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Abstract

An implicit time integration method for the simulation of steady and unsteady
flow in pipes and channels is presented. It is based on the theory of Total Vari-
ation Diminishing (TVD) methods. A conservative linearization leads to a block
tridiagonal system of equations which can be cheaply solved by means of a non-
iterative LU decomposition method. It keeps the advantages of classical implicit
schemes, in the sense that the traditional CFL limit is removed, and properly
deals with all kinds of flow. It is specially suited for steady flows including
phenomena such as hydraulic jumps and also gives satisfactory results for time
dependent problems. Several test cases are shown to illustrate the performance
of this implicit technique in single channels. The applicability of this numerical
scheme to the simulation of steady and transient flows in pipe networks is also

demonstrated through some examples.



1 Introduction

Numerical methods to predict the water profile and discharge in steady as well
as unsteady situations of hydraulic systems have become a common tool. Finite
difference applications of numerical schemes in particular have been widely re-

ported (see, for instance, Cunge et al. 1980).

One of the characteristics that renders explicit schemes attractive
is their conceptual simplicity. Variables at a future time can be evaluated at every
grid point through simple algebraic calculations involving already known values.
On the other hand, the time step size is usually restricted by stability reasons,

typically expressed as a limit on the CFL number that can be taken.

Another option is the choice of implicit schemes in which the vari-
ables must be calculated simultaneously, through the resolution of a system with
as many unknowns as grid points, in the new time level. If the problem is non-
linear, so is the resulting system, and either a linearization or an iterative pro-
cedure is required. The extra work is usually compensated for by unconditional
stability, allowing time steps as big as desired, or permitted, by the particular
problem under consideration. They are the ideal candidates for the calculation

of steady states but can also be efficient in the simulation of transients.

Difficult situations, in which mixed regimes with surface disconti-
nuities are present, usually invalidate the classical methods, justifying the search
for new techniques. The effort made in gas-dynamics to develop efficient Eu-
ler solvers led to a class of methods based on the Total Variation Diminishing
(TVD) property (Sweby, 1984), characterised by their robustness and accuracy.
This generation of techniques can also be cast as improved conservative second

order classical schemes.

In this work, the performance of an implicit method based on a

TVD theory when applied to the 1-D shallow water equations for the simulation



of free-surface as well as pressurised flows is investigated.

First, the equations we are going to solve are presented. They are
essentially the well known Saint Venant equations written in conservative form.
Some usual modifications intended to render them able to cope with pressurised
flows whilst keeping their form are also included. Then, the implicit technique
is introduced and applied to the system of equations. A conservative lineariza-
tion is adapted to the basic method in order to simplify the resulting algebraic
equations and be able to work out an algebraic block tridiagonal matrix system.
The numerical treatment of external, as well as internal, boundary conditions is

described.

A variety of hydraulic test cases is presented to assess the validity
of the method. Then it is also successfully applied to the problem of flow simu-

lation in a pipe system.

2 The equations

It is generally accepted that the unsteady flow of water, in a one-dimensional
approach, is governed by the shallow water or St. Venant equations. These rep-
resent mass and momentum conservation along the direction of the main flow.
It constitutes an adequate description for most of the problems associated with

pipe flow modelling and can be written as the following system of equations:

JA 0Q _
5T =0
(2.1)
%0+ (% +gh) =gl + gA(So — Sy)

where A is the wetted cross sectional area, () is the discharge and ¢ is the accel-

eration due to gravity. [ represents a hydrostatic pressure force term

Io= [0 bt iy (2.2
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with
JA(x,
bay) = AL

and Iy accounts for the pressure forces due to longitudinal width variations,

e dba)
I, = /0 (h— U)aTdU-

The right hand side of equation (2.1) contains also the sources and sinks of mo-
mentum arising from the bed slope and the friction losses. The bed slope is the

spatial partial derivative of the bottom elevation z,

0=
ox

and the friction slope is defined, in terms of the Manning’s roughness coefficient

S():

n,

2
5, = QlQIn

A*Rs
with R = A/P, P being the wetted perimeter. Other forms of St can equally

(2.3)

well be used.

All the cases that we are going to deal with in this work involve
prismatic channels, so that the I, pressure term will not be used. On the other
hand, we will be interested in the transients from partially filled to full pipes,
that is, the change from open channel to pressurised flow in closed channels. The
usual way to automatically take this into account without changing the govern-
ing equations is well described in Baines et al., 1992, for example. It consists
of assuming the presence of a very narrow and infinitely high slot all along the
pipe. It will become filled by water in the event of pressurised flow, providing the
extra hydrostatic pressure whilst still allowing the use of the open channel flow

equations.

In the case of a rectangular pipe of constant width b, and height

h, and a slot of width b, the following formulae are going to be used:

A< A




A> Ay

]1 — Ap(

P =2b, + 2h,
where A, = b,h,. At the same time the wave celerity, ¢, defined as:

,_on
A

changes from ¢ = y/gA/b, to ¢ = \/gA/bs as a consequence of the new value of

the channel width at the free surface.

c

It is useful to rewrite (2.1) in divergence form:

oU  OF

W—I_@_x_R (2.4)

with
U = (4,Q)
_ Q* T

R = (0,95 + gA(So — Sp))7,

since this displays the conservative character of the system in the absence of

source terms. The Jacobian matrix of the system is

OF 0 1
A = — = R
Jdu A —u? 2u

where u = Q/A. The eigenvalues and eigenvectors of A are:

a? = u+te

e = (LLuxe)l.



3 The method of solution

3.1 Implicit numerical scheme

In (Yee 1986, 1987) a one-parameter family of symmetric explicit and implicit
TVD schemes was developed following previous results, and declared as able to
be used for time-accurate or steady state calculations. The mathematical theory
supporting those TVD schemes refers to scalar equations. The extension to non-
linear systems must be done in an ad hoc way following the guide provided by

the scalar theory. Starting from the scalar equation

ou df

at Tar 0

a spatial discretization on a N point regular mesh, z;,1 = 2, + Az,e =1, N — 1,
leads to a system of ODE’s:

Dui(t)
ot

= RHS,(t)

where RHS;(t) represents the residual from the discretization of the spatial
derivative at node i of the spatial discretization. The application of the following

time integration scheme

ultt —

ZTZ' = ORHS"™ + (1 —0)RHS" 0<6<1

provides an implicit formula where n and n 4+ 1 are the two time levels involved.
Except for the value § = 1/2 it is a first order in time discretization. Another

way of expressing it is

ulttt — oy 1

# T H[e(fiﬁl'l/? - fi*—1/2)n+1 + (1 - ‘9)(fi*-|-1/2 - fi*_l/z)n] =0 (3.1)

where the numerical flux fz’*-|-1/2 is responsible for the spatial discretization and

has to be specified.



The numerical flux that has been chosen is the one coming from the TVD version
of a centred scheme without the term responsible for the space-time combined
discretization. It has been recommended in the literature (Yee, 1987) and can be

written as

*72 1 n n n ~ T n
T = 5[ G+ = (= o(rl ) ai+1/2‘ Oullyysa-
In the above expression, éu?,, , = uiy; —uf, @iy, is the approximate advection
speed between points i and i+1, and ¢(r) stands for one of the limiting functions

well described in the literature (Sweby, 1984).

The extension of this scheme to the system of equations (2.4) will
be presented next. It takes basically two different steps. First, the corresponding
vectorial numerical flux must be properly defined by means of an approximate
Jacobian matrix. Then the numerical flux has to be adequately approximated at
time level n+1 so as to obtain a linear system of discrete equations.

The general formula for the implicit scheme applied to system (2.4) is
urtt —ur 1

A T g0 (FE) + (L= 067 (Fi )] = ORF™ + (1 - O)RY (3.2)

with 67( ?21/2) = Fﬁl/z - Ff7—%1/2'
The numerical flux F}, , is constructed making use of the approx-

imated Jacobian matrix A; 4/, as

b 1 ~
i+1/2 = i[FiH +F, — Z ¢f—|—1/2(1 - ¢(rf+1/2))04f+1/2ef+1/2]-

k=1,2

k

Th1/2 of AH_l/Q that guar-

The function ;/Jﬁ_l/z is the correction of the eigenvalues a
antees the physically valid discontinuities in the solution. In the same way, éf+1/2
represents the eigenvectors of the approximate Jacobian and ozﬁ_l/z are the coeffi-

cients of the decomposition of 6U,;;/, in that basis. The argument of the limiting

function ¢ is



~k k
k G512 Lk
Tit1/2 = =% T s = 519”(%’4-1/2)
Giy172%41/2

The approximate Jacobian can be expressed in its diagonal form as

A -1

Aijrp = IN)z'+1/2dié‘g(dfﬂ/z)f)i+1/2

with f’H_l/g the matrix of column eigenvectors. Then it is convenient to define
the matrix B4/, as

Biti2= pi+1/2Ai+1/2f)i—+11/27
with Aipi/ = diag[;/)f_l_l/z(l — qbf_l_l/z)]. The components of B are

1 d'a* — d*a! d?> — d'

a? — al aal(d' — d?) da? — dat

B =
where d', d* are the two non-zero elements of A.

This allows a more compact version of the numerical flux

. 1
i+1/2 — §[Fi+1 + F; — Bi+1/25Ui+1/2]

We are going to start the second stage by proceeding to approxi-
mate the source terms at time level n+1. Taking into account that R"*! contains

non-linear dependence in U, the following Taylor’s expansion is made

R/ = R7 + G'AU; 4+ O(Al?)

where AU; is the time increment to U; and G is the Jacobian matrix of R which,
for the case of a rectangular and prismatic channel with the friction term defined

in (2.3), is

0
918 + S5+ S5l —%5S;



In order to retain a conservative discretization in the implicit part

the numerical flux is linearised in the same way
Fit!l = F! + APAU; + O(A#?)
and the following approximation is also made:

n+l1 __ n
Bi—|—1/2 - +1/2

The introduction of these two simplifications in (3.2) allows us to write it in the

form of a block tridiagonal system

AAAU,_, + BB/AU; + CC;AU,,, =DD; i =2,3,...N— 1 (3.3)

in which the coefficients are 2x2 matrices with the following elements:

A0
AA; = —?[Ai_1 + By 0)"
Y .
BB, = I-0AtG} + ?[Bi-l—l/? + Bz’—l/?]
A0
CC, = ?[Am — Biyyo]”
DD; = —AF ;- Fi_ip)" +AIG]

where A = At/Az.

The presented scheme is a second order in space and first order in time conser-
vative discretization. It offers greatest advantages for the calculation of steady
solutions. It is advisable to choose § = 1 and make zero the limiting functions
contained in the implicit part. This renders the implicit operator only first order

in space but allows bigger CFL values.

3.2 Boundary Conditions

The tridiagonal system (3.3) that has been obtained from the implicit scheme
is written only for the grid points ¢ = 2,3..., N — 1. It must be completed by

means of the boundary conditions. They will be linearised to provide two matrix
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equations of the form,

BBQAUl —|— CCQAUQ — DD2 (34)

and

AAN_lAUN_l —|— BBN_lAUN - DD]\7_17 (35)

using some information coming from the theory of characteristics and some from

the imposed boundary conditions.

A number of alternative strategies, some of them specially recom-
mended for steady state calculations (see Yee 1981 and Alcrudo 1992), were tried
for implementing the boundary conditions, but the following procedure was found
to be the most reliable.

In order to illustrate the technique, let us take the example of a subcritical up-

stream case with discharge imposed as the external boundary condition

It is clear then that
AQr =@ —QF
is a known value and that it is independent of the rest of the points.

To work out an expression for AA we start from the following form

of the characteristic equations

Do . Q DA
EH—ZiW)ﬁ:O (3.6)

which are known to hold along lines

de @
®r_x A/b.
g~ AtV
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The integration of (3.6) can be achieved numerically by means of an iterative
procedure (see Garcia-Navarro and Savirén 1991). The first iteration can be used
to implement a non-expensive approach for the boundary problem of our implicit

problem.

From the upstream component of (3.6) the following can be written

P (-0~ e (A7 - A =0,

In the above expression, r stands for the point at the foot of the characteristic in

the old time level. It can be rewritten as

= CATT 4 D (3.7)
with
QTL
C = T An/b
(A? +1/gAr/b)
D= Q- car

This linear relation is to be used as the one complementing the external boundary

condition. The expression of AA at the boundary is then
AAy = AT — A7

where
(D
C

This enables us to write an expression like (3.4) with

n+1 __
AT =

1 0 0 0 AA,
BBQZ CCQZ DD2:
0 1 0 0 AO,

It becomes a simplified version if point 2 is used as the intermediate point r. This
approach avoids interpolation and even though it implies a loss of accuracy, it
has proved to give satisfactory results even for the problems with transients at

the boundaries.
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3.2.1 Internal boundary conditions

The problem of the numerical treatment of internal boundary conditions will ap-
pear in this work when solving problems of flow in a pipe or channel junction.
The basic idea is essentially the same as the one applied to the external bound-
aries. The kmax points involved in the junction problem are end points of the
pipes/channels meeting at that junction, so that a linear relation between ) and
A like (3.7)( or an analogous one between () and h), can be written for each of
them.

The conditions imposed at the junction are of two kinds, normal junction:

kmax

2, Q=0
k=1
hl :hg — ---:hkmax:H

or a well junction, in which a storage well of top area A,, and depth H,, is assumed,

k
dH,,
Zmax@k =A,—
= dt
hl :h2 — ... :hkmax:Hw :H

The solution in both cases reduces to calculate

- ALHG + ALY Dy
A =AY

and then make use of the linear relations to determine the kmaxz different dis-

charges

Qr=Ch,+D" k=1, kmax
with, in this case,

€' = b+ g Az )

D= Q'R
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the subscript r referring again to the immediate point in the interior of each pipe.

3.3 System solver

Once the boundary conditions have been used to produce a complete block tridi-
agonal system of equations in terms of the time increments of the variables, which
will be denoted as X; in this section, a block version of the Thomas algorithm is
used to obtain the solution as follows.

The system of equations has the property that if

Xic1 = Yic1 — a1 X;

holds for a couple of points z — 1, ¢, then it is also true for the next pair 2,7+ 1 and

hence for all the rest of points, and it is possible to use the following recurrence:

o, = (BBZ — AAiOéi_l)_ICCZ'

v = (BB; — AA;a;_) ' (DD; — AA;7;_4)

It is then convenient to cast the upstream block equation (3.4) in the form

Xy = Y1~ o Xo.

This will provide the starting values (1, «q). Using the above recurrence all the

couples (7, a;) can be next obtained. The last of the equations we can write is

Xno1 = Ynvo1 — ano1 Xy, (3-8)

which relates the two last points in a linear way with known coefficients. If the

independent relation between them (3.5) is also considered, the system of two

13



equations can be used to eliminate X_; and calculate X . Once Xy is known,
the relation (3.6) is the departure point of a backwards sweep leading to all the
X,’s up to Xj.

4 Idealised test problems

4.1 Steady State in a channel

The advantages of using the presented approach for the calculation of steady
open channel flow profiles were already pointed out in Garcia-Navarro and Al-
crudo 1992, where quantitative results for the convergence rates were provided.
Here, some examples of steady solutions obtained through unsteady calculations

in open channels are first presented.

Figs. 1 and 2 show two solutions of flow over a bump. Starting
from uniform initial conditions in water level and discharge, a constant head im-
posed at the upstream boundary and a fixed water level at the downstream end
lead to the equilibrium state. In Fig.1, water accelerates to reach critical con-
ditions over the bump and becomes supercritical downstream, were nothing is
imposed. In Fig.2, the same situation is connected by a hydraulic jump to the
imposed downstream water level. Both examples have been computed on a 80
point grid using a CFL=100. The numerical solution has been plotted together

with a continuous line representing the exact solution.

Figs. 3 and 4 correspond to two steady profiles in a sloping channel.
The discharge in both is Q = 3m?®/s and the slope Sy = 0.001. The initial
conditions were the same discharge Qg = 3m?®/s and a uniform water depth
ho = 2m. Constant discharge upstream and a fixed water level downstream give
rise to a subcritical profile in the first example, with n = 0.03 (Fig.3) and to a
discontinuous solution in the second example, in which n = 0.009 (Fig.4). The
calculation was done on a grid with N = 100 using a CFL=50. The continuous
line appearing in Fig.4 is a comparison with the numerical solution provided by

Roe’s second order explicit scheme (see Baines et al. 1992).

14



4.2 Dam break problem

Even though the class of implicit schemes presented was devised to cope with
strong discontinuities in gas-dynamics steady state problems, the conservative
linearization applied has been said to render it suitable also for unsteady calcula-
tions. In river and pipe flows, discontinuities are generally weaker, so the idealised
dambreak problem was chosen because it is a classical example of non-linear flow
with shocks to test accuracy and conservation in numerical schemes since it has
an analytical solution.

This problem is generated by the homogeneous one-dimensional

shallow water equations with the initial conditions

h(xz,0) =

|~ ot

hR if © >

Q(x,0) = 0.

It the calculation times used are so as to avoid interaction with the extremities
of the channel, the boundary conditions are trivial.

Figs. 5-8 are a sample of the solution obtained through the solution
of this test problem for two different values of the initial height ratio Ay : hg.
Figs. 5 and 6 represent the profiles of the water surface after the dambreak in
the 5:1 case for four different CFL values as computed on two grids of 50 and 100
cells respectively. Figs. 7 and 8 are the equivalent for the 20:1 case. The analytic
solution appears as a continuous line.

For the higher CFL values, a linear increase in the value of At was used in order
to overcome the difficulty imposed by the initial discontinuity when using a very

large initial time step.
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5 More realistic test problems

5.1 Pressurisation in a single pipe

As suggested in Baines et al. 1992, the numerical results obtained using the pre-
sented implicit scheme are now compared with experimental data for a horizontal,
rough, closed channel. As described in Wiggert 1978, it is a 10m long pipe. The
width of the pipe is b =0.51m, the height is 0.148m and the slot’s width above
that is by =0.01m. The roughness coefficient is n = 0.012. The initial conditions
are (Jo = 0 and hg = 0.128m.

Then a wave coming from the left side causes the closed channel
to pressurise. The upstream boundary condition is a given hydrograph and the
downstream boundary condition is a fixed water level, Ay, = 0.128m. Starting

from upstream, the pressurization moves downstream as a front wave.

Figs. 9 and 10 show results of the variation in time of water level
at x = 3.5m. The horizontal line in all of them represents the channel soffit,
the continuous line corresponds to the numerical results provided by the implicit
scheme, whilst the circles are the values from Wiggert 1978. Fig. 9 displays results
on a grid of 20 points, that is, with Az =0.5m., and Fig. 10 with Az =0.125m,

for different values of the time step.

5.2 Transient flow in a junction

Some cases of numerical simulation of the evolution of flow towards the steady

state with different dynamic states of the flow at the junction are now presented.

We have considered a prismatic channel 1m wide (channel 1) branch-
ing into two channels of the same geometry (channels 2 and 3). FEach of the
channels is discretized using a constant Az. The initial discharges are assigned
so as to ensure mass conservation at the junction and the initial water depth is

supposed uniform. The discharge will be prescribed at the inlet point to channel
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1 and a weir type or zero first derivative boundary condition will be applied at
the outlet of channels 2 and 3. The internal boundary conditions imposed at the

junction will be the simplest ones to ensure continuity.

(QL)n = (Q@2)1 +(@3)
Subcritical flow : (h1)n = (h2);

Supercritical flow : (h1)n = (h2),

The steady state shown in Fig. 11 was reached starting from the initial conditions

<

)i = 3m?/s
2)2 == (Qg)Z == 1.5m3/3
Ji=2m j=1,2,3

(
(

= O

in a system of channels of bottom slopes Sy = 0.01, Sga = Sps = 0.001 and
uniform Manning coefficient n= 0.009. The equilibrium flow is subcritical at the
junction but discontinuous in pipe 1, where a hydraulic jump connects the two
regimes. The boundary conditions, common to both examples, are a constant

upstream discharge and a 2m high downstream weir.

In the second example, Fig.12, the values of the bed slopes are
So1 = Soa = Sg3 = 0.01. The initial conditions as well as the roughness were the
same as in the previous example. The flow is now supercritical all over the sys-
tem except for the downstream part of pipes 2 and 3, in which identical hydraulic
jumps have developed to connect with the downstream boundary condition.

The space step used was Az= 4m, and, as time step, the one given by a CFL = 10.

As proposed in Wixcey 1990, a system of 5000m long pipes with
slopes Sp; = 0.002 and Sgy = Sp3 = 0.001 and friction coefficient n = 0.01 shall
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be considered now. Initially, a steady state is obtained starting from the initial

conditions

(Q1); = 0.1m?/s

and holding constant the inflow discharge at (Q1); = 0.1m?/s on a grid with
Azx= 50m. A saw tooth of peak value (J5; and period 7= 600s is enforced in the
upstream end of pipe 1. In Figs. 13-17, time histories of discharge and depth
at locations corresponding to ¢« = N/10, N/5 and N after ten periods have been
recorded.

Figs. 13 and 14 are the discharges and depths respectively for the case Q=
2.8m% /s using a value of CFL=1. Fig. 15 shows the equivalent discharge plot for
the case of CFL=4.

Figs. 16 and 17 are water depth histories following a peak discharge Q= 3.2m?/s
that produces pressurization in the first part of pipe 1. Fig. 16 was obtained with
a CFL unity and Fig. 17 with a CFL=2.

5.3 Transient flow in a looped network

One of the main present fields of application of 1-D implicit schemes is the sim-
ulation of flow in pipe networks. In this subsection we are going to consider a
simple looped network as the one shown in Fig.18 and repeat the numerical tests

suggested in Wixcey, 1990.

Each of the pipes is closed, squared, 1m wide and 100m long. They
are discretized in 10 intervals. The bottom slopes are Sy, = 0.002, Spy = Sz =
0.001, Soq = 0.0, Sos = Sog = 0.001 and Sp7 = 0.002. Using a uniform value of the
friction coefficient n= 0.01, a first calculation is made with the implicit technique

to obtain a steady state of the system starting from the initial conditions:

18



prescribing a constant discharge at the inlet of pipe 1 and using a zero first deriva-
tive as downstream boundary condition in pipe 7. Junctions A and D are treated
following the procedure described in the previous subsection. A storage well of
top surface A,,= 5 m? is supposed in junctions B and D. The continuity equation
and the condition over the depths at the junction in that case are as described in

subsection 3.2.1

The steady state solution has zero discharge in pipe 4 due to the
symmetry of the network. It is then used as initial condition to a second calcu-

lation.

A sawtooth of peak discharge ()3 and period 7= 600s is enforced
in the upstream end for a total of four periods. The time variations of depth and
discharge in pipes 1,2,5 and 7 are recorded at grid points ¢ = N/2 and ¢ = N.
Those in pipe 4 are recorded at locations ¢ = N/10, ¢ = N/2 and ¢ = 9N/10.
They have been plotted and displayed in Figs. 19-30. The results in pipes 3 and

6 have been omitted because of the system’s symmetry.

In Figs. 19-22, the time histories resulting from the application of a
maximum Q= 2m?>/s are presented for different values of the CFL number. The
flow remains unpressurized all over the network and, as pointed out by Wixcey,
attains a pseudo steady state really noticeable in pipe 4. Note that the discharge
at the centre point of that pipe is constantly zero and equal but of different sign

in the symmetric points. The results are qualitatively independent of the CFL
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number, and consequently the time step size, used. A loss of accuracy is the only

consequence.

In Figs. 23-30, the results corresponding to a bigger peak Q=
3m? /s are shown. Pressurisation occurs in this case in pipe 1. The CFL restriction
to the value 1 is again not necessary, as the pictures indicate. Some non-physical
spikes appear nevertheless for values above 5, indicating that further research is
necessary to determine whether there exists a time step restriction in delicate

situations.

6 Remarks and comments

A conservative implicit method belonging to a family of TVD schemes has proved
to be suitable for the numerical treatment of a great variety of hydraulic problems.
It is able to cope with subcritical, supercritical and mixed-regime flows provid-

ing accurate results without being restricted by the usual CFL stability condition.

The best results are obtained when applying it to the calculation
of continuous or discontinuous steady states, allowing the use of time steps some
orders of magnitude bigger than those in the explicit case, and achieving a second

order accuracy in space and time.

It is able to handle the unsteady problems that are frequently en-
countered in channels and pipes, such as front waves and sudden passage from
free surface to pressurised flow. It remains stable and accurate provided that the

CFL does not become overly large.

The performance of the implicit scheme has been tested in a simpli-
fied looped network giving very good results. It is a good candidate for numerical
simulation in pipe networks because it keeps the advantages of classical implicit
schemes and properly deals with all kinds of flow. No special numerical treatment

has been applied in this work, but the block tridiagonal matrix allows for the use
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of special techniques such as the condensation method, currently in use in some

commercial codes involving implicit methods for pipe networks (Uan 1984 and

Fugazza 1990).

7
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Figure 1: Steady profile over a bump. Supercritical flow.
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Figure 2: Steady profile over a bump. Mixed flow with hydraulic jump.
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Figure 3: Steady profile in a channel. Subcritical flow.
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Figure 4: Steady profile in a channel. Mixed flow with hydraulic jump.
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Figure 10: Pressurisation wave in a pipe. Az=0.125.
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Figure 11: Subcritical flow in a junction with hydraulic jump in the incoming
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Figure 12: Supercritical flow in a junction with hydraulic jumps in the outgoing
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Figure 13: Discharge hydrographs at different locations. Peak value of the inflow
wave Qy = 2.8m3/s. CFL=1. Az = 50m. N= 100.
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Figure 14: Water level limnigrams at different locations. Peak value of the inflow

wave Qy = 2.8m3/s. CFL=1. Az = 50m. N= 100.
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Figure 15: Discharge hydrographs. Peak value of the inflow wave Qy = 2.8m?/s.
CFL=4. Az = 50m. N=100.
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Figure 16: Water level limnigrams at different locations. Peak value of the inflow

wave Qy = 3.2m3/s. CFL=1. Az = 50m. N= 100.
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Figure 17: Water level limnigrams at different locations. Peak value of the inflow

wave Qy = 3.2m3/s. CFL=2. Az = 50m. N= 100.
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Figure 18: Looped network.
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Figure 19: Looped network. Discharge history at different locations.
2m?3/s. CFL=0.95. Az = 10m. N= 10.
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Figure 20: Depth history at different locations. Peak value of the inflow wave
Qu = 2m?/s. CFL=0.95. Az = 10m. N= 10.
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Figure 21: Discharge history at different locations. Peak value of the inflow wave

Qu = 2m?/s. CFL=5. Az = 10m. N= 10.
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Figure 22: Discharge history at different locations. Peak value of the inflow wave

Qu = 2m?/s. CFL=8. Az = 10m. N= 10.
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Figure 23: Discharge history at different locations. Peak value of the inflow wave

Qn = 3m?/s. CFL=0.95. Az = 10m. N= 10.
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Figure 24: Depth history at different locations. Peak value of the inflow wave
Qn = 3m?/s. CFL=0.95. Az = 10m. N= 10.
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Figure 25: Discharge history at different locations. Peak value of the inflow wave

Qu = 3m?/s. CFL=2. Az = 10m. N= 10.
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Figure 26:

Depth history at different locations. Peak value of the inflow wave

Qu = 3m?/s. CFL=2. Az = 10m. N= 10.
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Figure 27: Discharge history at different locations. Peak value of the inflow wave

Qn = 3m?/s. CFL=5. Ax = 10m. N= 10.
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Figure 28: Depth history at different locations. Peak value of the inflow wave
Qn = 3m?/s. CFL=5. Ax = 10m. N= 10.
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Figure 29: Discharge history at different locations. Peak value of the inflow wave

Qn = 3m?/s. CFL=8. Ax = 10m. N= 10.
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Figure 30: Depth history at different locations. Peak value of the inflow wave
Qn = 3m?/s. CFL=8. Ax = 10m. N= 10.
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