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Abstract

This paper presents a direct method to determine the uncertainty in
reservoir pressure, and other functions, using the time-dependent one
phase 2- and 3-dimensional reservoir flow equations. The uncertainty
in the solution is modelled as a probability distribution function. This
is derived from probability distribution functions for input parameters
such as permeability.

The method involves a perturbation expansion about a mean of the
parameters. Coupled equations for second order approximations to the
mean at each point and field covariance of the solution, are developed
and solved numerically. This method involves only one (albeit com-
plicated) solution of the equations, and contrasts with the more usual
Monte-Carlo approach, where many such solutions are required.

The procedure is a development of earlier steady-state
two-dimensional analyses and a transient mass-balance analysis using
uncertain parameters.

These methods can be used to find the risked value of a field for a
given development scenario.

1 Introduction

Difficulty in the mathematical and numerical modeling of physical systems,
such as evaluation of the flow in underground oil reservoirs, may often arise
when a precise knowledge of data is not available. Specifically, data that is
crucial for describing the system, may only be known within certain limits of
accuracy, or it may only be possible to specify certain statistical properties of



the data. This may be due to inaccuracy in measuring equipment, or inacces-
sibility, and a high level of heterogeneity, in materials whose parameters are
involved in the model equations,

It is the effects of these latter sorts of uncertainty on the solutions of ana-
lytic and numerical systems which form the basis of this research project. The
usual approach to problems of this type is to use Monte-Carlo methods. How-
ever, the number of realisations that need to be generated may, in some cases,
be prohibitively large, and, for this reason, we have decided to restrict our
study to the development of more direct methods of assessing the uncertainty
in the solution.

We restrict our study to a fairly straightforward two-dimensional model
equation (with the implicit assumption that most results obtained may be
generalised to the three-dimensional case.) This is obtained by combining
D’arcy’s law for flow in a porous medium, [1], with the equation for single-
phase flow in a fluid with a constant compressibility,

ap_

7& v(kvp) = f(rvt)v (1)

where v is the compressibility, p the pressure, k the permeability, and f(r,?)
is some forcing function.

We are specifically considering the case where the uncertainties are in the
permeability, and make the assumption that its statistical behaviour may be
characterised by its mean value, (k), and the permeability autocorrelation
function (P.A.F.) defined as a function of two spatial positions, r1 and rg,

((A(r1) = ko(r1))(k(rz) — ko(r2)))

O'k(I'l)O'k(I'z)

p(r1,re) = ) (2)
and can be thought of as how strongly the statistical properties at points ry
and rg are related. For practical purposes, the distribution is assumed to be
of a lognormal form.

2 Hierarchical Equations

We begin by developing a set of hierarchical equations for a general admissible
realisation. By developing these systems of equations as far as possible, before
taking mean values on either side, we can obtain equations that allow us to
solve for the statistical properties of the numerical solution.

2.1 Standard Form

For a permeability distribution function that is symmetric about the mean
value, a simple linear perturbation about the mean can be considered. We



therefore treat the two-dimensional permeability field for a single realisation
as a perturbation about some pre-defined mean value field,

k= ko + aki. (3)
We assume that kg = (k) is a deterministic mean, knowledge of which is
available.
Equation (1) can then be written,
Ip
7@ - V((ko + Oékl)V(p)) = fO(rvt) + afl(rvt)v (4)

where p is the pressure solution for the specific realisation under consideration.
As in much work by Dagan, [2], and Dupuy and Schwydler, [3], we assume
the pressure solution can be expressed in a series form

N
p=>_ a"pm + Rny1, (5)

m=0
where Ry 44 is the residue due to truncating the series for N** order accuracy.
Substituting equation (5) into (4), gives

a N
’7@( Z " pr + Ry
m=0

N
— V((ko + ak)V (Z " pr + RN-|—1) = fo(r,t) + afi(r,t). (6)
m=0
If we define py to be the solution of the mean value problem, also known
as the deterministic problem,

apo

’Vﬁ - VkOVpo = f07 (7)

then, by equating successive powers of «, equation (6) can be split up into the
N + 1 set of hierarchical equations,

0
15— VkoVpo = o (8)
Op1
’Vﬁ — VkVp — Vi Vpy = fi, (9)
Opm
’YW - VkVp,, —VEVp,_1 =0, (10)



apN

’VW — VkoVpy — VE Vpn_y =0, (11)
0Nt G 4 Je =
8t — ( 0 + 1)VO(RN+1 -V 1VpN =0. (12)

This represents a set of coupled p.d.e.s for each admissible realisation. By
truncating this series at the N** term, we have imposed a level of accuracy
on the possible solutions. In a statistical sense, we are not able to solve the
N + 1" equation (12), and so these equations are of N order accuracy. It
may, of course, be possible to obtain bounds on the size of these residue terms
over all admissible realisations. This would effectively give a measure of the
accuracy of the hierarchical approximation.

2.2 Lognormal Distribution

It a Lognormal distribution function is assumed for the permeability, the ex-
pansion must be done about the geometric mean, [4]. This is equivalent to a
linear expansion about the log of the permeability.

In(k) =y = yo+ B,

where, yo = (y). So,

2,,2
b= ey°+ﬁyley°+ﬁ2y1ey°+---

= /ig—l_ﬂ/il—l_ﬂz/iQ—l_"':/ig—l_ZﬂmKTrm
m=1

where x, is the geometric mean.
Performing the same procedure, assuming the pressure has the form,

N
p= > B"Pm+ Syt

m=0

and substituting for pressure and permeability into equation (1), gives,

7@(2 B P 4 Sn1) = Vikg+ > B76km)V(D] B P + Sni1) = f(r,1).
m=0 m=1 0
(13)
Again, by equating powers of 3 we obtain the system of hierarchical equations,
0
7% — VigVpo = fo (14)
1
dIp1
’}/W — Vﬁ:ngl — VIQVpO =0 (15)
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ther — VkoVpy — V&, Vp — VEyVpy =0 (16)
I “
T o T VigVpy, — Z KiPm—i = 0 (17)
aPN -
— Vi, Vpy — Z/isz ;=0 (18)
ot P
aSN-l—l N+1

— VE,VSnp1 — Zﬂm )VSNt1— D Eipivyi—y =0 (19)

=1

ot

3 Statistical Properties of Analytical Equa-
tions

To progress further, we must consider the statistical properties of the solutions
to all of the above equations by taking mean values on either side.

3.1 Standard Form

For the purposes of this research, we restrict our consideration to the second
order approximations for symmetric, or standard-form, permeability distribu-
tion functions.

Taking mean values on either sides of equations (8) to (11), for N = 2, and
assuming ky is a perturbation about the absolute mean, so that (k;) = 0, we
obtain,

766210 — VkoVpo = fo, (20)
I{p1)
T~ VkeVipy) = (f1), (21)
Vagp;> — VkoV{p2) — V{k1Vp) = 0, (22)
and,
78<£3> — V(koV(Rs)) + V{akiV Rs) — V(k Vpy) = 0, (23)

As they stand, these equations are not solvable, even just up to second
order, due to the presence of the cross-correlation term, V (k1 Vp). For this to
be possible, a method to evaluate the correlation function, (k4 Vp,) is needed.

Consider multiplying k; by the grad of equation (9) to give an extra p.d.e.
The result of this is to give higher order cross-correlation terms, such as
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(k1 V*k1Vpg) to evaluate which would involve introducing subsequently higher
and higher order cross-correlation terms. This process, of course, is only feasi-
ble if a closure can be imposed on the system of equations, under consideration.
As they stand, this is not possible.

3.2 Lognormal Distribution

The same procedure on the set of equations for the lognormal permeability
distribution function, equations (14) to (16), gives the similar, but adapted
equations,

dIpo _
yﬁ — Vﬁ:ngo = fo, (24)
d(p1) _
Yo Ve, Vip) = (f1), (25)
’Va<6ptz> — Vi, V(p2) — V(k1Vp1) — V(k2)Vpo = 0. (26)

The difference here is the presence of the third term, V(k3)Vpy in equation
(26), but this term just links in the first equation in the series, with an extra
moment of the distribution, (kq) which is a known property of the distribution.

However, the basic problem is the same, that is the presence of (k{Vp,), for
which, a method for solving simultaneously must be obtained, as for example,

in [6], and [4].

3.3 Variance

A second order approximation to the covariance can be obtained in a similar

way to [5], by considering VW

two distinct points,

, the values of the perturbation, at

apl (1'2, t)

9 _—
7 5 (Pr(re, Opa(r2, 1)) :pl(rl,t)’ym+pl(r27t)7pl(r1)

5 (27)

and substituting for 788%1, etc. from (9),
0
Va(pl(rlv t)pl(r27 t))
- VZkO(I'Z)VZPI(rlvt)pl(rzat) - V2k1(1'2)p1(1'17t)vzp0(1'27t)
— Viko(r1)Vipi(ra, t)pi(ry,t) — Viki(ry)pi(re, 1) Vipo(ry, t) = 0.
(28)

Taking the mean value on either side of this equation results in an equation
for the behaviour of the covariance of the solution,



7;(<p1(r1,t)p1(r2,t)>)
— Vako(r2,1)Va(pi(r1,t)pi(re, 1)) — Valki(r2)pi(r1,1)) Vapo(ra, )
— Viko(r1)Vi{pi(re, t)pi(r1, 1)) — Vi(ki(r1)pi(ra, 1)) Vipo(rs, t) = 0.
(29)

If the covariance, at time t, between pressure values at two points ry, and ra
is denoted by C(ry,ra,1), then these equations are,

0

7@(0(1'171'27&)

— Viko(re,t)VoC(r,r2,t) — Va(ki(r2)pi(ri, 1)) Vapo(re, t)

— Viko(r1)ViC(ra,r1,t) — Vi(ki(r1)pi(re, 1)) Vipo(ri,t) = 0.

(30)

Evaluation of the terms in the expression is again rendered impossible, if
no method for solving the cross-correlation term is available.

So, we have found that developing a method to solve equations for the
lowest moments of the distribution function of the solution to equation (1), in
this case, second order accurate approximations to mean and variance, requires
some method of solving, or evaluating the cross-correlation terms (k;Vp,), for
values of spatial separation and time. Finding a solvable equation for these
terms has proved problematic, but it has been found that we are able to obtain
closure if we consider the discretised equations.

4 Discretisation

We now show that the problem of providing a solution for (k1 V1), or (k1 Vpy),
may be overcome by consideration of the discretised versions of these equations.

4.1 Standard Form

We consider a discretisation of the equations (7) to (9), with a simple explicit
time scheme, and a general (unspecified) spatial discretisation,

n+41 n
YPo ij — VPo 4 0 N
R kYR ) = (31)
n+41 n
TP1 i — VP1 g " . .
% = V(G Vapt ) = ValkiVaps ) = 1 i (32)



and
VP — s

At
where the (7,7) indices refer to spatial points (¢Ax, jAy) in cartesian co-
ordinates, and pl ,; refers to the numerical solution for p.(r,nAt), where r

is also in Cartesian co-ordinates.

- vh(k?‘vhpg ij) - vh(k}jvhp? ij) =0, (33)

J

Now let us denote a general value of the perturbation k; at a discrete point
(iAz, jAy) by kji, and consider the value at a second reference point, (i', j').
Multiplying this into equation (32), and taking the mean values throughout
the resultant, together with equations (31) and (33)), gives,

n+1

YPoij — VPo i . "
% - vh(k?jvhpo ij) = /s i (34)
’7<k}/]‘/pﬁ}> - 7<k21’j’p7f ij>
At
- <k3/j/vh(k?jvhp7f 2])> - <k}’j’vh(ki1jvhpg u)> = <k21’j'f1nij>7 (35)
Y(pst) — v (ps ;) . .
2 At 2L vh(k?jvh@z u>) - <vh(k}jvhp1 u)> =0. (36)

This is now a complete set of coupled (numerical) p.d.e.s that can be solved.
When these equations are being solved, simultaneously, the cross-correlation
function is found, from equation (35), and then substituted into equation
(36). In this form, it is a function of two (discretised) spatial points. The
discretised autocorrelation function of the permeability field occurs in the
(ki N i (kLN Lpy ;) terms. These are basically just linear combinations of the
autocorrelation parameters, with coefficients specifically dependent on the par-
ticular spatially-discretised scheme under consideration. The boundary condi-

tions have been incorporated into the right hand side terms of the equations.

4.2 Lognormal Form

Performing the expansion for a lognormal distribution function, about the
geometric mean, results in an extra term in the second order equation, as seen
in equation (12). In discretised form, the set of coupled numerical equations
becomes,
n+1 n
TPo ij — TPo 5 n n
S I ) = B (37)
’7<k}/j/p7ft]1‘> - 7<k3/jfp7f ij>
At
- <k}’j'vh(k?jvhp7f u)> - <ki1/j/vh(k3jvhpg u)> = <k3'j/f1nij>v (38)




n—|—1>

Y{pa %) — v(Ps i)

At

- vh(k?jvh@; u>) - <vh(k3jvhp7f u)> - vh<k?j>vhpg ii 0.
(39)

4.3 Variance Equations

The same discretisation performed on the covariance equations (30) (which
have the same form in the linear case and lognormal distributions) results in
the following equations,

Czn]-l—zlj 7L ] 15
At
— V}Lko V}L . ] 155 vh<k1p1>z '3 ZJVhPO i
— th, /thZ” vh<k1p1>”2 ]/vhpo i = 0. (40)

The quantity of particular interest is the variance of the pressure distribution,
an important characterisation of the complete distribution function. In discre-
tised form, the variance for time level nAt, at spatial position (¢Ax, jAy) is
the value of C'7.:. Unfortunately, in the process of solving for this value, the
correlation values for distinct points, C'f7;,;; must also be solved and stored for
each time-level. These can be considered as a bonus to the required informa-
tion, having an academic, rather than practical point of interest. Although, an
idea for the correlation length of the solution variable is now clearly available

through this technique.

4.4 Summary

The result of the manipulation of the hierarchical equations (8) to (12) and (14)

o (16), gives us a set of coupled numerical p.d.e.s for the first two moments
that characterise the probability distribution function of the pressure solution.
These are equations (34), (35), (36), and (40) for the standard form, and (37)
to (40) for the lognormal form. They can be solved at each successive time-
level to follow their progression in time. This results in an approximate idea
of the time development of the distribution function.

5 Application

We now apply this technique to a specific example of a discretisation.
Consider a simple five-point difference scheme, where the value of the per-

meability at points halfway between adjacent gridpoints (z,j5) and (¢ + 1,7)

or (1,7 £ 1) is always approximated by an average of the two values at the



grid-points. Equation (31) in this case becomes,

n+1

TPo i; — YPo ij
At
(K2py; + kD) (K_y; + &)
(kYn + &) (k2_y + k7))

YN Po ij+1 + AN Do ij—1

(k?+1j + k?—lj + Qk?j) + (k?jﬂ + kzoj—l + Qk?j)
2Az? 2Ay?

Poij = foij- (41)

The stability condition for this deterministic scheme is

AALk
vh?

6 Results

In this section we present some illustrative samples of the type of results that
we have obtained using this method to solve the full statistical problem.

In each case we consider a single Fourier mode as the initial condition,
with no flow conditions around the boundary, and zero forcing function. The
region under investigation is square with unit length. All lengths and times
are normalised for the purposes of this research.

Using a single Fourier mode as the initial condition means that in the case
of a homogeneous mean value for the permeability, the solution to the p.d.e.
under consideration, equation (1), may be expressed as the Fourier mode with
an exponentially decaying amplitude,

_a2 k)
pla,y,t) =e 7 7 cos(ma). (43)
It is fairly trivial to show by substitution that this is a solution to the model
equation, satisfying the zero boundary conditions. We choose this test function
as it 1s a straightforward solution whose deterministic behaviour is well-known.

The experiments performed have included using different values of (k), with
both constant, and spatially-varying function forms. We also tried different
sizes of variance, o, and different correlation lengths, A, and A,, for the P. A.

I'. Both the isotropic case, where A, = A,, and the anisotropic case, A, # A,

Y
were considered.

Typical results of evolution can be seen in Figures 6.1 to 6.3. In this case,
we have the case where the homogeneous mean value is 0.2, and the variance
0? = 0.05. Correlation lengths in both the z- and y- directions are the same,

equal to 1.0, the size of the region under investigation. In Figure 6.1, we show
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the initial condition for the deterministic solution, a one-dimensional Fourier
mode, given by equation (43), at ¢ =0,

plx,y) = cos(mwa). (44)
The numerical amplitude at time ¢ = 1.0 is 0.140 compared to the analytic
value of e=™ %02 = (.139.

In Figures 6.2(a), 6.2(b), 6.2(c), and 6.2(d) we show three dimensional
plots of the variances throughout the region. The initial value of the variance
is taken to be zero throughout the region (equivalent to a deterministic initial
condition), and the figures show how the variance function changes over time
intervals of 0.3, starting at ¢ = 0.1, and then at 0.4, 0.7, and 1.0 for respective
figures 8.5.1(b) to 8.5.1(e). Numerically, the covariances have maximum values
5.637 x 107% at ¢ = 0.1, 2.515 x 10™* at ¢ = 0.4, 2.381 x 10~* at ¢ = 0.7, and
1.629 x 107* at t = 1.0.

Figures 6.3(a), 6.3(b), 6.3(c), and 6.3(d) show the second order correction
to the mean value with respect to the deterministic solution, (p,), at time
intervals ¢ = 0.1, 0.4, 0.7, and 1.0 respectively. The values have the following
maxima, 4.640 x 107 for 6.3(a), 2.253 x 107 6.3(b), 4.010 x 1073 6.3(c), and
5.434 x 1072 for figure 6.3(d).

Figure 6.1

Figure 6.2(a) Figure 6.2(b)
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Figure 6.2(c) Figure 6.2(d)

Figure 6.3(a) Figure 6.3(b)

Figure 6.3(c) Figure 6.3(d)

The deterministic solution, shown only at one time value, in Figure 6.1,
behaves as expected, decaying exponentially, whilst retaining the basic shape
of the (one-dimensional) mode. The basic shape of the three-dimensional plot
of the variance, in Figures 6.2(a) to 6.2(d), remains the same throughout the
time region under investigation, with maxima at the two edges of the region
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given by z = 0.0, and x = 1.0. The maximum variance was seen to reach a
maximum at around ¢ = 0.5, thereafter gradually decreasing, with the maxi-
mum variance concentrating in the corners whilst it decays. The second order
correction to the mean, in Figures 6.3(a) to 6.3(d), begins by taking a similar
shape to the deterministic solution, on a much smaller scale, of course. This
value is much more subject to instabilities than the variance and deterministic
approximations, and we see large increases for large time values.

Compared to experiments done assuming a higher mean value, we naturally
see a correspondingly slower decay rate, for example, when (k) = 0.1, the
numerical decay rate is halved. The general shape assumed by the variance and
second order approximations after one time unit are the same. The numerical
value of the variance is, however, higher due to a greater relative spread in
admissible realisations. There is a lower numerical value for p, after the time
interval. This may be due to the fact that py is related to the decay of the
Fourier mode.

When we do experiments with a larger variance, ¢ = 0.1, compared to
Figures 6.2(a) to 6.3(d), as expected, we see both the variance and the cor-
rection term with larger numerical values, 6.517 x 10™* as a maximum for the
variance, and 2.173 x 1072 for the correction term, after a time interval of one
unit. The general shape assumed, though, is similar.

Some further experiments were performed assuming anisotropic correlation
lengths. In the case of strong correlation in the y-direction, and much less cor-
relation in the z-direction, we saw that the statistical properties throughout
the region are more homogeneous in themselves than in the case where the
strong correlation is in the z-direction, and there are much higher variance fig-
ures concentrated in the corners. This seems to be partly due to the numerical
process in solution of the stochastic p.d.e. which seems to favour correlated
properties in the y-direction. In the case where we considered small isotropic
correlation lengths in both directions we saw a similar concentration of vari-
ance in the corners, with numerical values of one order of magnitude lower,
which is the sort of behaviour we would expect if the statistical properties are
weakly correlated.

Other experiments were performed on cases where the mean function value
of the permeability was heterogeneous. We have not yet obtained usetul results
for these types of models yet, due in particular to the rather limiting stability
condition of the deterministic scheme we chose.

The examples we discuss in this chapter are basically a selection of illustra-
tive examples of the general type of behaviour we have seen using this method
of evaluation. We employed a very simple explicit numerical discretisation
scheme, which turned out to be severely limiting on the examples we were able
to effectively use. We found that the scheme would generally become unstable
in cases where there was a significant probability that admissible realisations
would lie outside the general stability range of the scheme. Experiments on
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the specific point at which instabilities start to occur have yet to be done, but
it has been observed that they can certainly be shown to occur when (k) 4 30
can be shown to lie outside the stability range for our scheme.

7 Conclusions

The results presented here should only be considered as an introduction to
this approach of studying uncertain p.d.e.s in oil reservoir modeling. We have
shown some of the early results that this method provides us with, but feel
that much more research can be done in this specific area. Some further areas
of potential research may include,

o Investigation of the differing effect of other schemes on this method,
especially implicit methods;

o A full investigation of the effect of grid-size, in relation to correlation
length, and, in particular, how their relative size effects results;

o Improving the efficiency of the method by a severe reduction in the num-
ber of cross-correlation terms, such as those in equation (37), that are
computed;

o Investigation of the numerical correlation length of the results obtained,
using the numerical values of the solution covariance function, that have
already been computed in equation (40);

o Investigation of the convergence of the schemes, using results obtained
from earlier work;

o Comparison of results with those obtained by Monte-Carlo simulations.
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