, . . . , NG.

Recalling (9), (10), this leaves many double integrals of the form

(Kρj, ρm) =
∫

suppρm

∫

suppρj

(

∂Φ

∂n
+ iηΦ

)

ρj (s) ρm (t) ds dt, (24)

to evaluate (see [8] and also [18] for details). This is a double integral over
the support of each of the basis functions of an oscillatory function, since the
term (∂Φ/∂n + iηΦ) is oscillatory as are the basis functions ρj and ρm. Using
the Riemann-Lebesgue Lemma, and as described in [16], in principal at least
an integral should become easier to evaluate as it becomes more oscillatory,
as due to cancellation of oscillating terms the exact value will tend to zero
more quickly as the oscillations increase. However, using this information to
construct an accurate numerical scheme for highly oscillatory integrals of the
form (24) is a difficult task, and most schemes presented recently in the litera-
ture for the evaluation of highly oscillatory integrals focus on one-dimensional
integrals.

However, for the linear system (22) the single integrals

Kρj(sm) = 2

yj+1
∫

yj

K(sm, t)e±ik(t−sj) dt, (25)

are a little easier to evaluate, where here sm, m = 1, . . . ,MN represent the
collocation points and [yj, yj+1] the support of ρj.

If the collocation point lies on the same side as the support of the basis function
then

K (sm, t) = −η

4
H

(1)
0 (k |sm − t|) , (26)

and using the identity [20, equation (12.31)]

H
(1)
0 (s) = −2i

π

∞
∫

0

e(i−t)s

t
1
2 (t − 2i)

1
2

dt, s > 0, (27)
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we can write (25) as

iη

2πeiksj

∞
∫

0

I(r)

r
1
2 (r − 2i)

1
2

dr, (28)

where

I(r) :=

yj+1
∫

yj

e(i−r)k|sm−t|+σj ikt dt, (29)

with σj = ±1. It is shown in [3] that

I(r) =



























































ek(r−i)sm

(

e
−kyj(r−i(1+σj))−e

−kyj+1(r−i(1+σj))
)

k(r−i(1+σj))
, sm < yj,

e−k(r−i)sm

(

−e
kyj(r+i(σj−1))+e

kyj+1(r+i(σj−1))
)

k(r+i(σj−1))
, sm > yj+1,

ekismσj−e
rk(yj−sm)+ik(sm+yj(σj−1))

ik((σj−1))

+ eiksmσj−e
rk(sm−yj+1)+ik(yj+1(1+σj)−sm)

ik(r−(1+σj))
, yj < sm < yj+1,

and then to evaluate (29) we make the substitution r = s2/ (1 − s2), to reduce
the interval of integration to [0, 1] and eliminate the singularity at r = 0,
allowing us to use standard Gaussian quadrature, as the remaining integral is
not oscillatory.

The second and more difficult case we need to consider is that where the basis
function is supported on a different side from the collocation point. In this
case we must evaluate integrals of the form

J :=

b
∫

a

[

H1
0 (k

√
s2 + c2) +

isH1
1 (k

√
s2 + c2)√

s2 + c2

]

e±iks ds,

where a, b, c ∈ R. Defining

G(s) :=

[

H1
0 (k

√
s2 + c2) +

isH1
1 (k

√
s2 + c2)√

s2 + c2

]

e−ik
√

s2+c2 ,

it follows from standard properties of Hankel functions (see e.g. [2]) that G(s)

is slowly oscillating compared to eik(
√

s2+c2±s). We thus consider the evaluation
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of

J+ :=

b
∫

a

G(s)eik(s+
√

s2+c2) ds,

with the method for the evaluation of J− :=
∫ b
a G(s)eik(−s+

√
s2+c2) ds following

analogously. Making the substitution t = s +
√

s2 + c2 we have

J+ =

b+
√

b2+c2
∫

a+
√

a2+c2

G

(

t2 − c2

2t

) √
t2 + c2

2t2
eikt dt, (30)

and methods for evaluating this type of integral are well established. In par-
ticular, Iserles shows in [16] that using Filon quadrature to evaluate (30) gives
an error of the same order as the underlying quadrature scheme divided by k2

- the error decreases as k → ∞.

We remark that the evaluation of
∫ L
Lns

K (sm, t) ∂ui

∂n
(t) dt on the right hand

side of (22) is carried out by a combination of the above two procedures.

4 Numerical results

For the Galerkin method described in [8] we have the error estimate (17). Al-
though no such estimate has been proved for the collocation scheme described
here, we hope to demonstrate via numerical examples that a similar result
might be applicable.

As a numerical example we consider the problem of scattering by a square of
side length 2π, with the angle of incidence π/4 as measured anticlockwise from
the downward vertical. In calculating the errors we need an “exact” solution,
and this is computed using the Galerkin scheme (for which we have proved
convergence) using a large number of degrees of freedom. We remark that our
test problem is the same as that considered in [8].

Table 1 demonstrates the results obtained using the collocation method for
increasing values of k and N . For each k, we show the N values, the total
number of degrees of freedom MN , the relative error ‖ϕ − ϕNC‖2 / ‖ϕ‖2 and
the estimated order of convergence

EOC := − 1

M

M
∑

j=1

log2

‖ϕ − ϕ2jNC‖2

‖ϕ − ϕ2j−1NC‖2

≥ − log2 C

M
+ 1.
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k N MN ‖ϕ − ϕNC‖2 / ‖ϕ‖2 EOC

10 4 48 4.7335 × 10−1 0.8

8 96 2.6980 × 10−1 1.0

16 192 1.2670 × 10−1 0.9

32 376 6.8440 × 10−2 1.0

64 752 3.3034 × 10−2

20 4 48 7.1085 × 10−1 1.2

8 104 3.0762 × 10−1 1.0

16 200 1.7872 × 10−1 1.2

32 392 5.5728 × 10−2 1.0

64 792 4.1295 × 10−2

40 4 56 5.4597 × 10−1 0.7

8 104 3.4089 × 10−1 0.3

16 208 3.6095 × 10−1 0.3

32 416 2.8317 × 10−1 1.0

64 824 3.7158 × 10−2

80 4 56 4.6096 × 10−1 1.0

8 112 2.3333 × 10−1 0.8

16 216 1.5975 × 10−1 0.6

32 432 1.4203 × 10−1 0.9

64 864 4.4374 × 10−2

160 4 56 4.4455 × 10−1 −0.1

8 112 4.6445 × 10−1 0.5

16 224 2.3456 × 10−1 0.7

32 456 9.3327 × 10−2 0.8

64 904 4.8153 × 10−2

Table 1
Relative L2 errors, k = 10, 20, 40, 80, 160. N = 2, 4, 8, 16, 32, 64

The results appear to suggest that for each value of k the solution is converging
to the same solution as that achieved by the Galerkin scheme, for which we
have proved convergence to the true solution of the integral equation, and
at roughly the same rate (i.e. EOC ≈ 1, as it would be if the estimate (17)
held for the collocation scheme as well). Moreover, the relative error remains
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roughly constant for fixed N as k increases, suggesting that, as for the Galerkin
scheme, the number of degrees of freedom required to achieve a prescribed level
of accuracy grows only logarithmically with respect to the frequency. Further
numerical results can be found in [3].

5 Conclusions

We have proposed and implemented a new collocation method for solving
problems of high frequency scattering by convex polygons. We use the same
approximation space as for the Galerkin method in [8], and our numerical
results appear to suggest that we achieve the same convergence rate, namely
that the number of degrees of freedom required to achieve a prescribed level of
accuracy grows only logarithmically with respect to the frequency. Moreover,
the collocation method exhibits a significant reduction in the computational
time compared to the Galerkin scheme.
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