Data-Dependent Criteria for Nodal
Placement with

Fixed Connectivity in Triangular Grids

Andrew Malcolm

Numerical Analysis Report 16/90

Abstract

In classical triangulations usually either a regular set of vertices is used or a
set of vertices is constructed using geometrical considerations of the region to
be triangulated. With the advent of Moving Finite Element Methods, whose
accuracy are highly dependent on the representation of the initial data on the
initial grid, we need better nodal positioning based on the underlying data. In
this report two possible procedures for positioning nodes for better representations
of data on triangulations with fixed connectivity are discussed and their effects

compared.

1 Introduction

In classical triangulations usually either a regular set of vertices is used or a set
of vertices is constructed using geometrical considerations of the region to be
triangulated. These take no account of the underlying data or its behaviour.

Our aim is to produce a set of vertices which, with a prescribed connection,
accurately represent underlying data, (e.g. initial data), when interpolated on it.
This can then be used in connection with the strategy in Malcolm [9], whereby the
connections in an unstructured grid are changed to produce better representations
of data.

These strategies could be applied, for example, to producing initial grids for
Moving Finite Elements [10], which move the grid according to the solution of
the PDE and, hence, its accuracy is highly influenced by the representation of
the initial data on the initial grid.

In this report we outline two procedures that were used to produce nodal
redistribution. The first procedure is a movement criteria based on treating edges
in a triangulation as springs, with spring constants dependent on properties of the
underlying function to be interpolated on the grid, e.g. Catherall [2], Lohner et
al. [8]. The second procedure used is a movement criteria based on approximately
equalising the error of interpolation on each triangle in the triangulation, based
on error estimates derived from work by Nadler [11]. This is akin to work done
by Sewell [13].

In Section 2 we outline the nodal movement criteria in greater detail. In
Section 3 the implementation of the redistribution procedures are outlined, while

in Section 4 the testing procedure, the test functions and the data sets used

are stated. In Section 5 the numerical and graphical results are presented, and,

finally, in Section 6 a summary of the results and conclusions are given.

2 Nodal Movement Criteria

There are many different ways that we could choose to redistribute nodes towards
an “ideal” grid with fixed connectivity given an arbritrary initial grid. Some
methods involve smoothing, Cavendish [3], or when solving a differential equation
using the equation variables to smooth the grid, Palmeiro et al. [12].

Here however we concentrate on two general forms of criteria. Firstly we
consider a spring analogy in which we imagine the triangle edges to be comprised
of springs whose stiffness is given by some monitor of the underlying function,
Eisemann et al. [6], Catherall [2]. Secondly we strive to approximately equalise
some measure of interpolation error on all triangles.

Both methods involve a local iteration technique around the elements, in which
local patches of triangles are put in equilibrium according to the corresponding
criteria. This process is then repeated over all such patches until global equi-
librium is achieved. This can be thought of as being similar to a Gauss-Siedel
iterative process.

We now proceed to describe the techniques in more detail :-

2.1 Spring Analogy

This is a global method, achieved by local iteration, of finding the new position
of nodes. Each node is surrounded by a patch of triangles.

Thus the patch P around node v; has p; surrounding nodes, v; ;, j = 1...p;,

Figure 1: Patch of Triangles

with node v; connected to node v; ; by edge e;.

For this criterion edge e; has associated with it a spring constant k; which is
dependent on certain properties of the underlying function. We then attempt to
find an equilibrium position for node v;.

Originally the “springs” were given a specified unextended length and the

equation for the tension, T', was

k; x extension

T =

2.1
original length (2.1)

where

extension = separation of the two nodes - original length

This was an attempt to control the nodal separation. However, this produced
poor results so it was decided, following Thacker et al. [14] and Palmeiro et al.
[12], to assume that all springs had negligible length when unstretched. This
meant that as we are trying to reach an equilibrium for the tensions around node
v;, the original length in Equation (2.1) can be ignored as it can just be factored

out. Hence the tension, T}, for edge ¢; is

T; = k]\/(l’z — i)+ (i — i)?

If we separate T into @ and y components we get

T

Ge = kj(zy — 2y)

15, = kiyi — yi5)
resolving the tensions over the whole patch. To find the new position (;,y;) of
node v;, we get
pi
ST, = 0.
i=1

Hence,

Pi e
2=l kjxi;
T = e
7=1"]
and similarly for 7;.

It is now necessary to decide on which property or properties of the underlying

function the spring constant,k;, is to be based. The original choice was
ky = (ugs)*°

where u, is the directional second derivative along the element edge. This is the
two-dimensional analogy of the equidistribution theory of Carey and Dinh, [1].
u,s 18 calculated at the mid-point of edge e;. However this produced excessive
clumping of nodes in regions of high curvature and poor representations of smooth

regions. The defects were rectified by choosing

(uss)2/5

[(USS)Z/S]maX

kal—I-Oé

The addition to k; of unity gives some control of nodal separation and helps
place the nodes in smooth regions. [(t,)*/?] ez is the maximum value of (u,,)*?
over all the edges and o was a parameter chosen to control the weighting given

to the equidistribution measure, usually with a value of 10 or 20.

4

An alternative choice for the spring constant is

5]

kj=1+p5

sl max
This is based on the one-dimensional expression for arc-length and would tend
to produce movement of nodes to positions of high gradient, the unit constant

keeping a control on nodal separation. k; was calculated for the edge, ¢;, joining

(xav ya) to (xbv yb) by

F(2a,ya) = F(@, yp)
\/(% —25)* + (Yo — ¥p)?

Ug =

and /3 was chosen to give a weighting to the gradient, (usually 1, 2 or 5). The main
motivation for this was to produce better representation in regions where uz, = 0
but the function is not smooth, (see Function F7, Fig 6(b), for an example).

Eventually a combination of the above was used so

(uss)2/5

[(USS)Z/S]maX

s

kj:1—|—0é

+ (2.2)

|us|maX

2.2 Error Equalisation

The second criteria is a global interpolation error equalisation criteria treated
iteratively in a local manner. Based on modifications to linear interpolants of
expressions produced by Nadler [11], for the error of least squares fits on trian-
gles, we can, by substituting numerical values into these expressions, attempt
to equalise the error on all triangles. These values are then used on patches of
triangles to produce a formula for relocating the central node in the patch. The

formulation is as follows :-

(error)®on triangle = W;

W; = Ci(detH) x [area(T;)]* x |det H]|

Ugy Ugy
where H = is the Hessian at the centroid of T}, and C; is a constant

Uyz Uyy

depending on the sign of detH.

Since for most uses we are interested in the Lq-error, we deal with (error)?

2

rather than error. To get the same (error)?, say W,,;, on each triangle in the

patch we get

P
Zm:PXWopt

=1

Then for each triangle in the patch

Wi Cixlarea(T;)]” x |detH|
W Cix [areayy, (T;)]3 x |det H|

where area,,;(7;) is the area which triangle, 7T;, should be to give an (error)? of
Wopt7 1e

1/3
areaq,(1;) = [%] x area(T;)

w;
A further condition which can be imposed is that the area of a patch should

be conserved, i.e. the central vertex remains within the patch.

g area g areaopt

where
areay, (1;) = A area,(1;),

and

\ - Zf; area(T;)

Zf; area, (1) '

We then define

area (1 opt]'/°

6(@) — M —)\ X |:w pt:| (23)
area(T;) w;

Thus €(7) can be thought of as an expansion factor :-

€(7) > 1, triangle is enlarged

€(7) < 1, triangle is shrunk.

node v, centre of patch

base, edge of patch
egn: ax+by+c =0

Figure 2: Triangle

Having found €(¢) as defined in Equation (2.3), we can find the equation of
the line representing the “height” on the new triangle to which the point should

move to, such that triangle T; has area area,,;(1;), using the following method :-
area of triangle = 0.5 x base length x perpendicular height (2.4)

The Perpendicular distance, D, of point (u, v) from line ax + by + ¢ = 0, as

shown in Figure 2, is

b
o Gutbote (2.5)

Using Equations (2.3), (2.4) and (2.5) we get
az; + by; + ¢ = e(i)(ax; + by; + ¢)

Since the base length remains constant, with (&;,y;) the new position of

(;,9:;). Thus the new point moves on a line parallel to the base of the trian-

gle.

Having found the equations from all the triangles in the patch, we have P
equations for the position of the new node. We can now use some or all of these
equations to find the new nodal position.

Amongst the procedures used to find the nodal position were :-

1) least squares fit :- since P lines will almost certainly not meet at a point.

2) use equations 1 and 2, i.e. the equations produced by the first triangle and
its neighbour to give the new nodal position: this has the problem of not
guaranteeing that the node will stay inside the patch, especially if (1) or

€(2), as defined by (2.3), are greater than 1.

3) if possible, use equations j and j+1 where €(j) and €(j + 1) are both less

than or equal to 1. If this is not possible choose j so that

€(j)+e(j+1) <elk)+elk+1). k=1...p. J# k.

This improves the chances of a node remaining inside a patch.

In all cases, however, it is still necessary to check for degenerate triangles, (see
Figure 3).

degenerate triangle

Figure 3: Production of Degenerate Triangle

It a degenerate triangle occurs then only a proportion of the move is made,

and another check is carried out. If it still degenerates then we do not move the

node.

3 Implementation

The procedures that were used in the testing of the criteria are outlined here.
Firstly an original triangulation was set up, this was usually Delaunay [4], but
various grids produced by data dependent reconnection criteria, [9], were also
used: this was to see if nodal movement depended heavily on the original trian-
gulation. Originally only the interior nodes were moved, with each node being
moved inside its patch to a new position, and then the next node in the list being
moved. This is analogous to a Gauss-Siedel iteration procedure as the new posi-
tion is used in all subsequent moves and all the spring constants are recalculated
for each node. The method is analogous to a 5.0.R method if we only take a
proportion, w, of the calculated move. It was decided not to use a complete global
method, akin to the Jacobi iteration, where all spring constants were found at the
start of a cycle and an n; by n; matrix system is solved, where n; is the number
of interior nodes.

Following each sweep through the list of nodes, a check is made to see if the
nodes have converged to a steady solution. The check used depended on the
criteria in use. For the spring analogy the check was to calculate the maximum
distance moved in each sweep and if this was less than some tolerance then the
method had converged. For the error equalisation criteria a note was made of the
minimum value of €(7), the expansion factor for a triangle, over all patches in a

sweep. When this minimum value is greater than a given tolerance less than 1,

usually about 0.8, then the procedure was stopped as it could be assumed that
all triangles were close to the “ideal” size.

It was then decided, in the spring analogy case, to move the boundary nodes,
but to constrain them to move along the boundary. Originally this was done
totally before the interior nodes were moved, by using the same spring analogy
as for the interior nodes, but using only the connections on the boundary. This
produced some problems as it was possible that in moving the boundary nodes to
their optimal points and keeping the connections the same, degenerate triangles

could be produced. This could be tackled in two ways :-

1. include all nodes in a sweep but constrain the vertices of the region
to stay fixed and the boundary nodes to remain on the boundary, and

then continue until all nodes have moved to their optimal positions.

2. when the boundary nodes only have been moved, re-Delaunay the
resulting nodal positions to produce a new delaunay triangulation and

work on the new triangulation for the interior points only.

The advantage of (1) is the lack of extra work to find a new triangulation.
The disadvantages are that the nodes do not necessarily move to the best position
but are constrained by the connectivity, and that if the boundary nodes are
constrained to the boundary but all connections must be used as springs, then

ghost points must be used (see Figure 4).

10

boundary

interior

k, spring constant .
pring e k,, spring constant

gho/st point

Figure 4: Ghost Points

4 Testing Procedures

In this section the underlying functions and the sets of data points which were
used in the calculations are detailed and the procedure for numerical error com-

parison is outlined.

4.1 Data Sets

Two different data sets were used in the calculations. The first data set was of
33 data points and was that used by Franke [7], Dyn et al. [5], Malcolm [9]. The

second data set was of 81 points, set on a regular cartesian grid.

4.2 Test Functions

The test functions are again those used by Dyn et al. [5], and the numbering
is consistent with theirs. The test functions are mainly smooth curved surfaces,
although F7 has discontinuous first derivatives. Detailed expressions are given

for the most used functions. All the functions are defined on the unit square.

11

B R L S SR (G LR C)

(tanh(9y — 92) + 1)

F2 =
9
1 y—1 > 1
20y—1) 0<(y—v)<3
F7 ==
14+COS(4nr
sl <
0 otherwise
where v = 2.1x-10.1

r = -

This function represents a “mountain” on a plane and a ramp leading to

another plane. It is a function with discontinuous first derivatives.

F8 =1+ tanh(—3g(x,y)) where ¢g(z,y) = (.595576(y + 3)* —x — 1)

4.3 Error Calculations

The error calculation was changed from that used in Malcolm [9]. Rather than
pointwise error on a 33 by 33 regular grid on the unit square, the method used
was to calculate the Ly-error of the interpolant to the actual function. This gives
a clearer idea of the overall quality of the interpolant and fits in well with Finite

FElement calculations.

12

The Ls-error was calculated as follows:-

with interpolant f7 to function f

Ly-error = \Ii (/T [f— fTi]2d:1;dy)

=1 ¢

where T}, is the number of triangles in the triangulation T and
Tn
T:UTZ' TiﬂTj:Q) i £ 7,
=1

and Fr, is the interpolant fr on triangle T;.
The integral was calculated using 13-point Gaussian quadrature on the trian-

gle.

5 Results

In this section numerical and graphical results are presented for most of the test
functions, all the data sets and both the criteria described previously in the report.
The tables of numerical results are set out for data sets of 33 and 81 points and

for most of the functions. A key to the letters down the left hand side of the table

follows here :-

A) Delaunay triangulation of the original data set, (regular pattern for 81 data
points),i.e. the nodes were ordered from bottom left to top right, along the

TOws.

B) Delaunay triangulation of the reordered set of 81 data points. The order-
ing of the nodes in (A) was changed completely so that the ordering was

randomised.

13

C) This is the result of using the reconnection procedure ABN-2 as described

in [9].

D) This is the result of using the reconnection procedure PF-1 as described in
[9].

The preceeding categories (C) and (D) are to give a comparison to results

produced in [9].

E) This is the result produced by using the spring analogy with, in Equation

(2.2), « = 2,3 =1, (i.e mainly curvature). The boundary nodes move.

F) This is the result produced by using the spring analogy with, in Equation

(2.2), a« =1, =5, (i.e mainly gradient). The boundary nodes move.

G) This is the result produced by using the spring analogy with, in Equation

(2.2), a =10, 3 = 2r. The boundary nodes move.

H) This is the result produced by using the spring analogy with, in Equation

(2.2), a =10, 3 = 2. The boundary nodes do not move.

I[) This is the result produced by using the spring analogy with, in Equation
(2.2), o =10, 3 = 2. The boundary nodes move. The reordered data set is

used.

J) Reconnection procedure ABN-2 is employed on the grid produced by meth-

ods (E)-(I) which had the smallest Ly-error.

K) Method (G) is employed on the grid produced by method (C)

L) The error equalisation technique is used on the Delaunay grid.

14

Lgerrors for 81 points

Method F1 F2 F7 F8 F9

10~2 1072 10~2 10~2 10~2
A 2.08434 | 4.32505 | 4.44908 | 5.96940 | 1.09879
B 2.03668 | 7.47902 | 4.78889 | 7.03185 | 1.22257
C 1.91816 | 4.32775 | 4.49762 | 3.87988 | 0.68699
D 2.04762 | 4.32775 | 3.91496 | 5.00737 | 0.71525
E 1.75760 | 0.97138 | 12.1595 | 1.58498 | 0.81894
F 3.55918 | 1.52432 | 4.57950 | 2.54537 | 1.07889
G 1.87650 | 1.11700 | 8.46255 | 1.66004 | 0.84348
H 2.04940 | 3.31976 | 8.15408 | 2.83537 | 0.91046
1 2.01808 | 1.66920 | 9.39773 | 1.65603 | 0.93596
J 1.59973 | 0.64647 | 3.52716 | 1.00133 | 0.63720
K 2.38256 | 1.33465 | 10.8113 | 2.64847 | 0.95160
L 7.65151 | 4.32505 | 9.54344 | 32.9481 | 1.67338

Table 1: Ly-errors for 81 points

The graphical results show 3-D isoparametric surface representations (iso-
plots), contours produced by the interpolants on the grids and the grids them-
selves. The two different Delaunay triangulations produced by the 81 data point

set are shown in Figure 5. The actual pictures of functions F2 and F7 are shown

in Figures 6(a) and 6(b) respectively.

15

Ly errors for 33 points
Method F1 F2 F7 F9
10~2 10~2 107t 10~2
A 6.95143 | 2.37108 | 1.20728 | 7.37058
C 5.81319 | 1.41924 | 1.01215 | 6.92590
D 5.19476 | 2.00543 | 1.03717 | 6.93231
E 5.96320 | 1.41626 | 2.17230 | 6.36400
F 6.08437 | 0.84774 | 1.19977 | 5.60495
G 5.04153 | 1.07470 | 1.83076 | 6.23826
H 4.32820 | 1.69124 | 1.36581 | 6.87378
J 4.63891 | 0.63647 | 1.02559 | 5.20079
K 6.73206 | 0.69915 | 2.43962 | 6.14087
L 8.94941 | 2.37108 | 1.27543 | 5.56620

Table 2: Ly-errors for 33 points

As can be seen from the numerical results in Table 1, which further illuminate
the results from Table 2, there can be considerable improvements in data rep-
resentation by the interpolant. We can see that a change in the ordering of the
nodes can greatly change the error of a representation. In most cases nodal move-
ment compares favourably with nodal reconnection. It can also be seen that the
movement of the boundary nodes has a positive effect on the error, i.e. compare
results G and H on function F2. In all the cases documented here either large «

or large 3 in equation (2.2) provides a better representation, while a moderate

16

weighting of both « and 3 provides a better but intermediate result.

In all cases the best result is produced by moving the nodes and then recon-
necting them using a data dependent criterion. This, it should be noted, produces
vastly different results from reconnecting and then moving nodes. Also to be seen
is the failure of the error equalisation criteria which in all cases provides poorer
representations than Delaunay.

In the graphical output certain things can be seen. In Figure 9 the movement
of nodes towards the line y = z can be seen clearly, while in Figure 10 long,
thin triangles parallel to the contours are created. The anomaly of the two “well
shaped” triangles in the centre of the grid is probably due to the order in which
the triangle edges were reconnected. Figures 10 and 11 clearly show the difference
between “moving and reconnecting” and “reconnecting and moving”.

Figures 12-17 all deal with function F'7 which should have the widest range of
results, due to the smooth portions of the function. Figure 13 shows that nodal
reconnection improves the representation, by the interpolant, of the ramp while

2/5 clusters the

Figure 14 shows that using a spring analogy weighted towards (u;)
nodes about the “mountain” due to its property of being the only feature with a
2nd derivative, while poorly representing the ramp. Figure 15 shows that if “arc
length” is weighted in the spring analogy, then the ramp is better represented
and the nodes do not cluster as severely near the “mountain”. The use of data
dependent reconnection on the grid in Figure 15, see Figure 16, produces excellent
representation of the ramp and a much better representation of the “mountain”.

Moving the nodes, as connected in Figure 13, produces, in Figure 17, an awful

representation of the whole function, by the interpolant.

17

Figures 18-22, which show function F8, and Figures 24-28, which show func-
tion F9, reinforce the comments made above and the numerical results in Table
1. However, Figure 23 gives an example of how bad the error equalisation criteria

can be.

6 Conclusions

There is an increasing use of numerical techniques which require an initial trian-
gulation able to well represent the initial data when this is interpolated on it. In
a previous report it was shown that reconnecting nodes improved representation
of the data. In this report it is shown that techniques do exist which can re-
distribute nodes with a fixed connectivity so that better representations, by the
interpolant, can be obtained. However it is also shown that the error equalisation
technique set out here is very poor at nodal redistribution.

The spring analogy criterion is seen to be quite good at redistributing nodes,
although some idea of the form of the underlying data does seem to help with
the choice of parameters and hence the final redistribution. Additionally, major
improvements in representation can be seen if the redistributed nodes are then
reconnected using data dependent criteria.

Further work will involve the production of an initial data dependent grid us-
ing a moving front technique, rather than relying on an initial triangulation, i.e.
Delaunay, which is non-data dependent. This will, hopefully, result in the pro-
duction of a fully data-dependent grid generator using moving front generation,

nodal reconnection and nodal movement.

18

References

1]

3]

G.F. Carey and H.T. Dinh, (1985), Grading Functions and Mesh Redis-

tribution, STAM J. Num. Anal. 22, pp 1028-1040

D. Catherall, (1988), A Solution-Adaptive-Grid Procedure for Transonic

Flows Around Aerofoils, RAE Technical Report 88020

J.C. Cavendish, (1974), Automatic Triangulation of Arbritrary Planar Do-
mains for the Finite Element Method, Int. J. Num. Meth. Engng. 8, pp

679-696

B. Delaunay, (1934), Sur la sphere vide, Bull. Acad.Sci. USSR (VII): Classe

Sci. Mat. Nat., pp 793-800

N. Dyn, S. Rippa and D. Levin, (1990), Data Dependent Triangulations

for Piecewise Linear Interpolation, IMA J. Num. Anal. 10, pp 137-154

P.R. Eiseman and G. Erlebacher, (1987), Grid Generation for the Solu-

tion of Partial Differential Fquations, ICASE report 87-57. NASA Langley,

R. Franke, (1979), A critical comparison of some methods for interpolation

of scattered data, Report NPS-53-79-003, Naval Postgraduate School

R. Lohner, K. Morgan and O.C. Zienkiewicz, (1986), Adaptive Grid
Refinement for the Compressible Fuler Equations, in: 1. Babuska et al. eds.,

Accuracy Estimates and Adaptive Refinements in Finite Element Computa-

tions (John Wiley and Sons Ltd) pp 281-297

19

[9]

[11]

[13]

[14]

A.J. Malcolm, (1990), A Survey of some Data-Dependent Criteria for Tri-

angular Tessalations using Fized Nodes, Report 1/90, University of Reading

K. Miller and R.N. Miller, (1990), Moving Finite Elements, Part I,

SIAM J. Num. Anal. 18, pp 1019-1032

E.J. Nadler, (1985), Piecewise Linear Approximation on Triangulations of

a Planar Region, PhD thesis, Brown University

B. Palmerio, L. Fezoui, C. Olivier and A. Dervieux, (1990), On TVD
Criteria for Mesh Adaption for Fuler and Navier-Stokes Calculations, INRIA

report 1175,

E. G. Sewell, (1972), Automatic Generation of Triangulations for Piecewise

Polynomial Approximation, PhD Thesis, Purdue University

W.C. Thacker, A. Gonzalez and G.E. Putland, (1980), A Method for
Automating the Construction of Irregular Grids for Storm Surge Forecast

Models, J. Comp. Phys. 37, pp 371-387

20

