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Abstract A unified view on the interfacial instability in a model of aluminium reduction cells 

in the presence of a uniform, vertical, background magnetic field is presented. The 

classification of instability modes is based on the asymptotic theory for high values of 

parameter , which characterises the ratio of the Lorentz force based on the disturbance 

current, and gravity. It is shown that the spectrum of the travelling waves consists of two parts 

independent of the horizontal cross-section of the cell: highly unstable wall modes and stable 

or weakly unstable centre, or Sele’s modes. The wall modes with the disturbance of the 

interface being localized at the sidewalls of the cell dominate the dynamics of instability. The 

Sele’s modes are characterised by a distributed disturbance over the whole horizontal extent 

of the cell. As  increases these modes are stabilized by the field. 
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1. Introduction 

Aluminium is produced by decomposing alumina dissolved in a molten cryolite 

(sodium aluminium fluoride) by an electric current 
0I  of 350-500kA, which passes vertically 

down from the anode to the cathode (Fig. 1). As a result of this process, a two-layer fluid 

system is formed with molten aluminium at the bottom of the cell and a slightly lighter 

cryolite at the top. Aluminium is then siphoned from the cell periodically. 

As cryolite is a very poor conductor, much of the energy supplied is wastefully 

released in the cryolite layer in the form of Joule heating. The desire to reduce the thickness 

of the cryolite layer, and thus to reduce the energy losses to a minimum, is limited by 

interfacial instabilities, which are magnetohydrodynamic (MHD) in nature. They result from 

the interaction of the disturbance current with the external magnetic field, which is induced in 

the external circuit supplying current to the cell [1]. This interaction creates the Lorentz force, 

which acts on aluminium. The resulting interfacial wave may amplify with time and lead to 

the instability. Therefore, it is vitally important to understand the nature of instabilities, and to 

find the ways to control them. 

It is not surprising then that the interfacial instability of a two-layer system in the 

presence of a vertical current and a background magnetic field, has been studied by many 

authors, see a review in [2]. Various aspects of the problem, as well as possible sources of 

instability have been investigated. These are spatial noniniformities of the external magnetic 

field, various components of the field (horizontal/vertical), standing or travelling waves in 

bounded or unbounded domains, etc. Several methods to control the instability by mechanical 

means [3] and by a low-frequency alternating magnetic field [4] have also been proposed. 
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 3

A particular, widely used, simplified model of the MHD interaction within the cells 

leading to the instability has been suggested in [1], [5]-[7] and later employed in [8]-[16]. The 

model is based on the assumptions that the external, vertical magnetic field is uniform, and 

that the cell is completely covered by the anode. Concerning the nature of the instability 

within the limits of this model, main conclusions made by previous authors may be 

summarised as follows.  

First of all, the external magnetic fields are highly complex, spatially varying within 

the cell. It has been recognized, however, that the most dangerous component of the field is 

vertical. It destabilizes the cell even if it is uniform [6]. 

Secondly, for certain cell geometries there is a critical value of the dimensionless 

parameter 

    gHHLBj )(/ 2121
2

00 , 

above which the disturbance of the interface starts growing in magnitude. In the above 
0j  is 

the density of the supplied current, 
0B  is the induction of the vertical component of the 

 
FIG. 1. Simplified schematic diagram of the aluminium reduction cell with horizontal cross-

section given by an arbitrary function 0),(   yx  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 4

magnetic field, L  is a typical horizontal dimension of the cell, 
1H , 1  and 

2H , 2  are 

thicknesses and densities of aluminium and cryolite layers, respectively, and g  is 

gravitational acceleration. From the expression for  it is clear that the reduction of the 

thickness of the cryolite layer, the increase of the current density, or the increase of the 

intensity of the background field has the same effect. Each of these actions leads to the 

increase in the parameter , and may push its value above critical. 

Parameter  characterises the ratio of the Lorentz force based on the scalings of the 

disturbance current, )/( 21
2

00
 HHLj , and vertical component of the magnetic field, 

0B , on 

the one hand, and gravity,   g)( 210 , on the other. Here 0  is the characteristic amplitude 

of the elevation of the interface. For  >> 1 the electromagnetic effects dominate gravity. In 

aluminium reduction cells parameter  varies in the range 6 ≤  ≤ 340 [14], [15], [2]. 

Finally, the equilibrium is most unstable to long waves with the wavelength 

comparable to the horizontal dimension of the cell. 

It is important to note that the discussion above, as well as this investigation, is related 

to the MHD instability, which is always very long-wave and violent, as confirmed by a recent 

experiment [17]. The so-called MHD noise [18] involving waves of 0.5-2m in length and of 

finite but small amplitude is always present during the smelting process, but it does not affect 

the stability of the cells and thus is of no concern here. 

Several scenarios of the MHD instability have been proposed. Sneyd and Wang [6] 

and Bojarevics and Romerio [7] have independently proposed a model, later explored by 

Davidson and Lindsay [10], whereby the instability occurs owing to the magnetic coupling of 

gravity waves inside the whole domain occupied by the fluids. The interface becomes 

unstable owing to an internal resonance of these waves. 
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This mechanism, however, has been questioned by Lukyanov, El and Molokov [12], 

who noted that the key coupling between gravity and the Lorentz force occurs at the sidewalls 

rather than inside the domain. It has been suggested that the instability in closed domains 

takes place as a result of multiple reflections and amplification of the waves at the sidewalls. 

Further, an exact solution for a circle has been analysed in [12] for  >> 1 for the 

modes corresponding to the most unstable, long waves. It has been shown that for these 

modes both the growth rate of instability and the frequency increase as 2/  independent of 

the mode number in the azimuthal direction, which gives a hint at universality of this 

dependence. 

This universality has been confirmed independently by Morris and Davidson [13] 

using either 0g  of long-wave limits and by Molokov, El and Lukyanov [14] using the  

>> 1 asymptotics, who have shown that the growth rate of the most unstable modes is 

proportional to 2/  independently of the geometry of the cell. 

Thus there exist three different explanations of the instability. Here we reconcile the 

results obtained by previous authors and present a unified theory for this simplified model of 

the process based on the asymptotic analysis for high values of . We show that all the modes 

of instability may be classified into two distinct groups independent of the cell geometry, and 

discuss mechanisms of instability for each group. 

2. Formulation 

It is assumed here that the vertical magnetic field zB eB   0  is uniform, and that the 

two-fluid system is contained in a finite or semi-infinite domain as shown in Fig. 1, where (x*, 

y*, z*) are Cartesian co-ordinates. The cell is supposed to be completely covered by the anode. 

Molten aluminium and cryolite form layers 1 and 2, respectively. Aluminium, cryolite, and 
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cathode are characterised by the electrical conductivities 1 , 
2 , and c , respectively, 

which are ranked as follows:   12 c . The sidewalls of the box are electrically 

insulating. Typical values of parameters of the cell are: mH 3.01  , mH 05.02 
 , 

3
1 /2300 mkg , 3

2 /2100 mkg , 16
1 )(103.3   m , 1

2 )(200   m , 

14 )(102   mc , mL 10 , TB 23
0 10103   , and kAI 5003500  . 

We will be concerned with the stability of a plane interface located at 0z  in the 

long-wave approximation. The shallow-water model we use, based on the assumption 

1/1   LH  (typically 03.0 ), is essentially that developed by Urata [5] and is not 

derived here. For infinitesimally small perturbations of the interface the dimensionless, two-

dimensional, time dependent equations reduce to [12], [16]: 

 





 2
2

2

tt
,     2 ,  (1a,b) 

where time t, the elevation of the interface x,y,t, and the electric potential in aluminium 

x,y,t are scaled with  cL / , 0 , and )/( 211
2

00
  HHLj , respectively. In the above 

  cL /  is the dimensionless dissipation coefficient, scmgc /20)/( 2/1    is 

the phase speed of the interfacial gravity waves,   21 ,   2211 // HH , 

  222111 // HH , and yx yx ee  // . Assuming 1
21 03.0   s  as in [11], 

[14], gives 755.0/1   cL  as a typical value of the dimensionless dissipation coefficient 

.  

 The boundary condition for the electrically insulating sidewalls and the non-

penetration condition at these walls yield 

 0


n

 ,    






n

     at   (2a,b) 
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respectively. Here function 0),(  yx  defines the shape of the boundary (horizontal 

geometry of the cell); n /  and  /  are normal and tangential derivatives to 0 , 

respectively. 

 Eqs. (1) and (2) are the wave equation with linear damping and the Poisson equation 

for the electric potential in aluminium. Damping leads to the reduction of the growth rate and 

to a certain change in frequency of the waves. As this is not a crucial issue for this study, 

hereinafter we will assume that  = 0.  

The electrical and mechanical parts of the problem are coupled in Eq. (1b) and in the 

boundary condition (2b). As we will see below, each type of coupling is associated with a 

particular group of instability modes. For both of them, however, coupling at the boundary is 

important. Indeed, in the absence of the background field, when  = 0, the coupling at the 

boundary disappears, while that in Eq. (1b) remains. This gives pure gravity waves, satisfying 

the boundary condition 

 0/  n  at   

The electric potential redistributes passively, following the differences in the elevation of the 

interface. Thus for 0  coupling at the boundary is essential. It vanishes if the boundary is 

removed to infinity, which explains why the equilibrium in an unbounded domain is stable 

[19].  

Moreover, suppose for an instant that the sidewalls are perfect electric conductors. 

Then the boundary condition (2a) is replaced by  

  = 0    along ,   

while condition (2b) is reduced to Eq. (3). The problem for  again decouples from that for , 

implying no instability. It will be shown below that this is what happens for a particular group 

of instability modes in the limit  .  
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To summarize, for instability to occur it is essential not only that the boundary is 

present, but that it is electrically insulating [13], [14]. These observations are crucial for 

further understanding of the nature of the unstable modes, as well as for the explanation of the 

fact that some modes develop strong growth, while the other ones are either weakly unstable 

or stable. This will be shown for several geometries of the cell.  

In what follows we analyse first the exact solutions for a half-plane and for a circle for 

 >> 1, and then develop an asymptotic solution for an infinite channel drawing attention to 

the common features of the instability modes for these geometries. Finally we will discuss the 

results obtained both here and previously and will develop a unified view of the mechanisms 

of instability for each group of modes. 

3. Half-plane 

The most basic geometry with a sidewall present is a half-plane x < 0, where the two-

fluid layer is bounded by a sidewall at x = 0 (Fig. 2). For this geometry the boundary 

conditions (2) are: 

 0


x

 ,    
yx 






     at   x = 0  (5a,b) 

We are looking for a solution in the form of travelling waves 

 )exp()(ˆ tiyikx y  ,    )exp()(ˆ tiyikx y  ,  (6a,b) 

where ky > 0 is a real wavenumber, and  is a complex frequency.  
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 Substituting Eqs. (6a,b) into Eqs. (1) and boundary conditions (5a,b) yields: 

 0ˆ
ˆ 2
2

2




xk
dx

d
,    

 ˆˆ
ˆ

2
2

2

yk
dx

d
,  (7a,b) 

 0
ˆ



dx

d
 ,    

 ˆˆ
yki

dx

d
     at   x = 0  (8a,b) 

where  

 222
yx kk  .  (9) 

The solution is normalized in such a way that 

 1)0(ˆ  .  (10) 

As the domain is semi-infinite, the spectrum of the problem consists of a continuous 

and a discrete part. 

 

3.1. Continuous spectrum: reflection of a plane wave from a sidewall 

Assuming that both  and kx are real yields the solution of Eqs. (7)-(10) as follows: 

 xikxik xx eCeC  21ˆ ,  (11) 

 

 

FIG. 2. Schematic diagram of the half-plane problem. On the left are flow subregions for the wall 
modes for  >> 1: boundary layer L and core C; on the right is schematic diagram of reflection of 
a plane wave from the sidewall. 
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  xikxikxk

y

x xxy eCeCeCC
k

k
i 





 212212

1
)(ˆ ,  (12) 

where   













)(
1

2

1
22,1

ik

k
C

x

y
 . One of the exponential terms in Eq. (11) is the incident 

wave on the sidewall with the angle of incidence 2/2/   given by the expression 

xy kk /tan  , while the other one is a reflected wave. 

The reflection coefficient  is defined as follows: 

 
22

22

2
1

2
2

)tan1(

)tan1(

||

||









C

C
,  (13) 

where 2222 /sin)/( yyx kkk   is the value of parameter  defined with the wavelength 

in the direction of propagation of the incident wave scaled with 2. 

From Eq. (13) follows that  > 1 for 2/0  , which corresponds to the 

amplification of the wave propagating in the +y-direction. Reversely, if 02/  , then  

 < 1 corresponding to suppression of the wave propagating in the –y-direction.  

Variation of  with  for several values of , and with for several values ofare 

shown in Figs. 3 and 4, respectively. For a fixed value of  the reflection coefficient reaches 

a maximum of 

 
2

2

max
11

11








   (14) 

at 

 
2max

21
arccos








 .  (15) 
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The reflection angle for which the maximum is reached varies in the range 2/4/ max   

for 0  . The reflection coefficient increases indefinitely as 0 , 2/max  , 

which implies that the short waves almost aligned with the sidewall are amplified most.  

 On the other hand, 

 ...21 1
max  

 ,   ...4/max     as  ,  (16) 

 

FIG. 3. Reflection coefficient as a function of  for several values of : 0.5 (1), 1 (2), 1.5 (3), 2 
(4), 10 (5). 

 
 
FIG. 4. Reflection coefficient as a function of  for several values of the reflection angle:  = 5o 
(1), 30o (2), 45o (3), 60o (4), 85o (5). 
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implying that the amplification of the waves reduces to zero as the magnetic field induction 

increases. 

For 1  and for )1(tan O  the leading terms in Eqs. (11) and (12) tend to become 

real functions. Then 

  tyk
xk

y
x 



 cos
cos

)cos(
,  (17) 

  tyk
xk

e y
xxk y 















 cos
cos

)cos(1
2 .  (18) 

It is evident that both functions  and  are O(1), and that their order of magnitude is 

thus determined by Eq. (1b), rather than the boundary condition (2b). Expressions (17) and 

(18) represent travelling waves in the +y-direction and standing waves in the -x-direction with 

functions of x being their amplitudes. Thus for  >> 1 the pattern for both  and  consists of 

channels along the y-axis, i.e. to waveguides, similar to the standard diffraction problem. This 

is shown in Fig. 5a,b for  = 100,  = 30o. The electric current in aluminium flows between 

  

 

FIG. 5. Half-plane. Isolines of  and  for the Sele mode a) and b) and for the wall mode c) and 
d), respectively. Here ky = 1,  = 100, t = 0. Arrows in (b) and (d) show the direction of horizontal 
current. 
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crests and troughs of the wave in the whole domain as shown schematically in Fig. 5b. 

Sufficiently far from the wall the channels for  coincide with those for , and the solution 

tends to become that for the unbounded domain. 

The exact expression for )0(̂  is: 

 
i


2

1
)0(ˆ ,  (19) 

i.e. 0)0(ˆ 1  i  as  . Thus, in the limit not only the normal, but also the tangential 

component of current,  ˆˆ
yy ikj  vanishes at the boundary. As we will see later this is 

characteristic for what we will call the Sele modes of instability for closed domains. 

 

3.2 Discrete spectrum: wall modes 

Suppose now that both kx and  are complex. Then the exponential functions in Eq. 

(11) describe either a spatially decaying, or growing disturbance away from the wall. 

Discarding the latter we set C2 = 0 and require that Im(kx) < 0.  

Substituting Eq. (11) into Eq. (10) and using Eq. (12) yields: 

 )exp(ˆ xikx ,   














 )exp()exp(

1ˆ
22 xk

k

ik
xik

kk y
y

x
x

yx

.  (20a,b) 

The boundary condition (8b) leads to a simple dispersion relation as follows: 

    yxx kikk ,  (21) 

which gives 

  ikk yx / ,  (22) 
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where 11612 22/3  
 ,  2/116121 22/1







  

 . Similar to Sec. 3.1, 

parameter 2/ yk  is defined with the wavelength in the direction of propagation scaled 

with 2. 

Eqs. (9) and (22) yield two possible values for , namely: 

 iry ik  / ,  (23) 

where 2222/1 42   AAr , ri  / , and 122 A .  

The solution with positive and negative signs of r represents waves propagating in 

the +y and –y-directions, respectively. The growth rate of the disturbance is determined by the 

imaginary part of  For any non-zero value of  the disturbance propagating in the –y-

direction (r < 0, i < 0) decays, while that in the +y-direction (r > 0, i > 0) grows. Thus 

for any non-zero value of the equilibrium is unstable to travelling waves propagating in the 

+y –direction. 

The unstable wave is shown in Fig. 5c,d for  = 100 and for ky = 1. The contour lines 

of the disturbance of the interface exhibit characteristic tails, which will be observed in all the 

other flow geometries considered in this paper. 

If MHD interaction is strong, i.e. 1 , two-term asymptotic expansions of kx and 

are as follows: 

 )( 2/1
2
1  Oikik yx ,    )( 2/1

2
1  Oiki y .  (24a,b) 

Throughout this paper 2/)1( ii  , i.e. the branches of the roots with positive real part 

are taken. For consistency with the shallow-water approximation we require that /2 , 
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which formally places an upper limit on the value of . For  = 0.03 this gives  << 2000, i.e. 

the theory presented here is valid for all practical purposes. 

 Calculations by Kohno and Molokov [16] show that the asymptotic expressions (24) 

with two terms and the wavenumber corresponding to the perimeter of the domain give 

accurate results for  > 6 for any closed geometry of the cell. 

 Substituting one-term asymptotics for kx from Eq. (24a) into Eqs. (20), gives 

expressions for ̂  and ̂  as follows: 

    xixL 2/exp2/expˆˆ  ,    LC   ˆˆˆ 12/1 ,  (25a,b) 

where 

 )exp(ˆ xk
k

i
y

y
C  ,       xixiL 2/exp2/expˆ  .  (26a,b) 

 Function ̂ , denoted as L̂ , is concentrated in the boundary layer L of thickness O(-

1/2). Function ̂ , on the other hand, consists of two terms. The first term in Eq. (25b) 

represents the O(-1/2) core potential, which spreads much further from the wall, to a distance 

O(ky
-1). For ky = O(1), which is typical for reduction cells, the transverse size of the core is 

comparable to the wavelength of the disturbance. The second term in expression (25b) 

represents the O(-1) boundary-layer correction to the core potential, which sets the normal 

component of current at the wall to zero.  

Substituting further Eq. (25a) into Eq. (6a) gives the asymptotic expression for the real 

part of  as follows: 

    yktxtx y )(2/cos)(2/exp  .  (27) 

Note that as  is high, the solution (27) satisfies the equation for a plane wave transverse to 

the wall, namely: 
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2

2

2

2

xt 






.  (28) 

Thus, the wall either ‘radiates’ or ‘absorbs’ a spatially decaying wave in the transverse 

direction. The source of ‘radiation’ is the Lorentz force on the right-hand side of the boundary 

condition (5b). 

 From Eq. (27) follows that the wave speed in the direction transverse to the wall 

equals to unity, i.e. to the phase speed of gravity waves. The longitudinal wave speed is equal 

to 2/12/11 )2/()2/( 
 yk , which is much higher for 1 . 

 As the terms O(1) in the expressions for  and kx are purely imaginary, they affect the 

increment in the exponential term in expression (27) only, which becomes equal to 

2/2/ yk . Thus the effect of the finite wavelength is to reduce the growth rate and to 

increase the distance from the wall affected by the disturbance. 

  

3.3 Mechanism sustaining the unstable wall mode 

 

Suppose that there is a disturbance of the interface, which is initially independent of 

the x-co-ordinate, as shown in Fig. 6. Then the electric current is initially in the y-direction, 

flowing from crests to troughs of the interface elevation. This current interacts with the 

magnetic field and the resulting Lorentz force pushes the fluid away from the wall on the 

right side of the crests. The fluid flows though the core, and returns to the wall at the left side 

of the crests. The resulting deficit of fluid on the right side leads to the depression of the 

interface, while the excess fluid on the left side creates a rise of the interface. As a result, the 

disturbance (i) starts growing in amplitude, (ii) propagates in the positive y-direction. 
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The source of the disturbance is the Lorentz force at the boundary, which results from 

the interaction between the core current with the background field. This current flows owing 

to the differences in the core potential, which is a global function. As the interface 

disturbance  vanishes outside the boundary layer, the core current is purely horizontal. It 

drives the fluid globally from one part of the boundary to the other. Thus the core potential, 

shifted in phase to , synchronises the propagation of the interface disturbance generated 

locally at various parts of the boundary. 

Most of the results in subsections 3.2 and 3.3 have been obtained in [13] and [14]. 

They have been reproduced here as part of the unified theory of the phenomenon. 

4. Circular domain 

Another exact solution for travelling waves, which demonstrates important features of 

the modes, now in a closed domain, may be obtained for a circular geometry. Assuming 

 )exp()(ˆ tiinr  ,    )exp()(ˆ tiinr  ,  (29a,b) 

where 

 a) b) 

FIG. 6. (a) Functions  (solid line),  (broken line), and jy (dotted line) at x = 0, t = 0 for  = 100, and ky = 1 
and (b) schematic diagram of the mechanism of instability 
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 22 rk ,   )()(ˆ rkCJr rn ,    n
r rnrkr )1('ˆ)(ˆ)(ˆ 12   ,  (30a-c) 

)(nJ  is the Bessel function of the first kind [20], n > 0 is an integer, (r, , z) are cylindrical 

co-ordinates, and ‘ = d/dr. The characteristic length L* is the radius of the circle. As the 

geometry is closed, the tangential, azimuthal wavenumber is now quantised and is equal to 

2n. The constant )(/1 rkJC rn  has been selected in such a way that 1)1(ˆ  . Parameter kr 

satisfies the following dispersion relation: 

   )(/)( 1
2

rnrnrr kJkJinkik .  (31) 

 Note that the dispersion relation is similar to that for the half-plane. Indeed, 

introducing notation )(/)()( 1 rnrnr kJkiJkf  , gives: 

  )(2
rrr kfnkik .  (32) 

For 1f , kr = kx, and n = ky, Eq. (32) reduces to Eq. (21) exactly. Thus function f expresses 

the effect of the geometry of the domain. 

 

a)  b) 

 

FIG. 7. Variation of the first nine roots of the dispersion relation for a circular domain (a) and zoom into the 
Sele modes 4-9 (b). Modes number 1, 2, and 3 correspond to n = 1 and l = 1, 2, 3; modes number 4, 5, and 6 
correspond to n = 2 and l = 1, 2, 3; modes number 7, 8, and 9 correspond to n = 3 and l = 1, 2, 3, 
respectively. The values of the roots on the real axis correspond to  = 0, while the endpoints are for  = 100. 
The limit values of the roots for modes 4-9 as   are shown with circles. 
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Now, for each value of n there is an infinite number of roots ),( ln
rk , l = 1, 2, … of the 

dispersion relation (31). Both real and imaginary parts of the roots are either positive, or equal 

in modulus but negative, as the dispersion relation is invariant with respect to the 

transformation rr kk  . In both cases the roots lead to the same solution. For compatibility 

with the half-plane problem we will be concerned with the latter roots, i.e. Re(kr) = -Re() < 

0, Im(kr) = -Im() < 0 (Fig. 6). 

As  increases, for each value of n the roots with l = 1 behave differently from those 

with 2l  (Fig. 7). For l = 1 both real and imaginary parts of ),( ln
rk  grow in modulus. For 

2l , the real parts of the roots monotonically decrease in modulus, while the imaginary ones 

first grow, and then decrease. Thus there are two distinct groups of modes which are 

discussed below.  

 

4.1 Wall modes 

 

 Consider the modes with l = 1 first For a fixed n and for  >> 1, Eq. (31) implies that 

1rk  and that [20] 

 
 

...
2

exp
)( 4

1
2
1







r

r
rn

k

nik
kJ  ,    ikJkJ rnrn  )(/)( 1 ,  

while the dispersion relation reduces to that for the half-plane exactly, i.e. 

  rr nkik 2 ,  (33) 

The asymptotic expressions for kr, , ̂  and ̂  obtained from the exact solution for the 

unstable modes are:  
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 )1(
2

iikr 


 ,  (34a) 

  iL  expˆˆ ,  (34b) 

 LC   ˆˆˆ 12/1 ,  (34c) 

where 

 0)1(2/1  r ,    
n

irn

C ̂ ,     iiL  expˆ .  (34d-f) 

The asymptotics is identical in structure to that for the half-plane. 

The isolines of  and  based on the exact solution, are shown in Fig. 8a,b for the 

unstable wall mode with n = 1, l = 1 and  = 100. This is the mode with the highest growth 

rate and the longest possible azimuthal wavelength of 2, the perimeter of the domain. The 

whole pattern rotates counter-clockwise, as shown in the figure. 

Function  exhibits characteristic tails, similar to the pattern for the half-plane shown 

in Fig. 5c. The real part of the core potential, 

       4/2/sin4/2/sin2/exp2/1   tytxtC , 
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is a global function, and is linear in both x and y. The electric current in the core being 

independent of either x or y flows in straight lines transverse to the isolines of the core 

potential (Fig. 8b). Interaction of the current with the background field leads to the horizontal 

flow of aluminium from the trough to the crest of  through the core transverse to the 

isolines of . 

 Figure 9 shows the results for a square domain obtained numerically with a finite 

difference method (second-order accurate in both space and time, based on central differences 

throughout). Calculations were performed for sufficiently long time so that the most unstable 

mode takes over all the other modes with lower growth rate. It is clear that the results shown 

in Fig. 8a,b for a circle and in Fig. 9 for a square are essentially the same topologically.  

 

  (a)   (b) 

  (c)   (d) 

FIG. 8. Circular domain: isolines of  and  for the wall mode with n = 1, l = 1 (a), (b) and for the 
centre mode with n = 2, l = 1 (c), (d) for  = 100, t = 0. The pattern rotates counter-clockwise. The 
arrows across the isolines of  show schematically the direction of the core current. 
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4.2 Centre, or Sele modes 

 

The roots of the dispersion relation, which define modes with 2l , as well as the 

resulting solution, behave drastically different from those with l = 1. They start at the real axis 

for  = 0, and return to this axis as   (Fig. 7). In fact, for high values of  they are 

characterised by the following asymptotics: 

 ...1
1

0   kkkr  ,  

where both k0 and k1 are O(1) and k0 is real. For these modes both functions ̂  and ̂  are O(1) 

in the core, which means that the magnitude of potential is determined by Eq. (1b). Thus most 

of the disturbance current completes its path in the core between maxima and minima of  

(Fig. 8d), which are located inside the domain, rather than at the boundary. As both ̂  and ̂  

are O(1), then from Eqs. (30c,b) follows that to the leading order 

 0ˆ      at r = 1,   (35) 

which implies vanishing tangential component of current at the boundary. 

  

 

FIG. 9. Instability in a square domain: isolines of  (a) and  (b) for  = 100 at t = 8.2. The pattern rotates 

counter-clockwise. The arrows across the isolines of  show schematically the direction of the core current. 
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 From Eq. (31) follows that in the limit   for )1(|| Okr   the dispersion relation 

becomes 

 0)( 01  kJn ,  (36) 

The roots of this equation lie close to those of Eq. (31) (see Fig. 7) and “attract” these roots. 

 From Eqs. (30) and (35) follows that in the limit   the boundary condition for 

the O(1) ̂  is: 

 )1(ˆ)1('ˆ  n .  (37) 

Thus, despite the fact that k0 is real, these are clearly not the gravity waves. Neither these are 

the modes for a strictly perfectly conducting wall as would be implied by Eq. (35). In fact, 

these modes may be qualified as the rotating interface first studied by Sele [3]. Indeed, these 

are the waves with non-zero elevation in the entire domain, which rotate with a single 

frequency. Although such waves are unstable, they are by far less dangerous than the wall 

modes as their growth rate, O(-1), will be limited by dissipation. 

 The centre modes are almost fully analogous to those from the continuous spectrum 

for the half-plane with the notable exception that they are weakly unstable. We will clarify the 

reason for this in Sec. 6 but before that we will consider instability in an infinite channel as it 

brings in new features of instability. 
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5. Infinite channel 

 Schematic diagram of an infinite channel is shown in Fig. 10. What is new here with 

respect to the geometries considered before is that there are two separated boundaries, each of 

which generates unstable waves. 

The problem for the travelling waves is defined by Eqs. (7) subject to the boundary 

conditions 

 0
ˆ



dx

d
 ,    

 ˆˆ
yki

dx

d
     at   x = 0 and at x = 2,  (38a-d) 

and the normalization condition 

 1)2(ˆ  .  (39) 

The characteristic length L* is half the channel width. 

 An exact solution to the problem in the form of travelling waves [10] is represented 

here in the following form: 

 xikxik xx eCeC  43ˆ ,  (40) 

 
FIG. 10.  Schematic diagram of the channel problem. On the left are flow subregions for the wall 
modes for  >> 1: boundary layers L1, L2, and core C; on the right is schematic diagram of 
reflection of plane waves from the sidewalls 
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   xkxkxikxik yyxx eCeCeCeC  


 65432

1ˆ ,  (41) 

where 222
yx kk  , and C3-C6 are constants.  

The boundary conditions (38a-d) and the normalization condition (39) yield the spatial 

exponents kx as the roots of the dispersion relation 

    0sinsinh)(sinsinh)()1cosh(cos216 2222222  pqqpppqqpqppq ,  (42) 

where p = 2kx, q = 2ky, and the values for C3-C6, whose lengthy expressions are not presented 

here. The dispersion relation is invariant with respect to transformation xx kk  . 

Variation of the spatial exponents and the corresponding values of  are shown in Fig. 

11a and 11b, respectively, for ky = 1 and for varying . Similar to the flow in a circular 

domain, there are two types of roots. First of all, only roots 1 and 2 exhibit strong growth in 

modulus for increasing , and thus represent the unstable modes. There is also an infinite 

number of roots, which remain real for all values of . The first four roots belonging to this 

group are shown in Fig. 11 (lines 3-6). 

 

 

(a)  (b) 

FIG. 11 Instability in an infinite channel: variation of the first four roots of the dispersion relation (42) 
(a) and corresponding values of  (b) with  for ky = 1 and for Re(kx) < 0. The values of the roots on the 
real axis correspond to  = 0, while the endpoints are for  = 100. The values of kx as   are shown 

with circles. 
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5.1 Wall modes 

 

Consider roots 1 and 2 first for Re(kx) < 0. In contrast to the flow in a circular domain, 

which is unstable for any non-zero value of , there is a threshold of instability for the waves 

in a channel. For ky = 1 roots 1 and 2 remain real below cr = 1.6. At  = cr an internal 

resonance occurs as a result of which the imaginary parts of kx and  appear and the flow 

becomes unstable. 

As the two boundaries, located at x = 0 and x = 2 are not connected, two separate 

boundary layers are formed for  >> 1. They are denoted by L1 and L2, respectively (Fig. 10). 

We will be looking for the asymptotic solution as follows: 

 21 ˆˆˆ LL  ,  (43) 

  21
12/1 ˆˆˆˆ

LLC   ,  (44) 

where subscripts denote the region of validity of the respective terms. The second and the 

third terms in Eq. (44) are boundary-layer corrections to the core potential. 

 In the boundary layers and the core the governing equations are: 

 0ˆ
ˆ

1
2

2
1

2





L
L ,   12

1
2

ˆ
ˆ

L
L 




   in layer L1,  (45a,b) 

 0ˆ
ˆ

2
2

2
2

2





L
L ,   22

2
2

ˆ
ˆ

L
L 




   in layer L2,  (45c,d) 

 0ˆ
ˆ

2
2

2




Cy
C k

dx

d
     in the core,  (45e) 

where )1(2/1 Okx   , and 02/1  x , 0)2(2/1  x  are stretched co-ordinates in 

layers L1 and L2, respectively. 
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 Integrating Eqs. (45), and taking into account the normalization condition (39) yields 

the general solution as follows: 

 )exp(ˆ 71  iCL ,    1
2

1 ˆˆ
LL   ,  (46a,b) 

 )exp(ˆ 2  iL ,    2
2

2 ˆˆ
LL   ,  (47a,b) 

    )2(expexpˆ
21  xkAxkA yyC ,  (48a,b) 

where C7, A1, and A2 are arbitrary constants. Constant C7 determines the value of ̂  at x = 0. 

These constants, as well as the value of , are determined from the four boundary conditions 

(38a-d). In particular, it follows that i2 . 

In order for the boundary–layer terms to decay away from respective sidewalls, we 

require that Im() < 0. This leads to two possible values for , namely: 

 ii   )1(2 2/1 ,  (49) 

which correspond to roots 1 and 2 of the dispersion relation, respectively. Thus we arrive at 

two different solutions for ̂  and ̂ .  

In the first case, i.e. for )1(2 2/1 i  , the result is as follows: 

 )2exp(7 ykC  ,   )2exp(/1 yy kkA  ,   02 A ,  (50) 

while in the second case, i.e. for )1(2 2/1 i  , one gets 

 )2exp(7 ykC  ,   01 A ,   ykA /2  .  (51) 

Substituting expressions (46)-(48) into Eqs. (43) and (44), and using the values of 

constants from Eqs. (50) or (51), yields: 
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   )exp(2expˆ  iiky ,  (52) 

     )exp(2exp)2(expˆ 12/1 


  iikixk
k yy

y

,  (53) 

where the upper and lower signs are taken for the first or the second solution as defined by  

Eq. (49). 

 As 22  , for each value of  there are two possible values of . The one with 

Im() > 0 gives a temporally growing wave, while that with Im() < 0 gives a decaying 

wave. Thus for the unstable modes, 

 )1()2/( 2/1 i  .  (54) 

The sign convention is as in Eq. (49). The unstable waves defined by solutions 1 and 2 travel 

in the –y and +y –directions, respectively. The result (54) has been obtained in [13] in the 

long-wave approximation, 0yk  and independently in [14] for  . 

The isolines of  and  for solution 2 are shown in Fig. 12 for  = 100 and for ky = 1, 

and t = 0. The solution is clearly asymmetric about the midplane of the channel x = 1. This 

asymmetry is fundamental, as symmetric or anti-symmetric unstable boundary modes cannot 

propagate along the channel strictly in the +y or –y -direction. For such waves the 

amplification at one wall is accompanied by equal in magnitude suppression at the opposite 

one. 

FIG 12. Infinite channel. Contour lines of  (a) and  (b) for asymptotic solution 2 for the 
wall mode for ky = 1,  = 100, and t = 0. The disturbance travels in the +y-direction. 

 

FIG 13. Infinite channel. Contour lines of  (a) and  (b) for combined asymptotic solution (55) 
for ky = 1,  = 100, t = 0. The disturbance travels in the +y-direction at the wall x = 2 and in the -y-
direction at the wall x = 0. 
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However, counter-propagating, unstable, anti-symmetric waves in (x-1) are not only 

admissible, but are directly relevant to the flow in a rectangular domain. Such a wave may be 

represented by a linear combination of the two solutions obtained in the above. This gives: 

 
































2

2

1

1

cosh2

)exp(

cosh2

)exp(

y

y

y

y

k

k

k

k
,  (55) 

where subscripts 1 and 2 correspond to solutions 1 and 2, respectively. The isolines of 

functions  and  for such a wave at t = 0 are shown in Fig. 13. 

 

5.2 Centre modes 

 

Besides two complex roots of the dispersion relation (42), there is an infinite number 

of roots, which remain real for all values of . These roots correspond to the Sele modes. The 

first four roots of this type are 3-6 (Fig. 11). Corresponding solutions are characterised by 

both ̂  and ̂  being O(1) quantities in the interior of the domain. As  , function ̂  

satisfies the boundary conditions 0ˆ   and 0/ˆ  dxd  at both boundaries x = 0 and x = 2. 

This gives the dispersion relation as follows: 

 0sinsinh)()1cosh(cos2 22  pqqpqppq ,  (56) 

which may also be obtained from Eq. (42) in the limit   for |kx| = O(1).  

The roots of Eq. (56), shown in Fig. 11a with circles, attract those of Eq. (42). 

Therefore, there is a full analogy between the higher roots for a channel, and those for a 

circle, except perhaps one: in the circular domain the corresponding modes are weakly 

unstable, while for a channel they are stable. We will return to the question as to why this is 

the case in Sec. 6. 
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6. Reflection mechanism 

Here a unified view on the nature of stable or weakly unstable modes for various 

geometries is outlined. It allows to understand their properties in terms of wave reflection 

from the boundary. 

 

6.1 Circular domain 

 

The direct connection of the growth rate |Im||Im| rk  of the centre modes in a 

closed geometry and the reflection coefficient can be extracted by considering short waves in 

the circle (see Sec. 4) corresponding to 1~ n , 1l  For these modes, 

|Im||~Re| rr kk   (i.e. nearly periodic short waves hence ‘geometric optics’ is relevant), 

and the following relationship follows from the relevant decomposition of the exact solution 

(25a) (see [12]): 

 
22

22

)Re/1(

)Re/1(
|)Im|4exp(

r

r
r

kn

kn
k








   (57) 

Formula (57) establishes a direct connection of the weak instability of the higher centre 

modes with the reflection mechanism. Note that )1()/(Re 2 Okr   which implies 

)1(1 O  even for high   and makes the rotating modes with higher n  more unstable than 

those with lower n . This is also in accordance with the behaviour of the higher roots of the 

exact dispersion relation for the circle (see Fig. 7). 

 In conclusion we note that from a comparison of Eq. (57) with Eq. (13) it follows that 

the equivalent angle of incidence for the higher centre modes is )1(Re/tan Okn r  . 
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6.2 Applications of the reflection theory 

 

As has been mentioned at the end of Sec. 5, the origin of the centre modes for a circle 

and a channel is similar. The qualitative difference between the two geometries is that these 

modes are stable for a channel and weakly unstable for a circle. This difference may well be 

explained by the reflection mechanism.  

First of all, it has been established in Sec. 3.1 that for real values of kx, a wave 

reflected from a plane wall, as shown in Fig. 14a, would be amplified. If the wave approaches 

the wall in the reverse direction it would be suppressed. 

For a circle, any wave reflected from the boundary in the counter-clockwise direction 

is amplified (Fig. 14b). Then a reflected wave travels towards the other point of the same 

boundary, and is amplified again. As a result of multiple reflections, the amplitude of the 

wave grows, and all the modes are unstable [12]. 

 
FIG. 14. Schematic diagram of reflection of short waves in various geometries: half-plane (a), 
circle (b), channel (c), square (d), and rectangle (e). The wave is amplified at points A, and 
suppressed at points S. 
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For a channel (Fig. 14c), a wave amplified at one of the walls, reflects from a different 

wall. At that wall the local angle of reflection changes to the opposite, and the wave is 

suppressed. Owing to symmetry, the total coefficient of reflection from the two walls is equal 

to unity, and the wave remains stable. 

For a square (Fig. 14d) any wave propagating counter-clockwise is amplified as the 

‘rays’ form a closed trajectory. This is why the equilibrium is unstable for any non-zero value 

of , similar to a circle. 

 Concerning a rectangle (Fig. 14e), only some of the modes would grow in amplitude 

with time, namely those able to form a closed trajectory. The one shown schematically in  

Fig. 14e would not be. This would ultimately depend on the aspect ratio of the rectangle. As 

the increasing MHD interaction changes the angle of incidence, the trajectory for some of the 

short waves becomes closed, and the flow becomes unstable. 

Therefore, the interpretation of instability in terms of reflection from the boundary is 

very useful for understanding several important features. It helps to explain (i) why some 

modes are stable, while the others are not, (ii) why equilibrium in certain geometries is 

unstable for any non-zero value of , while in the others there is a threshold of instability, (iii) 

why equilibrium in an unbounded domain is stable, etc. As other simplified models do not 

take the boundary into account, they fail to predict many of these features. 

7. Discussion and conclusions 

 We have presented a unified view of interfacial MHD instability in a model of 

aluminium reduction cells with a uniform magnetic field. For any horizontal cross-section of 

the cell there are two distinct groups of travelling waves, or modes. The wall modes resulting 

from the interaction of the mechanical and the electromagnetic quantities at the electrically 
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insulating boundary form the first group. These waves are most unstable with the growth rate 

being O(1/2) as  . The key element for the development of this type of instability is the 

Lorentz force which carries the fluid from the right side of the crests at the sidewall to the left 

side resulting in anti-clockwise propagation of the wave. As the fluid flows through the core, 

it is accelerated by an unopposed Lorentz force and this leads to the amplification of the wave 

and thus to the instability.  

 The second group of travelling waves results from coupling of the mechanical and the 

electromagnetic quantities inside the whole domain. For a finite value of  these modes are 

either stable or weakly unstable, which can well be predicted by the reflection theory. In 

closed domains there are always weakly unstable modes of this type, which obey Sele’s 

mechanism of instability. These Sele modes are characterised by the O(1) disturbance of the 

interface and the electric potential in the whole domain, by vanishing tangential component of 

current at the sidewall, and by the growth rate being O(-1) as  . Thus they are 

ultimately damped by the magnetic field. 

 For both types of modes instability occurs only in the presence of an electrically 

insulating boundary. 
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