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Abstract

The Bi-CGSTAB nonsymmetric linear solver has the attractive conjugate gradient-like
properties of efficiency, low storage and no external parameters. However, unlike the
conjugate gradient method, it has no minimisation property.

This report is concerned with performance of Bi-CGSTAB on the linear systems
which arise during one particular (implicit) numerical solution method for advection-
diffusion problems.

A brief history of Bi-CGSTAB is given and relevant convergence theory is reviewed.
In numerical experiments, Bi-CGSTAB is found to be as effective as the popular general-
ized minimum residual method (GMRES) for a relatively mild test case with a moderate
convergence criterion, but in a harsher test, the robustness of Bi-CGSTAB is shown to
be suspect - rounding errors appear to corrupt the underlying recursion process and lead
to divergence.

Various methods are used to improve the robustness of Bi-CGSTAB. Restarting (i.e.
discarding the current Krylov subspace and using the latest iterate as a new initial
iterate) is found to be the most effective of these methods because it controls the build-
up of rounding errors in the recursion process. However, in the absence of an effectively
normalised restart criterion, it has the unattractive feature of requiring an external
parameter.
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1 Introduction

This report is concerned with the performance of the Bi-CGSTAB nonsymmetric solver
on the linear systems which arise during one particular numerical solution method for
advection-diffusion problems.

Many discretisation techniques for problems involving advection give rise to large,
sparse, symmetric, positive definite matrix systems. These are ideally suited to solution
by the conjugate gradient (CG) method which has the advantages that,

1. the only reference to the matrix in the system is a matrix-vector product,
2. the iterates are computed efficiently due to a three-term recurrence,
3. a bound on the error exists which guarantees monotonic convergence and,

4. unlike many other iterative methods (e.g. Chebychev acceleration [8]), no external
parameters are required.

Many of the discretisation methods for advection-diffusion problems that lead to
symmetric systems treat the advection explicitly, giving rise to either a stability restric-
tion or decreased temporal accuracy (see e.g. Leismann & Frind [13]). If the advection is
treated implicitly, there is no formal stability restriction and good temporal accuracy can
be obtained but, for a standard Bubnov-Galerkin finite element spatial discretisation,
the coefficient matrix in the linear system is nonsymmetric, i.e.

Au=f (AT £ A) where A € R™" is invertible and u, f € IR". (1)

Due to the nonsymmetry, CG cannot be used to solve (1). But, since most matrices
arising from standard spatial discretisation techniques are large and sparse, it is desirable
to use a linear solver with properties 1 and 2. This precludes the use of direct methods
based on Gaussian elimination except for cases where there is some special structure
present. Ideally, the solver should also possess properties 3 and 4. There are many
nonsymmetric solvers in the literature but, as yet, none satisfy all of these requirements.

CG may be used to solve (1) if the system is pre-multiplied by AT to form the normal
equations,

AT Au = ATF,

in which the coefficient matrix is symmetric and positive definite (SPD). There are cases
where this approach is optimal (e.g. when A is unitary) but, in general, the coefficient
matrix tends to be poorly conditioned and convergence is slow.

Most of the current popular iterative solvers are Krylov subspace methods. At the
i iteration, these attempt to find the solution to (1) in a space uy+ K; (where u, € IR”
is the initial iterate and K; is a Krylov subspace of dimension ¢) by imposing the Petrov-
Galerkin condition,

f—Aui L /:Z',

where £; is another space of dimension 2. The class of Krylov subspace methods include
CG, the generalized minimal residual (GMRES, Saad and Schultz [19]), quasi-minimal
residual (QMR, Freund & Nachtigal [7]) and Bi-CGSTAB (van der Vorst [23]) methods.

There have been many comparative studies on Krylov subspace methods. In Nachti-
gal et al[14], each of a selection of these methods is shown to have the best performance
on some carefully constructed examples, and the worst on others. More empirically



based studies, where various methods are compared in practical situations (e.g. plasma
turbulence modelling [1], groundwater flow [17], semiconductor device modelling [18]),
have also shown that the relative performance of these methods depends on the situation.

Since so many comparisons of the different methods exist then, apart from some
brief results for GMRES, Bi-CGSTAB is investigated in isolation in this work and the
reader is left to use the available literature (e.g. the references cited in the previous
paragraph) for general comparison purposes.

This report contains numerical results on the behaviour of Bi-CGSTAB when applied
to the system arising from the discretisation of an advection-diffusion equation by the
implicit Taylor-Galerkin method. This approach is used in [15] for transport problems
arising in hydrology.

The next section contains a brief history of the development of Bi-CGSTAB, a review
of some theoretical convergence results for Krylov subspace methods and a statement of
the Bi-CGSTAB algorithm. Section 3 describes the nonsymmetric system used to test
the solver in this work. Section 4 contains results on the performance of Bi-CGSTAB
from numerical experiments under both moderate and harsh convergence criteria - the
latter results indicate that rounding errors can lead to divergence. Some techniques for
improving convergence behaviour are reviewed in Section 5 and a selection of these are
applied to the harsh convergence criterion tests to overcome the divergence problems
and improve the robustness of the Bi-CGSTAB solver.



2 Bi-CGSTAB

Bi-CGSTARB is an iterative method for approximating the solution to a linear system
in which the matrix is nonsymmetric. It is a bi-orthogonalisation Krylov subspace
method, i.e. given an initial iterate uy € R", at the %" iteration the method looks for
an approximate solution u; of (1) from a space,

Ug —|— Span{ro, Aro, A2I'0, ey Ai_lro},
(where rg = f — Aug) by imposing the orthogonalisation,
r; L {ro, (AT)I'O, (AT)QI'O, e, (AT)i_lro}.

In this section, the origin of Bi-CGSTAB is described. This is followed by an overview
of convergence results for Krylov subspace methods, and a description of the particular

form of the Bi-CGSTAB algorithm used.

2.1 Origin
In the CG method for SPD matrices, the residuals are mutually orthogonal, i.e.

(I'Z',I']‘) =0 (Z%])v
and can be shown to satisty the expression,
r;, = ¢i(A)r07

where ;(-) is a polynomial of degree < ¢ (and ;(0) = 1). A three-term recurrence
relationship exists between these residuals, and it is the exploitation of this property
that makes the algorithm economical in terms of both computing time and storage. This
three-term recurrence relation arises from the close relationship of the algorithm with
the symmetric Lanczos tridiagonalisation process (see e.g. Golub & Van Loan [8] for a
description of this relationship).

When A is nonsymmetric, it is not possible to construct a three-term recurrence
relationship of the type used in CG for the residuals. In this case, a possible approach
is to base the solver on the nonsymmetric Lanczos tridiagonalisation process - this is
the origin of the earliest predecessor of Bi-CGSTAB, the bi-conjugate gradient method
(Bi-CQ) [5, 12].

In Bi-CG, the approximations are constructed in such a way that the residual vector,
r;, is orthogonal to a set of pseudo-residual vectors {f'j}(j:17...7i_1) and, vice versa, r; L
{rj}(j:17...7i_1). This is accomplished by two three-term recurrence relationships for the
rows r; and 1;. The Bi-CG residual vectors are given by,

ri=p(Are , = pi(A)io,

where ¢;(+) is a polynomial of degree <.

In the case of convergence, both these vectors tend towards zero but only the con-
vergence of r; is exploited, t; only being required for the calculation of iteration param-
eters. The iteration parameters in Bi-CG are generated by inner products such as the
bi-orthogonality condition,

(ri,8)) = (pi(A)ro, 0 (AT)E0) =0 (i # j). (2)

3



This inner product can be written as,

(ri,85) = (p;(A)pi(A)ro, 7o) =0 (i # j)- (3)

Bi-CG was superseded by a faster converging variant - the conjugate gradient-squared
method (CG-S) of Sonneveld [21]. In CG-S, all the convergence effort is directed to r; by
constructing the iteration parameters using the bi-orthogonality condition in the form
(3). In this way, the t; do not need to be formed and there is no requirement for AZ.

The CG-S residual vectors are given by,

r; = 9922»(14)1'07

so, if p;(A) is viewed as a Bi-CG contraction operator (in the case of convergence), then
the CG-S contraction operator, p?(A), is twice as effective. However, situations arise
in the iteration process where ¢;(A) is not a contraction operator and spikes occur in
the convergence history. In practice CG-5 is found to have a rather erratic convergence
behaviour, particularly when the starting iterate is close to the solution (as is the case in
many transient and non-linear problems). This tends not to slow the overall convergence
rate of the method but, in finite precision, it can allow rounding errors to cause a
breakdown in the method.

Bi-CGSTAB is a variant of CG-S which has a more smoothly varying convergence
history. This method comes from a generalisation of the Bi-CG and CG-S methods; the
orthogonality conditions (2) and (3) are imposed in those methods but other iteration
methods can be generated by choosing,

r; L {@j(AT)f.O}(]‘:L...,i—l)

where @;(-) is another polynomial of degree < 7, (in Bi-CG, ¢;(:) = ¢;(+) ).

There is a degree of freedom in which to choose the polynomial ¢;(-) while using
inner products in the form (3) but having a more smoothly varying convergence history.
A constraint on the choice of this polynomial is that it should allow the use of recursion
relationships in the resulting algorithms to keep the computational work and storage
requirements small at each iteration.

In Bi-CGSTAB, ¢,(+) is of the form,
Gi(A) = (1 —wi A)(1 —weA) ... (1 —w; A), (4)

where w; (j = 1,...,1) are constants determined by a local steepest descent step.

2.2 Convergence Theory

In exact arithmetic, Krylov subspace methods have a finite termination property!, but
this is of little practical use.

For the case (K; = £; = span{rg, Arg, A’rg,..., A"lrg}), if A is SPD, the resulting
Krylov subspace method (CG) possesses the optimality property,

— - — 1 -1 —
= willy = min A7~ wlls (5)

ITf a solution exists, the process finds this in at most n iterations.



where u is the exact solution of the linear system, u; is the ¢ iterate produced by the
conjugate gradient method and || - || 4 is the A-norm defined by,

|lwlla = Vwl Aw.

The class of Krylov subspace iteration methods to which GMRES belongs (i.e. K;
as in CG and £; = AK;) possesses the optimality property,

Il = min_If — Aw].
The existence of such a property guarantees that the residual is a monotonic function
of the iteration number.

Unfortunately, the main theorem from Faber & Manteuffel [4] states that CG-like
methods with (i) a minimisation property and (ii) cheap short-term recurrence relation-
ships exist only for special matrices. In general, CG-like methods possess either (i) or
(ii) but not both, e.g. GMRES has (i) but can be expensive to implement (the work at
each iteration grows linearly) while Bi-CG has (ii) but has no minimisation property.

An apparent exception 1s the quasi-minimal residual method which has three-term
recurrence relationships and also minimises the residual in the norm, | D} W2 1|2, at
the ' iteration (where D and W are matrices associated with the underlying nonsym-
metric Lanczos process - see [6] for more detail). However, as the name suggests, QMR
is not a true minimisation process; the residual is minimised in a norm that changes with
each iteration. Because of this, QMR falls out of the scope of the Faber & Manteuffel
theorem.

Since it is based on three-term recurrence relationships and possesses no quasi-
minimisation property, no convergence bounds exist for Bi-CGSTAB. Current knowledge
of the practical behaviour of the method falls into two main categories:

e Investigations on the effects of the presence of extreme (large, small and negative)
eigenvalues in the eigenspectrum of the coefficient matrix (e.g. for a comparison

of this type with Bi-CG and CG-S, see Campos,filho & Rollet [2]). These studies

tend to use matrices constructed to generate a particular eigenspectrum.

e Comparisons with other solvers on matrices arising from the solution of practical
problems (e.g. Peters [17]).

The work in this report uses a coefficient matrix whose properties are controlled by
the physical values associated with the problem being solved and the size of the temporal
and spatial discretisation used in the numerical approximation of the underlying differ-
ential equation, and examines the behaviour of the Bi-CGSTAB method in isolation as
the parameters are varied.

2.3 Basic Preconditioned Bi-CGSTAB Algorithm

There are many possible forms of the Bi-CGSTAB algorithm which are equivalent in
exact arithmetic but which show different behaviour in finite precision. For this reason,
the form of the Bi-CGSTAB algorithm used in this work is given in this section.

The following algorithm is similar to the one given by van der Vorst [23], but in-
corporates some of the modifications suggested in that original paper. This algorithm



searches iteratively for a solution to (1) where the matrix is preconditioned by K.

u is an initial iterate; rg = f — Au;

po=a=w=1; p; = (ro,ro);

v=p=0;

dot =124z
B = (pi/ pi-1)(e/w); (6)
P=Ti_1+B(p—wv); (7)
Solve y from Ky = p;

v = Ay;
a = pi(ro, v); (8)
S =T,_1 — Qv; (9)

Solve z from Kz = s;

t = Az;
W= (tvs)/(tvt);
piy1 = —w(ro, t); (10)

u=1u++ oy + wz;
if u is accurate enough then quit;
r =8 — wzt,

end do



3 Nonsymmetric System Under Consideration

The nonsymmetric system in this work arises from an implicit discretisation of the
equation for contaminant transport in porous medium, a full description of the origin
of this system being given in [15]. In this section a brief summary of the relevant parts
of that work is presented; this includes a description of the partial differential equation
being approximated, the discretisation used and a simple test case arising from the
solution of a 1-D problem.

3.1 Governing Equation for Contaminant Transport in
Porous Media

From [15], the mass balance equation for a contaminant in a saturated porous medium

18,

p6% 1 (pa).Ve = V. {sDV(pe)} (11)

where p = p(c) is fluid density , ¢ is the porosity, ¢ is the (dimensionless) contaminant
concentration, q is the Darcy velocity and D is the dispersion tensor.

In this work, p, ¢, D and q are taken to be constant. With these simplifications (11)
becomes the constant coefficient advection-diffusion equation,

gi +v.Ve=V. (QVC) , (12)

where v = 3 is the average fluid velocity.

3.2 Discretisation of the Governing Equation

The advection-diffusion equation representing the contaminant mass balance is discre-
tised by an implicit Taylor-Galerkin method - using (12) to replace the temporal deriva-
tives in an approximate Taylor series expansion, and then performing a spatial discreti-
sation by the standard Galerkin finite element method. This gives the same result as
the Crank-Nicolson finite element method [17].

The fully discretised form of the contaminant mass balance equation is,

1 1 1 1
A+ (B f+Af:{A—B }f—F !
{At 5 +C>}C AT BFO)p e - (13)
where
A={Ap}ri=1..n
B = {BU}LJ:L...,n c' = {CS}J:L...,n
C=A{Cr}rs=1,.n F={Fr}i=1. n,
and

Ay = S A, =% /Q NN
By = S B, = Z/Qe VN..DV N, dQ*

7
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where the superscript, e, denotes an element value and Z denotes summation over all
the elements.

3.3 General Properties of the Coefficient Matrix

The coefficient matrix in (13) is a combination of the finite element mass matrix A,
stiffness matrix B, and advection matrix C'. The mass matrix is SPD. After applying
Dirichlet boundary conditions, the stiffness matrix is SPD if D is SPD (Davies [3], p212).
The advection matrix is non-symmetric and indefinite.

The proportion of each of these matrices (and hence the properties of the full ma-
trix) depends on the relative sizes of the finite elements, A, D and v. There are two
important dimensionless parameters which characterise advection-diffusion flows : the
Courant number (v) which gives an indication of the relative importance of advection
and inertia (i.e. the proportion of the advection matrix to the mass matrix), and the
mesh Peclet number (Pe) which gives the relative importance of advection and diffusion
(i.e. the proportion of the advection matrix to the stiffness matrix).

3.4 Test Problem : Transport of Tracer in a Column

This problem involves the 1-D transport of a tracer in a vertical column through which
there is a constant fluid flow rate.

The physical region is a rectangle which is 2000m high (and 10m wide), details of the
boundary conditions for which can be found in [15]. The average fluid velocity vector
and dispersion tensor are,

- 0 o o )
V‘[—umm5]m“ ’ D_[o umm5]m/&

Initially, the concentration of the tracer is zero everywhere inside the region. The
tracer front moves down the column under the action of gravity and this front disperses
as 1t moves.

The Courant and mesh Peclet numbers for the problem are,

At

y:@xlmwzg

Pe=0.2Az,

where At is the time step and Az is the vertical mesh size. Two different grids of
uniform bilinear rectangular elements are used to give results at different mesh Peclet
numbers. The first grid has 401 nodes in the z-direction (and 2 nodes in the x-direction)
which corresponds to a mesh Peclet number of Pe = 1, and the second grid has 81 nodes
in the z-direction (and 2 nodes in the z-direction) which corresponds to a mesh Peclet
number of Pe = 5. The problems on these grids gives rise to matrices of dimension 802
and 162 respectively.



4 Performance of Bi-CGSTAB

In this section, the performance of Bi-CGSTAB on the linear systems arising from the
test case in Section 3 is examined. As with CG, preconditioning is an important aspect of
the behaviour of this method. However, this is not considered here - no preconditioning
(i.e. K = I) is used in the moderate convergence tests (to allow a comparison with
GMRES) and diagonal preconditioning (i.e. K = diag(A)) is used the harsh convergence
tests.

All the numerical experiments are carried out in double precision on a Sun SPARC-
station 14+ workstation. The round-off unit, ¢, is used intermittently in these experi-
ments. It is defined as the largest number which satisfies,

fl(l+¢)=1. (14)

For the {77 compiler on the machine used, ¢ &~ 2.22045 x 10716,

The experiments fall into two groups, (i) moderate convergence tests in which the
linear solver is given a practical convergence tolerance for reasonable physical problems,
and (ii) harsh convergence tests where the solver is required to converge to the machine
accuracy on problems where the physical parameters are given more extreme values.
The first set of tests examine the practical efficiency of the solver while the second set
of tests examine its robustness.

4.1 Moderate Convergence Criterion

In this section, convergence is taken to be,

[rifla < (Lol)|[f]]2, (15)
where tol = 1075,

The test case is run from the initial condition to a fixed time (¢ = 2.25 % 107 seconds)
with different time steps used to give different Courant numbers. Table 1 shows the
performance of the algorithm under these conditions.

Average iterations Total CPU
Pe|l n | v per time step / sec
Bi-CGSTAB | GMRES || Bi-CGSTAB | GMRES
0.5 1.79 2.75 710.9 690.2
11802 1 2.30 4.37 367.2 364.7
5 12.98 23.71 124.5 162.0
0.5 2.54 4.33 29.7 29.1
5 1162 ] 1 3.91 6.13 16.1 15.9
5 19.44 27.33 6.1 7.6

Table 1: Moderate convergence criterion performance

The average number of iterations for convergence increases with the Courant number,
i.e. as the mass matrix becomes less dominant. However, due to the larger time-steps
used at the higher Courant number, the overall running time of the test case is reduced



- this is the reason for the use of an implicit discretisation (as opposed to an explicit
one which has a time step restriction).

The performance of GMRES (with the same preconditioner and stopping criterion)
on the same problem is also shown in Table 1. Bi-CGSTAB requires approximately half
as many iterations per time step as GMRES, but each Bi-CGSTAB iteration contains
two matrix-vector products compared to the one required by GMRES, hence the CPU
times of the two methods are similar.

Bi-CGSTAB can be seen to become more efficient as the number of iterations required
for convergence increases (since the work per iteration grows linearly for GMRES).
However, Bi-CGSTAB does not have the stable, monotonic convergence properties of
GMRES (or the CG solver that would be used in the symmetric systems resulting from
an explicit discretisation). For this reason, there is a need to examine the performance

of Bi-CGSTAB under harsher conditions.

4.2 Harsh Convergence Criterion

In this section, an extreme tolerance is requested in (15), i.e. tol = € (the round-off
unit), and larger Courant numbers are used (increasing the nonsymmetry).

Due to the possibility of non-convergence in the linear solver, these tests are only
run for a single time step. Also, to reduce the effect of initial stiffness in the test case,
the tests are started from time ¢t = 7.5 x 10° seconds (the initial profile being generated
by an analytic solution).

Pe | v | (Itllz/Ifl2)min | Iteration
0.5 < € 8
1 4.86 x 10716 12
2 4.91 x 10716 20

1 ) 5.32 x 10714 44
10 3.34 x 10713 56
20 1.89 x 10710 70
40 4.93 x 1078 7
0.5 6.90 x 10~ 8
1 1.16 x 1071° 13
2 5.47 x 10716 20

5 5 1.67 x 10712 35
10 2.60 x 1078 41
20 4.70 x 1077 45
40 9.59 x 10 49

Table 2: Harsh convergence criterion performance of Bi-CGSTAB

Table 2 shows the minimum residual which occurs during the convergence history,
and the corresponding iteration number. Convergence is only achieved in one of the cases
shown. In half the cases the minimum residual is not within three orders of magnitude
of convergence.
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Figures 1 an

d 2 are the convergence histories for two of the cases in Table 2, the

horizontal line near —15.5 is the convergence target. In both figures, convergence is
steady and reasonably fast in the early stages and the residual norm decreases almost

monotonically. But a worrying feature is that the good convergence behaviour stops at

some stage and

the residual norm diverges (i.e. shows a general trend of increasing) -

this is representative of the behaviour in most of the harsh convergence tests.

5
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= 0 100 150 300
~ — .
= s
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Q —

-10—

15
Figure 1: Convergence history for v =1, Pe =1

5_
=“'0_||||||||||||||VA1JV||“||||||||||||||
— 0 50 100 150 200 250 300
~ _ .

—= Iterations
= 5
5 4
o i
10—
15—

It is possible

Figure 2: Convergence history for v = 40, Pe =5

that the divergence is caused by the rounding errors which occur in finite

precision arithmetic. Table 3 shows the maximum relative error between the (recursion-
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based) Bi-CGSTAB residuals and the true residuals (calculated by rf™¢ = f — Au;),
and also the iteration when this maximum occurs. These errors are quite small, so a
total breakdown of the recursion process has not occurred; but the small discrepancy
between the true and recursion residuals may indicate that the recursion process has
been spoiled, leading to the convergence difficulties. Indeed, comparing Tables 2 and 3,
the onset of divergence often coincides with the largest relative error in the residual.

irue

Pe| v || max M Iteration
L v i P
0.5 8.22 x 1073 8
1 2.51 x 1073 12
2 2.54 x 1073 20
115 6.49 x 107° 36
10 5.24 x 107 56
20 1.27 x 1078 70
40 3.83 x 1078 375
0.5 7.04 x 107° 8
1 4.04 x 10~ 13
2 7.60 x 1074 20
515 1.94 x 1077 35
10 1.32 x 10710 39
20 3.29 x 10711 147
40 1.09 x 10710 168

Table 3: Relative error in residuals

It Bi-CGSTAB is to be considered as a viable alternative to other nonsymmetric
solvers for this problem, the convergence difficulties highlighted by the harsh convergence
criterion tests must be overcome so that the solver is robust as well as efficient.

12



5 Improving the Performance of Bi-CGSTAB

In this section, an attempt is made to prevent the divergent behaviour in the harsh con-
vergence criterion tests highlighted by Figures 1 and 2. Some techniques for improving
convergence behaviour currently in the literature are:

o look-ahead Lanczos - it is known that the Lanczos tridiagonalisation process
(which underpins three-term recurrence relationship methods) is unstable and
prone to breakdown due to a loss of orthogonality between the Lanczos vectors
[8]. To remedy this, the look-ahead Lanczos process of Parlett et al [16] allows
the use of block pivots in the iteration steps where the scalar pivots of the stan-
dard Lanczos process is expected to encounter difficulties. This method is used in
practical versions of QMR.

e variants of Bi-CGSTAB (e.g. Bi-CGSTAB2 [9], Bi-CGSTAB(/) [20] ) allow higher
order polynomials in the construction of ¢;(A) in (4) rather than the linear com-
ponents, (1 —w;A), used in the original van der Vorst version. These methods
attempt to avoid stagnation in the convergence history of Bi-CGSTAB which oc-
curs when the eigenvalues are almost purely imaginary.

e residual smoothing (Weiss & Schénauer [24]) - an auxiliary sequence of vectors,
u;, is generated from non-monotonic iterates, u;, by the recursion,

w = (I—n)uiy+nu (1=1,2,...),

where each 7; is chosen to minimise,
If — AL = )iy +nui} s,

over n € R. n; is given explicitly by,

sty (ri —si_1)

T T e —sag

where s;_; = f — Au,_;. The vectors in the auxiliary sequence, u;, are iterates
with monotone non-increasing residual.

e random initial iterate - the Mismatch Theorem [22] indicates that a breakdown
in the Lanczos process can be caused by “irregular” left- and right-eigenvector
distributions in ro. Joubert [11] suggests that this problem can be overcome by
using an appropriately scaled initial vector consisting of random entries. Since
good initial iterates are often available in time-dependent and non-linear problems,
it is more suitable in these cases to add a perturbation to the initial vector.

e restarting - if the recursion process is spoiled by rounding errors then, by restart-
ing the iteration with a new initial iterate (e.g. the latest one), the current nu-
merical Krylov subspace is discarded and with it all the rounding errors to date.
This method is advocated (although for other reasons) for Bi-CGSTAB by van der
Vorst [23].

As the convergence problems are not caused by breakdown or stagnation, the look-
ahead Lanczos and higher order polynomial methods are not investigated here.

13



5.1 Residual Smoothing

Rather than the residual smoothing algorithm already described, the following one (from
[25]), which is the same in exact arithmetic but has better numerical rounding properties,
is used here.

g =Tg; Up = Ug ; dr = du = 0;

For:=1,2,...
Generate o, w, t, v, y and z by a Bi-CGSTAB iteration ;
dr=dr+av+wt; du=du+ay+wz;

(rj_q,dr)
"= (dr,dr) ’
f‘i = f'i—l — 77dI' 3 fli = fli_l + ndu 3
du=(1—-7)du; dr = (1 —n)dr ;

Table 4 is the residual smoothed equivalent of Table 2, it shows the the minimum
residual and the iteration at which this was reached.

Pe | v | (It|lz/If]|2)min | Iteration
0.5 < € 8
1 4.07 x 10716 27
2 3.46 x 10716 48

1 5 1.01 x 10714 59
10 1.83 x 10713 68
20 1.17 x 10710 91
40 2.54 x 1078 131
0.5 4.72 x 10714 23
1 3.87 x 10716 130
2 2.86 x 10716 29

) ) 5.25 x 10713 44
10 2.09 x 107? 49
20 2.26 x 10~7 56
40 5.13 x 107° 61

Table 4: Harsh convergence performance with residual smoothing

Residual smoothing produces residuals that are lower than the Bi-CGSTARB residuals
from which they are generated. However, in general, the improvement is not enough to
warrant even the small amount of extra work involved.

Residual smoothing does not improve convergence significantly because the original
Bi-CGSTARB iterates on which the smoothing is based are still prone to the same prob-
lems as before, hence the residual smoothing stagnates (i.e. n = 0) when Bi-CGSTAB
stops converging.

An obvious advantage of the process is that the solution is monotone non-increasing,
however the effect is only marginally better than the cheaper method of storing the best
current iterate. In the cases presented, residual smoothing is of little use in improving
the performance under harsh convergence conditions.
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5.2 Random Initial Iterate

Since a good initial iterate, ug, is available, a vector of random entries (V) is added
to this to generate a new initial iterate y. The size of the random perturbation is
controlled by scaling and a factor, 7, i.e.

v
——— with V={V},oy ., and -1V, <1
V]2

Uy = Ug + 7|ugl|2

Table 5 shows the minimum residual achieved and the corresponding iteration num-
ber for the harsh convergence tests with different perturbation sizes.

Pe | v r=10"3 T =1072 r=10""

Ulello/ T ll2)min | Tene | Clella /1€ ll2)min | o | (lella/1€]l2)min | o
05| 280107 [20 || L10x 107" |20 | 1.31x 107 | 17

1 <e¢ 25 5.03 x 10716 | 27 1.90 x 1071 | 25
2 <e¢ 30 <¢ 42 7.88 x 107 | 41
115 <e¢ 89 112 x 107 | 79 6.72 x 107 | 69

10 1.96 x 107'% | 129 | 2.59 x 107 | 116 || 2.31 x 107 | 138
20 | 3.16 x 107%5 [ 400 | 5.23 x 107! | 414 | 353 x 10713 | 224
40 7.70 x 10715 1413 || 2.36 x 10715 [ 431 | 8.94 x 107! | 469
0.5 <e¢ 22 2.01 x 107 | 24 1.51 x 1071 | 25
1 2.18 x 10715 29 3.89 x 1074 | 25 1.46 x 1071 | 25
2 4.98 x 1071° 30 4.10 x 107 | 30 5.83 x 107 | 28
515 1.55 x 10714 72 1.15 x 10713 | 71 2.23 x 1071 | 107
10 718 x 107" [ 135 || 6.48 x 107" [ 157 | 1.02 x 107'* | 149
20 | 3.74 x 107 | 258 | 2.50 x 107'% | 243 | 877 x 1071 | 239
40 || 418 x 107% 1287 | 1.21 x 107" 292 | 6.96 x 10~'* | 302

Table 5: Harsh convergence performance with random initial iterate

Perturbing the initial vector improves the robustness of the Bi-CGSTAB iteration
in the sense that the minimum residual is closer to the harsh convergence criterion over
the range of the tests (c.f. Table 2).

Additionally, in many cases (particularly at Pe = 1) the convergence history does
not diverge after the minimum is reached, but stagnates instead.

The most effective perturbation is the smallest, 7 = 107 (i.e. 0.1 %) - increasing
the size of the perturbation appears to have a detrimental effect.

5.3 Restarting

In the original Bi-CGSTAB paper [23], van der Vorst recommends that practical imple-
mentations of the method should monitor sensitive values and, if any of these become

too small, the iteration should be stopped and Bi-CGSTAB should be restarted with
a new choice of initial iterate. The suggested sensitive values are the scalars p;1; and
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(ro, V) (see Section 2.3), which are highlighted because they may be close to zero without
convergence having taken place, and are used as denominators in the algorithm (so are
particularly sensitive to round-off error and may cause breakdown by division by zero).

Due to the cost of calculating the initial residual and initialising vectors, a restart
requires about half the computational effort of a Bi-CGSTAB iteration. Restarting is
often used in the literature but the criteria tend to be heuristic and of the form,

Restart if monitor < tolerance.

Often no guidance is given on the origin of the monitor or the sensitivity to the tolerance.

It the restart criterion is not severe enough, then restart is premature and good
convergence behaviour can be interrupted and spoiled. This is similar to the problem
which can arise in the practical implementation of GMRES (GMRES(k)) which, in order
to decrease the storage requirements and average work per iteration, restarts after every
k iterations. If the restart criterion is too lenient, rounding errors can build up and
cause the divergent behaviour shown in Figures 1 and 2. In this section, various restart
criteria are examined.

5.3.1 Fixed Period Restart

The first criterion investigated is one in which the process is restarted periodically after
a fixed number of iterations. This is similar to GMRES(k) but, where a restart is
performed to avoid impractical storage requirements and work per iteration in that
case, here it is performed at regular intervals to try to prevent the build-up of rounding
errors spoiling the recursion process.

Table 6 shows the minimum residual achieved and the corresponding iteration num-
ber for the harsh convergence tests with different fixed restart periods, k. The harsh
convergence criterion is met in all the tests.

Pe| v k=25 k=20 k=40
(/€T [ 1 | (Tl /€T Do | T | (Tl /1T D | T
0.5 < € 9 < € 8 < € 8
1 <€ 15 <€ 23 <€ 61
2 <€ 27 <€ 22 <€ 51
1 ) <€ 50 <€ 44 <€ 53
10 < € 94 < € 81 < € 78
20 < € 233 < € 153 < € 149
40 < € 268 < € 242 < € 193
0.5 < € 13 < € 36 < € 54
1 <€ 20 <€ 23 <€ 59
2 <€ 22 <€ 23 <€ 50
5 5 <€ 52 <€ 51 < € 64
10 < € 92 < € 67 < € 84
20 < € 122 <€ 102 < € 388
40 <€ 167 <€ 121 <€ 92

Table 6: Harsh convergence performance with fixed restart period
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Figures 3 and 4 correspond to Figures 1 and 2 for a restart of fixed period £ = 20.

O s e S s e O (L N S S B S
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1 lterations
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(@) _
o
15—
Figure 3: Fixed restart of period k=20 for v =1, Pe =1
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Figure 4: Fixed restart of period k = 20 for v =40, Pe =5

The value of the restart period k has a significant effect on the number of iterations
required to achieve convergence - practical implementations of a fixed restart period
should choose k& based on the expected susceptibility of the recursion process to corrup-
tion by rounding errors.

Generally, larger linear systems are more susceptible to rounding errors due to the
number of computational operations involved in each iteration. From Table 6, the opti-
mum restart period decreases as v is increased, indicating that the more nonsymmetric
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the matrix, the more sensitive the process is to rounding errors. Thus, the optimum
value of k for this problem is expected to decrease with n, v and Pe (the latter is
included because it also affects the amount of nonsymmetry in the matrix).

The requirement for the value k violates the desired property that the solver should
require no external parameters (see Section 1).

5.3.2 Restart monitors based on round-off unit definition

From the operation in the Bi-CGSTAB algorithm where p is used as a denominator (got
by combining (6) and (7)),

“(p—wv).

Pi-1 W

Pp=ri1+

and the definition of the round-off unit (14), rounding errors can be expected to occur
in this operation if,

es | PP —wv@} Ly (16)

Pi—1 @ ri—l(]) €

where v(3) is the 7 component of v. The expression is undefined when a term in the
residual vector is zero so these cases must be excluded. Hence a more suitable form

of (16) is

ri1(j) # 0 and elri(7)] > [8{p(j) —wv(H)}[ > — |rz () A<y <n), (17)

which is a possible restart criterion, requiring no external parameters other than the
easily available round-off unit. However, experimental investigations show that in all
the harsh convergence criterion tests, the monitor value is always well within the bounds
which indicate round-off and there is no interesting behaviour in the monitor near the
onset of convergence difficulties - hence (17) is of no use for this problem.

In the same way as round-off error in p;1; is tested for in (17), round-off can be
tested for in (ro,v) by combining (8) and (9) and using the definition of the round-off
unit to give the possible restart criterion,

Fa()# 0 and dra()] > Jov() > Tea()] (L <i<n) (19)

Again, experimental investigations show that this monitor is always well within the
bounds for all the tests, and there are no significant features in the monitor near the
onset of convergence difficulties, so this restart criterion is also of no use.

5.3.3 Restart monitors based on inner product denominators

Joubert [10] uses restart criteria based on the occurrence of inner products as denomi-
nators in Bi-CG and CG-S. The general form of these criteria are that if (a, Ab) is used
as a denominator then restart if,

|(a, Ab)|

— ' 7l L €).
fallaby; =/

In [10], the tolerance has the form, f(e) = 10%2, where a is an integer.
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Since the inner product (rg,t) is used in Bi-CGSTAB (10) for the calculation of p;yy
then a possible restart criterion is,

|(ro, t))|
[[roll=[[t]l2

A Joubert inner product test can also be used as a possible restart criterion for the
sensitive value (rg, v), i.e.

< (toll). (19)

|(I‘0, V) | <
froll vl = % .
By experiment, the monitors in (19) and (20) are found to become very small near
the on-set of divergence. This indicates that these monitors can be used to signal when
to restart in these problems.
Table 7 shows the harsh convergence performance with (19) and (20) used as restart

criteria and toll = tol2 = 1056%, convergence is achieved in all cases.

Pe | v | (Irll2/lIf]l2)min | Iteration
0.5 <€ g
1 <€ 24
2 <€ 24

1 ) <€ 45
10 <€ 79
20 <e 151
40 < 211
0.5 <€ 11
1 <€ 18
2 <€ 20

) ) <€ 46
10 <€ 74
20 <e 112
40 <e 147

Table 7: Performance with inner product criteria based restarts

Comparing the number of iterations required for convergence in Tables 6 and 7, the
restart strategy based on (19) and (20) is more effective over the range of cases than a
strategy based on any of the fixed restart periods. This is not surprising since the inner
product based restart is effectively an adaptive strategy - only restarting when it senses
the need for such action - while the fixed period strategy restarts regardless of whether
it is required or not.
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Figures 5 and 6 correspond to Figures 1 and 2 with the restarts based on (19)
and (20). In these convergence histories, () denotes restart due to (19) and O denotes

restart due to (20).

log ([| [k /[IF[k)

loge ([l /11 F[k)

0

-15_

10
lterations

Figure 5: Inner product based restart for v =1, Pe =1
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Figure 6: Inner product based restart for v = 40, Pe =5

As with the requirement for the fixed restart period, k£, in Section 5.3.1, the re-
quirement for the parameters toll and tol2 violates the desired property of no external

parameters



6 Concluding Remarks

The use of implicit discretisation methods is essential for the long term transient solution
of advection-diffusion equations. Due to the advection term, most implicit methods lead
to linear systems which are nonsymmetric. A possible solver for these systems is Bi-
CGSTAB. This solver has the attractive CG-like properties of efficiency, low storage and
no external parameters. However, unlike CG, it has no minimisation property.

When examined by numerical experiment, the Bi-CGSTAB solver is as efficient as
GMRES (which does possess a minimisation property) for the test case used in Sec-
tion 4.1. However, the harsh convergence tests in Section 4.2 indicate that the robust-
ness of Bi-CGSTAB is suspect under more extreme conditions. In these tests, rounding
errors appear to corrupt the underlying recursion process and lead to divergence.

Of the methods used in Section 5 to improve the robustness of Bi-CGSTAB for the
harsh convergence tests, neither residual smoothing nor random initial iterates attempt
to control rounding error - these methods have only limited success in improving the
convergence history.

The other method investigated for improving robustness is restarting. This method
discards the Krylov subspace (based on some pre-determined criterion) and starts the
iteration again from the latest iterate. At each restart, the rounding errors are removed
from the process so their build-up is controlled - this method overcomes the divergence
difficulties and the harsh convergence criterion is met in all the cases in Tables 6 and 7.

Various restart criteria are investigated in Section 5.3:

o Restarting at a fixed regular interval is effective but the rate of convergence is
affected by the restart period (which must be supplied as an external parameter).

e Surprisingly, restart criteria based on the round-off unit definition appear to be of
no use in detecting the on-set of convergence difficulties. This is unfortunate as
there is no requirement for external parameters in this approach.

e Monitoring sensitive values in the algorithm and restarting when these fall below
some prescribed tolerance, being an adaptive restarting strategy, leads to fast
convergence but, in the tests carried out, the tolerance appears to have no physical
meaning and so must be considered an external parameter.

Overall, restarting is an effective way of improving the robustness of the Bi-CGSTAB
method. However, the requirement for an external parameter in the restart criterion
is an unattractive feature of the method - it may be possible to overcome this with a
better normalisation of the monitor value.
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