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Abstract

In this report we review the Black-Oil model for petroleum reservoir simulation.
The model includes compressibility and general mass transfer effects. The flow
equation are formulated sequentially and split into a parabolic pressure equation
and a hyperbolic system. We also review the Higher Order Godunov method
which is used to discretise the hyperbolic part of the system. A possible technique
of reducing the volume error discrepancy inherent in this sequential formulation
is presented and numerical results given.
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1 Introduction

The Black-Oil model is the industry standard phase behaviour model most often
used in reservoir simulation and includes compressibility and mass transfer effects
between the phases. The fluid flow exhibits both hyperbolic and parabolic be-
haviour, both of which can be treated by a fully implicit discretisation. However
to effectively treat both types of behaviour present in the flow equations different
types of numerical procedure are required for each and so a splitting of the flow
equations into a system of hyperbolic conservation laws and a parabolic pressure
equation is used. Also implicit discretisation of the unsplit equations typically
use large amounts of numerical dispersion, providing further reason for use of the
sequential strategy.

Sequential methods were first proposed by Sheldon et al in 1959 and by Stone
and Garder in 1961. These early and some subsequent formulations contained
some anomalies. Further developments were made, then in 1986 Bell, Shubin
and Trangenstein [4] presented a new sequential method to treat two-phase, two-
component fluid flow. This formulation is based on conservation of mass of the
fluid components and does not have the consequences of a ‘volume error discrep-
ancy’ which is present in later work. This later work by Trangenstein and Bell
[2] treats three-phase, three-component fluid flow, and is the formulation we will
work with. The consequence of the volume error discrepancy is essentially due to
the complicated nature of the volume balance equation for three phase flow with
general mass transfer.

Discontinuities are typically present in the solutions to the flow equations.
Classical first order methods will produce smeared profiles whereas classical sec-
ond order methods will reduce the smearing but will introduce oscillations at the
discontinuities. Accurate resolution of fronts and control over oscillations at the
discontinuities are needed, and so Trangenstein et al [1]-[5] advocate use of the
Higher Order Godunov method to treat the hyperbolic part of the split equations.
This method is particularly suitable for use with systems possessing eigenvector
deficiencies and local linear degeneracies , as does the Black-Oil model . In [2] the
hyperbolic part is first discretised via the Higher Order Godunov method which
achieves second order accuracy in both space and time. The pressure equation is
then solved using an implicit discretisation.

The aims of this work are to reproduce the 1-D results in [2] and to present
techniques for reducing the volume-error-discrepancy encountered, both of these
objectives are met with a fair degree of success.

In section 2 we give a review of the mathematical structure of the Black-
Oil model . Section 3 contains a review of the Higher Order Godunov method
including the modifications for systems possessing eigenvector deficiencies and
local linear degeneracies . In section 4 we present the test problems from [2] and
discuss some of the problems encountered in their solution. Section 5 contains
a description of the technique which can be used to reduce the volume-error-
discrepancy. In section 4 and 5 we also present graphical results to illustrate the
discussions.



2 The Black-0il Equations

2.1 Overview of model

The Black-Oil model [2] is the Industry standard phase behaviour model most
often used in petroleum reservoir simulation. It includes compressibility and
general mass transfer effects between the phases that are needed to model primary
(pressure depletion) and secondary (water injection) recovery.

The flow equations are derived from four main principles:

i) Phase equilibrium - determines how the components combine to form phases,

i1) Equation of state - states that the fluid fills the pore volume,

)
iii) Darcy’s law for the volumetric flow rates,
)

iv) Mass conservation equations for each component.

The flow equations are formulated sequentially, therefore they cannot be sat-
isfied exactly at each step of the computation, and so some incompatibility is
introduced. We satisfy phase equilibrium, Darcy’s law and the component con-
servation laws exactly but the equation of state is linearised so that it is only
satisfied approximately. This splitting of the flow equation is termed a ‘volume-
discrepancy splitting’. We now consider the equations in detail.

2.2 Thermodynamic equilibrium
2.2.1 Components and Phases

The reservoir is considered to be composed of three components oil, gas, and
water. To reach phase equilibrium these components combine to form at most
three phases, liquid, vapour and aqua. At each point in the reservoir the compo-
nents associate into phases in order to attain thermodynamic equilibrium. The
components flow in phases but their total mass is conserved, thus it is necessary
to find how the mass of each component is apportioned into the phases. This
phase equilibrium problem can be expressed as follows: given the pressure p and
the vector n = [n,, n,, n,]? of mass component densities, find the matrix

Nyl Noy 0
N = ng ng ng

0 0 1y

of component densities in each of the phases, subject to the mass balance condi-
tion

n = Ne,

where e is a vector of one’s. Thus it can be seen from the definition of N that
there is a restriction on the way the components are allowed to mix in the phases.
i.e. oil may be allowed in the liquid and vapour phases, gas in all three phases
and water in the aqueous phase only. Oil and water do not mix and steam is not
treated.



2.2.2 Mass transfer and phase equilibrium

With each phase we associate a principal component, oil with the liquid phase,
gas with the vapour phase and water with the aqueous phase. The amount of each
component in each phase is related to the amount of the principal component in
that phase by the ratio matrix £. When all three phases are formed R is given
by

1 R, 0
R=|R 1 R, |=NDy,
0 0 1

where Dy is the diagonal part of N. The ratios R;, R,, and R, must be non-
negative functions of pressure and are supplied as part of the model.

Now we can determine how many phases are present. Firstly we define T' =
R, then form the vector Tn. If all three entries of T'n are positive then all three
phases are formed and the fluid is termed saturated. Hence it can be shown that
Dy is given by

Dye =Tn,

and the solution to phase equilibrium by

N = RDy.

2.2.3 Undersaturation

Although we have three components this does not necessarily mean that three
phases are always formed. For example, if gas is allowed to dissolve in liquid
(R; # 0), then for sufficiently high pressures it is possible for all the gas to
dissolve in the liquid phase. Hence the vapour phase is missing and the liquid
phase is said to be undersaturated. Similarly if (R, # 0), i.e. oil is allowed to
volatilise into vapour, then it is possible that no liquid is formed and the vapour
phase is undersaturated. In the present work neither R;, R, or R, are identically
equal to zero therefore both types of undersaturation are possible. Analysis shows
that at most one phase can be missing due to undersaturation.

When the vapour phase is missing the physical meaning of the negative vapour
component of Tn is that the fluid pressure is higher than the bubble-point pres-
sure p, at which the vapour phase forms. The bubble point pressure is implicitly
defined by the requirement that the vapour component of T'n is zero, i.e.

—Ri(py)n, + ny, — Ro(ps)n, = 0.
When the liquid phase is missing the volatile oil ratio is defined to make the liquid
component of T'n zero, i.e.
R nO

’ ng — Ra(p)nw‘

It is possible to derive a combined formulation of undersaturated phase be-
haviour. This is achieved by multiplying by a constant matrix ¢} which effectively
removes the column corresponding to the missing phase, i.e.

R=RQ , Dy=Q"DyQ.



For example in the case of the vapour phase being undersaturated, () is given by
00
Q=110
01

Throughout, quantities denoted with an overbar refer to the reduced matrix or
vector in the undersaturated case. The solution to phase equilibrium is then given
by

N = RDnQT.

2.2.4 Compressibility

Water and oil have small compressibilities, but the relatively high compressibility
of gas, and the swelling effects caused by gas dissolving in liquid lead to important
volume changes at reservoir pressures. The Black-Oil model incorporates these
volume changes by relating the volumes of each of the phases to the amounts
of the principal component in that phase. To quantify this relationship we first
define D, to be the diagonal matrix of phase volumes per pore volume. The
entries of Dy and D, are related by the formation volume factors,

B 0 0
B=|0 B, 0 |=D,Dy,
0 0 B,

which are functions of pressure and the undersaturation variable w in the case
of undersaturated flow. In the case of undersaturated liquid w is the bubble
point pressure and in the case of vapour undersaturated w is the volatile oil
ratio. The formation volume factors actually relate the volume of the fluid at
reservoir conditions to the volume occupied at standard conditions (pressure and
temperature), and thus this is how compressibility is introduced. The vector u
of phase volumes per pore volume is given by

u = BTn.
When the fluid is undersaturated we again use the constant matrix @) to define
B =Q"'BQ,

and then u is given by

u=QBTn.

We also wish to include rock compressibility, which means that the porosity is an
increasing function of pressure,

¢ = do(1 + cr(p — po)).

Where ¢ is the porosity at the reference pressure pg and cg is the rock compress-
ibility.



2.3 Darcy’s Law

Darcy’s law specifies how the phases flow through the reservoir and gives the
vector of flow volumes per unit area per unit time, i.e. phase velocities, which in

dp ad
v = —L(e% = pga—x)ﬁ:. (2.1)

matrix-vector form is

i.e. Darcy’s law states that the fluid flow is due to a pressure gradient and
a gravitational potential. L is the diagonal matrix of phase mobilities which
are phase relative permeabilities divided by phase viscosities (k,/p,). Relative
permeability describes how the prescence of each phase adversely affects the flow
of the other phases and are functions of the saturations s. Saturations are the
fractions of the fluid volume occupied by each of the phases and are defined by
_u

S= 7
It should be noted that s must be considered distinct from u because of the
volume error discrepancy of this formulation of the flow equations. In the case
of no volume error discrepancy i.e. e’u = 1 the vectors s and u are equivalent.
The phase viscosity p is the property of a phase that represents it’s resistance to
flow under the influence of a pressure gradient. & is the total rock permeability,
p is the vector of phase densities and % is the depth gradient of the reservoir.

The total velocity is defined as the sum of phase velocities and obtained from

(2.1),

d
vp = elv = —eTLe@ﬁ: + eTLpga—ﬁ;. (2.2)
Ox T
We use (2.2) to solve for the pressure gradient and then substitution in (2.1) gives
Levr Lee” od
= I — ——|Lpg—-~.
VT Tle + eTLe] P95 "

This is the form of the Darcy velocities used in the model and is termed a total
velocity splitting. The motivation for this step is that for incompressible flow a
total velocity splitting correctly decouples the elliptic and hyperbolic character
present in the flow equations.

2.4 Equation of state

When satisfied exactly the equation of state says that the fluid fills the pore

volume, i.e.

elu =1, (2.3)

where e is the vector of one’s. Equation (2.3) is linearised about time level ¢, to
develop an equation for pressure,

ou o oU dn

OUdp |\ ordU0n
dp Ot on Ot

It is assumed that we have a volume error discrepancy at time level ¢ i.e.

efu # 1, and we wish to calculate pressure such that there is no volume error at
time level ¢ + At,i.e. efu = 1. Therefore equation (2.4) becomes

e’u R eTu‘t + Ate” (2.4)

t+ At

1—e'u _ rOudp = pdudn

~o
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and the quantity e’u — 1 is termed the volume-error-discrepancy.
Multiplication by the porosity ¢ and use of the mass conservation laws to
replace the time derivative of n results in

dp 7 0
CE —|— W aix (fUT —|— gT) =dq, (25)
with the total velocity vy being given by
dp
= |- 2.
vT [ Oz + 7]7—7 ( 6)

where the coefficients ¢, w, f, g, v, ¢ and 7 depend on the pressure p and com-
ponent density n. Since we use ¢ and 7 explicitly we define them here

Ju 0¢
T T
c = ¢e —ap e u—ap7
r=el Lex.

For more details and definitions of the other coefficients see [5].
To examine the character of (2.5) we need to examine the coefficient ¢ of %

and the coefficient of 2272 which is obtained after substitution of (2.6) into (2.5)
and is given by
—wlifr = —el Lex,

since w and f satisfy w/f = 1. The transmissibility 7 is positive, hence the
. 2, . . . .

coefficient of 272 is negative, and therefore for (2.5) to be parabolic we require ¢

to be negative. As pressure increases the rock occupies a smaller volume hence

porosity ¢ is a non-decreasing function of pressure ,22 > 0. Therefore for ¢

> ap
to be negative we require eT%—I; < 0 which is the condition of negative total
fluid compressibility. This is guaranteed by placing restrictions on the formation
volume factors B and ratios R.

Given the sequential formulation described, it is therefore accepted that mass

is conserved at the expense of developing a volume error discrepancy .

2.5 Conservation of mass

We require that the mass of each component is conserved. The matrix ND !
represents the density of each component in each phase, hence the conservation
of mass equations are

d(ng)  AND;'v)

ot + Ox
The flux function h = ND;'v can also be expressed as h = RB~'v, which is the
form that will be used in the characteristic analysis. The flux is a function of n,
p and vp, hence in quasi-linear form we have
on  Jhon ohdp  0h Ovr

9 P onoe = opde dor da 25

= 0. (2.7)

The system is hyperbolic if and only if

oh

H:ain



has real eigenvalues for all values of n. The terms on the right hand side of
(2.8) are source terms which must be included in the numerical scheme to obtain
the desired accuracy. We also need to compute the right eigenvectors of % to
provide information about the structure of the wave fields, which will be used by
the numerical method. p and vy are considered to be independent of n for the
purpose of the characteristic analysis. This is because the volume balance (2.3)
is not enforced in the sequential formulation.

For saturated flow a similarity transformation and eigenvector deflation is
used to derive the eigenvectors X, of H as

[N I i I I 10
X =hB [0 I 0 X.||-a 1

where X, is the matrix of eigenvectors of the matrix

=0 ng[ 7]

and A. is the matrix of eigenvalues, i.e. ¢'X. = X A.. a is given by the vector
which solves

XAa=c=-C[0 [I]s
The corresponding full matrix of eigenvalues is then

A:lg <Q%E>Ac]'

In the case of undersaturated flow a similarity transformation of H is also used
to find the eigenvectors and eigenvalues ,which are given by

v w3 7]

Here q is a constant vector dependent on which phase is missing, and the vector
a solves

X, (( ; JAsa — a\) = BT Hq.

X7 and Az are given by
S. —1 10 0
A R |
where s, is the saturation of the other existing phase. The full matrix of eigen-
values is then given by
_ | Ga)As 0
=

the eigenvalue A corresponding to a weighted sum of particle velocities and is given
in the liquid undersaturated and the vapour undersaturated cases respectively by

Uy

Rlnoul —I'Ra wu d
Rlno + Ranw o u7v

Further details of this characteristic analysis can be found in [2].
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3 The Higher Order Godunov Scheme

To solve the system of flow equations arising from the Black-Oil model we need
to use a numerical approximation. To provide accurate resolution of the sharp
fronts typically found in oil reservoir simulations, requires a high order method.
Hence we use Higher Order Godunov discretisations of the conservation laws.
The pressure equation is solved via an implicit discretisation.

The Higher Order Godunov method [1] achieves second order accuracy in
both space and time. The scheme’s framework includes modifications for both
eigenvector deficiencies and local linear degeneracies and hence gives better per-
formance on systems of conservation laws which posses these properties, than do
other second order schemes.

We now give a review of the second-order Godunov scheme, which can be
considered as a 5-step procedure.

. Beginning with the piecewise constant approximation U7, compute
‘centred’; ‘left” and ‘right’ slopes, whilst maintaining conservation.

2. ‘Limit’ the slopes using monotonicity criteria, again whilst maintaining
conservation. This provides a piecewise discontinuous linear approxi-
mation to the solution at time ¢.

3. Trace along characteristics, using a Taylor series extrapolation, to de-
rive left and right states at grid block interfaces at time ¢ 4 %At. It
is possible that the traced states are unphysical, if this is the case the
physical cell centred value is used instead.

4. Solve the Riemann problem with these left and right states.

5. Use a conservative difference approximation to (2.7) to produce a piece-
wise constant approximation to U?‘H.

We now describe the main steps of the method in more detail.

3.1 Monotonised slope computation

We begin with a piecewise constant approximation U? to the solution in each

grid block. We wish to calculate an approximation to the slope % so that we
may express the data as a linear profile, which will be piecewise discontinuous.
For example in the scalar case a piecewise constant approximation would look
something like that in Figure 1. We require a discontinuous piecewise linear

approximation which would look something like that in Figure 2.

We define a monotonised centred-difference approximation,

vl AY
ox T Az

L=y

(3.1)

where in order to calculate AU; we compute undivided centered, right and left
differences and expand these differences in the right eigenvectors r; of the system



