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Abstract

We present a conservation-based moving point method and some data

assimilation experiments using the method, applied to a simplified shallow

ice model with a moving boundary that incorporates ice diffusion and net

ice-equivalent accumulation/ablation.

We assess the behaviour of the diffusive velocity in the vicinity of

the moving boundary and determine criteria upon the local profile under

which the glacier front will advance or remain stationary.

A conservation-based description of the flow is then introduced which

determines a deformation velocity that is used to define the movement of

the glacier in the presence of both ice diffusion and accumulation.

A finite difference approximation based on the conservation description

is applied and tested using a simple test scenario to reproduce different

types of glacier flow. Comparisons are drawn with some existing non-moving

mesh solutions and exact solutions to one of the European Ice Sheet

Modelling INiTiative (EISMINT) test problems.

Techniques for data assimilation within the moving framework are then

presented and used to incorporate sparsely measured observations of the

ice sheet profile into the computational model, resulting in better forecasts

of the ice flow.

1 Introduction

Much work in cryospheric simulation is devoted to increasing the accuracy of

mathematical models to reduce the uncertainty in estimates of the flow of

glaciers and ice sheets in order to provide better predictions for the future.

It is only relatively recently that dynamical ice flow models have started to

be included within global climate models, part of the reason being the large

degree of uncertainty associated with the models, whilst computational expense

is another key factor. Dynamical ice flow models require a higher resolution than

is currently present in climate models: an alternative to increasing the resolution
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everywhere is to apply adaptive mesh techniques which allows improved approximations

to be made in key areas. A number of current simulations utilise mesh refinement

to increase the resolution in certain chosen areas, which works well provided

the domain is reasonably well understood and the areas that require higher

resolution can be approximately identified and are slowly varying. Another

approach is to move the computational mesh nodes to required areas which has

been shown to be more robust than non-adaptive methods, [9]: these methods

move the nodes at fixed times and are typically controlled by a monitor function

which can however be awkward to define, [3]. In other fields the movement of the

mesh nodes is defined in terms of a time-dependent velocity, which introduces

a more intuitive definition of the monitor function and allows the mesh to be

influenced by its previous position, [1, 2]. Currently this approach has not been

applied to the dynamical ice flow equations, an issue that is addressed in this

paper.

2 Shallow Ice Approximation

Under the shallow ice assumptions for glaciers and ice sheets the ice thickness

satisfies a single partial differential equation (PDE) arising from mass balance.

To derive this equation it is assumed that the depth of the ice is shallow in

comparison to the horizontal extent, meaning that vertical shear stresses can

be excluded [6]. The flow of ice follows a constitutive relationship (e.g. the

Glen-Nye flow law, [5]) while variations in the temperature and density of the

ice are ignored.

The one-dimensional model follows a flowline of the glacier. The shallow ice

equation then takes the form

∂h

∂t
+

∂(hu)

∂x
= m(x) (1)

in the moving domain (0 < x < b(t)), where h(x, t) is the depth-averaged

ice thickness and m(x) the ice-equivalent accumulation rate (which includes the

effect of ablation). In eq. (1) u(x, t) is the flow velocity due to ice diffusion which
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is described in detail in Section 3 below. There are two boundary conditions:

a no-flux condition at the ice divide (at x = 0) and zero ice thickness at the

moving front, i.e.

∂h

∂x
= 0 at x = 0, h = 0 at x = b(t). (2)

The total ice in the whole domain, denoted here by θ(t), is defined as
∫ b(t)

0

h(x, t)dx = θ(t), (3)

and has the following property, to be referred to later. Differentiating eq. (3)

with respect to t using Leibnitz’ integral rule gives

θ̇ =
d

dt

∫ b(t)

0

h(x, t)dx (4)

=

∫ b(t)

0

∂h

∂t
dx+ h(b, t)

db

dt
(5)

Since h = 0 at x = b(t) the second term is zero. Substituting eq. (1) into eq. (5)

results in

θ̇ = −
∫ b(t)

0

∂ (hu)

∂x
dx+

∫ b(t)

0

m(x)dx (6)

= −hu

∣∣∣∣
b(t)

x=0

+

∫ b(t)

0

m(x)dx

Use of the boundary conditions, eq. (2), again forces the first term to be zero,

since the ice flow is zero at the ice divide. This leaves the rate of change of the

total ice over the domain as

θ̇ =

∫ b(t)

0

m(x)dx. (7)

As a result any change in the total ice over the whole glacier is due solely to the

source term in eq. (7), i.e. the rate of change of global ice thickness equates to

the net accumulation/ablation over the whole glacier.

3 Diffusive Velocity at the Glacier Front

The diffusive flow velocity of glaciers (u(x, t) in eq. (1)) is typically dominated

by the underlying topography and the surface elevation. In this section the
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movement of the glacier front generated by this diffusive flow velocity is assessed.

Under the shallow ice approximation the diffusive velocity u(x, t) in eq. (1)

can be written as

u(x, t) = c{h(x, t)}n+1snx , (8)

(see e.g. [9]) under the assumption that temperature and density remain constant

throughout the glacier, where c is a negative constant. The surface elevation

s(x) is the glacier height comprising the topographical bed and ice thickness.

3.1 Without topography

Upon the assumption that the bed is flat eq. (8) becomes

u(x, t) = c{h(x, t)}n+1{hx}n. (9)

The form of eq. (9) suggests a difficulty when applying the boundary condition

h = 0 at x = b(t), apparently yielding a zero diffusive velocity and resulting in a

boundary that only moves as a result of accumulation or ablation. However, it

is perfectly possible for the diffusive velocity u to be non-zero when h(b, t) = 0

provided that hx(b.t) is infinite such that {h(b, t)}n+1{hx(b, t)}n is finite. Using

the chain rule for differentiation and writing eq. (9) in the more useful form

u = c{h(x, t)}(n+1)/n(hx)
n = c

(
n

2n+ 1

)n {(
{h(x, t)}(2n+1)/n

)
x

}n

, (10)

it can be seen that the diffusive velocity is finite at the boundary provided that

{{h(x.t)}(2n+1)/n}x is finite there.

The local behaviour of eq. (9) at the moving boundary can be analysed

further. Suppose that b(t) = b is fixed. Due to the boundary condition h = 0 at

x = b the ice thickness profile h(b, x) contains a positive power of (b − x). Let

α > 0 be the largest real number such that h(x, t) can be written in the form

h(x, t) = (b− x)αg(x, t) (11)
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where the function g(x, t) > 0 is finite and has a finite x derivative at the

boundary x = b. Then

{h(x, t)}(2n+1)/n = {(b− x)αg(x, t)}(2n+1)/n = (b− x)α(2n+1)/nG(x, t) , (12)

where G(x, t) = g(x, t)(2n+1)/n > 0 also has a finite x derivative at x = b. The

value of u(x, t) at the boundary is proportional to the derivative of the left hand

side of eq. (12) and thus proportional to the limit of eq. (10) as x tends to b, i.e.

lim
x→b

({h(x, t)}(2n+1)/n)x = − lim
x→b

(b− x)α(2n+1)/nG(x, t)

(b− x)

= − lim
x→b

(b− x)(α(2n+1)/n)−1G(x, t),

using l’Hopital’s rule. It follows that the limit of the diffusive velocity (eq. (10))

is proportional to

lim
x→b

(b− x)α(2n+1)−n. (13)

Since n is a given exponent, there exists a critical value for the power α,

denoted αc, which leads to the following behaviour of the diffusive velocity

u(x, t) at the boundary as x → b:

Case 1: α > αc ⇒ u → 0 as x → b , (14)

Case 2: α = αc ⇒ u remains finite as x → b , (15)

Case 3: α < αc ⇒ u → ∞ as x → b (momentarily) . (16)

where the critical value of α is given by

αc =
n

(2n+ 1)
. (17)

Thus the diffusive velocity u(x, t) induces no movement at the boundary

when the value of α in the ice thickness profile given in eq. (11) lies in the range

α > αc = n/(2n+ 1). However, as the ice thickness profile changes over time

such that α tends to the critical value αc of eq. (17), the condition in Case 2 is

met and the diffusive velocity becomes non-zero. If the thickness profile reaches

the condition of Case 3 then the velocity is unbounded, at least momentarily.

Taking the standard value used in ice sheet modelling, n = 3, eq. (17) gives
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Figure 1: (a) Diffusive velocity. When α = 3/7 (red line) the boundary velocity

is finite whereas all other values have a zero boundary velocity. (b) Ice thickness

profiles for α = 1 (solid) and α = 3/7 (dashed). Notice the infinite gradient at

the boundary when α → 3/7.

the critical value as αc = 3/7. As a demonstration suppose that the initial

thickness profile takes the form

h(x, t) = (b− x)α(b+ x)α (18)

with the boundary at b = 1. By varying the value of α the diffusive velocity at

the boundary changes discontinuously from zero to a finite value at the momennt

that α reaches 3/7 from above (see fig. 1a)). In Figure 1b) it can be seen that

when α reaches the critical value the gradient of the ice at the boundary becomes

infinite, which was identified in eq. (9) as a sufficient condition for a non-zero

velocity.

Because the gradient at the boundary increases in modulus under ice movement

the value of α decreases from a value of order 1 towards α → 3/7 from above

as the peak velocity approaches the boundary.
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3.2 Introducing topography

Removing the assumption that the bed of the glacier is flat, the surface elevation

is a summation of the bed and ice components

s(x, t) = z(x) + h(x, t), (19)

where z(x) represents the topography under the glacier. With n = 3 the diffusive

velocity in eq. (8) may then be written as

u(x, t) = c{h(x, t)}4 ({z(x) + h(x, t)}x)3 (20)

= cz3x{h(x, t)}4 + 3cz2x{h(x, t)}4hx + 3czx{h(x, t)}4h2
x + c{h(x, t)}4h3

x.

(21)

The last term in eq. (21) is the same as the single term in the flat bed scenario,

eq. (9) with n = 3. Expressing the terms in eq. (21) in the form used in eq. (10)

gives

u(x, t) = c (zx){h(x, t)}4 +
3c

5
(zx)

2
(
{h(x, t)}5

)
x
+

c

3
zx

{(
{h(x, t)}3

)
x

}2

+
9c

343

{(
{h(x, t)}7/3

)
x

}3

. (22)

Substituting for h from eq. (11),

u(x, t) = c (zx)
3(b− x)4α{g(x, t)}4 + 3c

5
(zx)

2
{
(b− x)5α{g(x, t)}5

}
x

+
c

3
zx

({
(b− x)3α{g(x, t)}3

}
x

)2
+

9c

343

({
(b− x)7α/3{g(x)}7/3

}
x

)3

. (23)

At the moving boundary the diffusive velocity can be found by taking the

limit of u(x, t) as x → b, i.e. from eq. (23)

lim
x→b

u(x, t) = lim
x→b

[
c (zx)

3(b− x)4α{g(x, t)}4 + 3c

5
(zx)

2
{
(b− x)5α{g(x, t)}5

}
x

+
c

3
zx

({
(b− x)3α{g(x, t)}3

}
x

)2
+

9c

343

({
(b− x)7α/3g(x, t)7/3

}
x

)3
]
. (24)

The first term tends to zero at the boundary and, applying L’Hopital’s rule to
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the remaining three terms individually, leaves

u(b, t) = −3c

5
(zb)

2 lim
x→b

{
(b− x)5α−1{g(x)}5

}

+
c

3
zb

(
− lim

x→b
{(b− x)3α−1{g(x, t)}3}

)2

+
9c

343

(
− lim

x→b

(
{(b− x)7α/3−1{g(x, t)}7/3}

))3

. (25)

Each term separately yields a different critical value of α, namely αc =

1/5, 1/3 and 3/7 for each term respectively. However, since α cannot go below

any of these values without encountering an infinite velocity (see section 3.1),

the lower limit for α must be the largest value, namely 3/7. Therefore the

flat bed analysis holds with the same conditions on the diffusive velocity at the

boundary in section 3.1, regardless of whether there is a topographic bed present.

In the absence of accumulation/ablation this is the sole cause of ice movement

at the boundary, which allows the determination of when the glacier remains

stationary and when boundary movement will commence.

Of course, varying the temperature and density will result in a different value

for the finite velocity achieved when the condition of Case 2 is met. Nevertheless,

the boundary velocity will remain zero when α lies in the Case 1 range regardless

of the temperature or density.

4 Conservation of Mass Fractions (CMF)

We now develop a description of glacier movement using a moving spatial

coordinate by determining a velocity based upon both ice diffusion and accumulation/ablation,

utilising an approach found in [1, 2].

Let x̂(x, t) be a moving point that coincides with the x coordinate at time t

and define the relative mass in the moving interval (0, x̂(t)) as

1

θ(t)

∫ x̂(t)

0

h(x, t)dx (26)

where θ(t) is the total ice mass, given in (7). The time rate of change of x̂(t) is
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derived implicitly by enforcing the assumption of partial relative conservation,

1

θ(t)

∫ x̂(t)

0

h(x, t)dx = µ(x̂), (27)

where µ(x̂) is independent of time for all moving subdomains of [0, b(t)]. Note

that µ(x̂) ∈ [0, 1] is a cumulative function with µ(0) = 0 and µ(b) = 1.

4.1 The Deformation Velocity

To extract the velocity dx̂/dt differentiate (27) with respect to time,

d

dt

∫ x̂(t)

0

h(x, t)dx = µ(x̂)θ̇ (28)

Carrying out the time differentiation using Leibnitz’ Integral Rule and substituting

for ht from eq. (1) gives

d

dt

∫ x̂(t)

0

h(x, t)dx =

∫ x̂(t)

0

htdx+

(
h
dx

dt

)∣∣∣∣
x̂(t)

0

=

∫ x̂(t)

0

{−(hu)x +m(x)} dx+ h(x̂, t)
dx̂

dt

=

∫ x̂(t)

0

m(x)dx+

(
−h(x̂, t)u(x̂, t) + h(x̂, t)

dx̂

dt

)
(29)

since dx̂/dt vanishes at the fixed boundary x = 0. From eq. (28), eq. (29) and

eq. (7) the deformation velocity at an arbitrary interior point is then

dx̂

dt
= u+

[
µ(x̂)

∫ b(t)

0
m(x)dx−

∫ x̂(t)

0
m(x)dx

]

h
. (30)

Equation eq. (30) determines the net overall movement of the point x̂ in the

glacial domain as a combination of the flow velocity u(x, t) and the accumulation

rate m(x).

4.2 The Net Velocity at the Glacier Front

The net velocity at the moving front at x = b(t) may be found by taking the

limit of eq. (30) as x̂(t) → b(t), i.e.

lim
x̂(t)→b(t)

dx̂

dt
= u(x̂, t)|b(t) + lim

x̂(t)→b

1

h(x̂, t)

[
µ

∫ b(t)

0

m(x)dx−
∫ x̂(t)

0

m(x)dx

]
.

(31)
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Since h → 0 the limit in eq. (31) as x̂ → b is undefined. Nevertheless, since the

quantity in square brackets also → 0 as x̂(t) → b, then assuming continuity of

dx̂
dt and m(x) in the vicinity of the boundary, by l’Hopital’s Rule

lim
x̂(t)→b(t)

dx̂

dt
= u(b(t), t) + lim

x̂(t)→b(t)





d
dx̂

(
µ
∫ b(t)

0
m(x)dx−

∫ x̂(t)

0
m(x)dx

)

hx





= u(b(t), t)− m(b(t))

hx(b(t), t)
(32)

The boundary velocity generated in this way incorporates both the ice-equivalnent

accumulationm(b(t)) and the diffusive velocity u(b(t), t) at the moving boundary.

Since hx < 0 at the front the second term in eq. (32) is positive or negative

depending on whether m(b(t)) is positive or negative. If the gradient hx at the

front is shallow the net boundary velocity is dominated by the accumulation/ablation

component of eq. (32), allowing the front to advance or retreat. Conversely, if

the gradient hx at the front is steep, the flow velocity u dominates. The front

is then susceptible to the analysis of the diffusive velocity in section 3, and the

boundary of the glacier can therefore only advance or wait, not retreat.

4.3 Movement of the Glacial Domain

Once the velocities dx̂/dt of the points x̂(x, t) of the glacial domain have been

found from eq. (30) they can be moved accordingly. In addition the increase or

decrease in the total ice θ(t) can be determined from eq. (7).

4.4 The Ice Thickness Profile

After updating x̂(x, t) and θ(t) the ice thickness profile is deduced from eq. (27)).

Differentiating with respect to x̂,

h(x̂, t) = θ(t)
∂µ(x̂)

∂x̂
, (33)

which allows the ice thickness profile to be constructed.
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5 A finite-difference algorithm

The velocity-based conservation description of the previous section is now discretised

using finite differences on an irregularly moving mesh {Xi}, (i = 1, 2, ..., N),

where

0 = X1(t) < X2(t) < · · · < XN (t) = b(t) (34)

The approximation of h(x, t) at X = Xi is written asHi and that of the diffusive

velocity u(x, t) as Ui.

It is convenient to split the numerical scheme into three stages which are

repeated at each time step. Stage 1 of the algorithm is to approximate equation

eq. (30) to give a discrete velocity at each interior node of the form

dXi

dt
= Ui +

{
µi

∫ b(t)

0
m(x)dx−

∫Xi(t)

0
m(x)dx

}

Hi
, (35)

where µi denotes µ(Xi) and where Ui is approximated from (10) in an upwind

manner as

Ui = c

(
n

2n+ 1

)n {{Hi}(2n+1)/n − {Hi−1}(2n+1)/n

Xi −Xi−1

}n

(36)

The integrals in (35) are approximated by a composite trapezium rule.

In the second stage the Xi are advanced in time using the explicit Euler

scheme, i.e.

Xk+1
i = Xk

i +∆t

(
dXi

dt

)k

. (37)

for all i, where k denotes the time discretisation level. Explicit Euler time-stepping

is adequate for our purpose provided that the time step is sufficiently small to

prevent node-overtaking. The explicit Euler time stepping scheme is also used

to update the total mass θk+1 from eq. (7), i.e.

θk+1 = θk +∆t

∫ bk+1

0

mdx . (38)

where again the integral is approximated by a composite trapezium rule.

In the third stage the ice thickness Hi is recovered algebraically at the new

time level using a discretised (midpoint rule) approximation of eq. (33), namely,

Hk+1
i =

θk+1(µi+1 − µi−1)

(Xk+1
i+1 −Xk+1

i−1 )
. (39)
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Note that from eq. (39) the discrete mass fractions

1

θk
(Xk

i+1 −Xk
i−1)H

k
i (40)

are conserved in time by this step.

5.1 The Discrete Diffusive Velocity at the Glacier Front

We now focus on the numerical approximation of the diffusive velocity at the

front and relate it to the analysis in section 3 to show how the CMF approach

gives good resolution of the waiting time behaviour at the snout. From (36) the

approximation UN to the diffusive velocity at the glacier front is given by

UN = c

(
n

2n+ 1

)n
(−HN−1)

2n+1

(XN −XN−1)n
, (41)

since HN = 0. At first glance this bears little resemblance to eq. (13), where

u(b) ∝ (b− x)(2n+1)α−n (42)

But rewriting (41) using eq. (12), the analytic diffusive velocity can be written

u(b) ∝ h2n+1

(b− x)n
, (43)

since h ∝ (b− x)α, which has a similar form to eq. (41). When α > n/(2n+2),

both the numerator and denominator in eqs. (41) and (43) are small, but this

is not the case if α = n/(2n+ 2), as demonstrated in section 3.

The closer the nodes cluster at the glacier front, the more effective eq. (41) is

at providing a good approximation to eq. (43). As the ice diffuses the gradient

at the snout increases in modulus and the interval (XN−1, XN ) decreases. The

numerical scheme then well resolves the analytic behaviour of the diffusive

velocity.

6 Testing the Model

As a first test consider the initial ice thickness profile from Section 3,

h = (b2 − x2)α (44)
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Physical Parameters

n = 3 Flow-law exponent

A = 10−16(Pa)−3a−1 Flow-law parameter

g = 9.81ms−2 Acceleration of gravity

ρ = 910kgm−3 Ice density

c = −2Agnρn/(n+ 2) Constant Parameter

γ = 0.0005 Scale of accumulation rate

Computational Data

N = 26 Number of gridpoints

∆x0 = 0.02 Initial grid spacing

∆t = 0.05 Time Step

T Final Time

Table 1: Values of the physical parameters in the test problem and the

computational data used in the test equations.

on an initial domain x ∈ [0, b], where x = 0 is the fixed ice divide and the

initial moving front is at b = 1. The accumulation term m(x) is defined by the

quadratic function

m(x) = γ

(
1− x2

β

)
, (45)

where β defines the equilibrium line and γ is a parameter which controls the

scale of the source term. The function m(x) is independent of time which allows

a steady state solution with the boundary bss defined by

bss =
√

3β. (46)

Using the parameters defined in Table 1 the numerical model and its behaviour

is evaluated under different values of α.

Glacier in Advance: α = 3/7, β = 1
2 , T = 12000a

Setting the equilibrium line β = 1/2 implies that the boundary at steady
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state solution is greater than the initial boundary position and the overall motion

is that of an advance. Figure 2a) demonstrates an overall increase in the amount

of ice in the domain, along with movement of the front towards the steady

state boundary bss =
√
1.5. With α = 3/7 there is an initial diffusive velocity

contributing to the movement of the boundary (see fig. 3a)).

Conversely, with α = 1 the boundary initially retreats due to ablation until

the ice thickness profile changes over time to satisfy the condition on the diffusive

velocity at the boundary (see figs. 2 and 3b)).

Glacier in Retreat: α = 3/7, β = 3
10 , T = 6000a

Setting the equilibrium line closer to the ice divide (x = 0), with β = 3/10

results in a steady state boundary to the left of the initial boundary and the

front of the glacier retreats.

In Figure 2c) there is rapid initial retreat, where the boundary moves past

the steady state location before stabilising and advancing back up to the steady

state location. This is further evident in the nodal trajectory plot (fig. 3c)).

Crucially the interior points also retreat in line with the boundary which means

that the nodes avoid crossing paths, an important stability property for any

moving mesh method.

Stationary Front: α = 1, β = 1, T = 1500a

Selecting β = 1 in eq. (45) yields zero accumulation/ablation at the initial

boundary. Under this condition the diffusive velocity becomes the sole contribution

to the velocity at the boundary so the analysis in Section 3 holds. By setting

α = 1 the boundary is initially stationary.

It is clearly visible in Figure 2d) that the profile evolves towards an infinite

gradient at the front so as to satisfy the finite diffusive velocity criteria in

Section 3.1. Once this criteria is met the front begins to advance. Examination

of the movement of the mesh nodes in Figure 3 shows that the interior nodes

move towards the boundary until the condition on the boundary profile is

satisfied and the boundary itself begins to move.
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Figure 2: 1D test equations: Ice thickness over the domain evolving from the

initial profile (green) to a final steady state profile (blue).

a) Advancing glacier; α = 3/7, β = 1
2 ,

b) Advancing Glacier; α = 1,

c) Retreating Glacier; α = 3/7, β = 3
10 and

d) Initially Stationary Glacier; α = 1, β = 1.

7 European Ice Sheet Modelling INiTiative

The European Ice Sheet Modelling INiTiative (EISMINT) experiments give a

set of standard benchmark scenarios to test and compare numerical models
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Figure 3: Evolution of the mesh nodes over time, including the boundary point

(red) representing the glacier front.

a) Advancing glacier; α = 3/7, β = 1
2 ,

b) Advancing Glacier; α = 1 ,

c) Retreating Glacier; α = 3/7, β = 3
10 , and

d) Initially Stationary Glacier; α = 1, β = 1.

of ice sheet behaviour. The initial paper [7] contains information about two

scenarios; the first is a fixed margin experiment on a square domain which deals

with calculating the ice discharge at the boundary, and the second is a radially

symmetric situation with a moving boundary. Here the second experiment is

replicated using the radially adjusted CMF method.

The experiment begins with a flat bed with zero ice present. The CMF

method is dependent on preserving relative mass, which requires an initial mass

to calculate: this is calculated using the ice thickness profile after one time-step
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corresponding to the source term only, which is

m(x) = min{0.5, γ(β − x)}, (47)

The initial profile of ice thickness is therefore

h0(x) = ∆t×min{0.5, γ(β − x)} (48)

with x ∈ [0, 4.5 × 105]. The equilibrium line is located at β = 4.5 × 105m in

eq. (48) and the scale of the source term is given by γ = 10−5a−1. The source

term is independent of time, so there exists a steady state solution in which the

steady state boundary location is

bss = 579.81km. (49)

Physical Parameters

n = 3 Flow-law exponent

A = 10−16(Pa)−3a−1 Flow-law parameter

g = 9.81ms−2 Acceleration of gravity

ρ = 910kgm−3 Ice density

m = min{0.5, γ(β − x)} Ice equivalent accumulation/ablation

(source)

γ = 10−2ma−1km−1 Slope of source function

β = 450km Equilibrium line location

Computational Data

N = 16 Number of gridpoints

∆r0 = 34m Initial grid spacing

∆t = 2a Time Step

T = 3× 105a Final Time

Table 2: Values used in the EISMINT scenario, including the physical

parameters of the model and the computational data
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The physical parameters are provided in table 2 along with the numerical data.

For direct comparison with the results in [7] the model uses 16 grid points,

initially spaced evenly. This allows for a time step of 2a, up to a final time

of 30000a. The calculation takes less than five seconds to run on a standard

desktop.

For such a radially symmetric problem the results of the one-dimensional

flowline method may be presented as a circle which allows for ease of comparison

with the two-dimensional data.

The numerical solutions to the experiment given in [7] are traditional fixed grid

methods on evenly spaced grids. This means that they require some form of

extrapolation or interpolation to find the boundary location as the boundary

generally falls between two grid points. As a result the fixed grid methods on a

regular two-dimensional rectangular grid, such as those presented, do not return

a perfect circle due to the location of the grid points, as shown in fig. 4a). This

is not an issue with radial flowline methods such as the one used here, which

when rotated naturally give a circle (see fig. 4b)).

A better comparison is a direct comparison between flowline models. The

moving mesh method is able to get significantly closer to the exact ice thickness

profile than the equivalent fixed grid method in Figure 4c), especially near to

the moving front. In Figure 4d) the diffusive velocity in steady state is similar

in the two approaches, the main difference again arising at the boundary where

the diffusive velocity can be explicitly calculated in the moving mesh approach.

The fixed grid schemes require interpolation to calculate this value.

Expressing these results in table 3 shows that the CMF moving mesh

solution is able to get much closer to the exact boundary position than the

average fixed grid solution, whilst the thickness at the ice divide (where x = 0)

is slightly higher than both the fixed grid and exact solutions.
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Figure 4: a) 2D results from one of the fixed grid EISMINT experiments. b)

Moving mesh flowline radial model converted to 2D. c) Ice thickness profile at

steady state showing the exact (red), moving mesh (dash) and fixed grid (solid)

solutions. d) Diffusive velocity at steady state showing moving mesh (dash) and

fixed grid (solid) solutions.

Experiment Divide Thickness (m) Boundary Position (km)

Avg EISMINT 2856.9 594.9

Moving Mesh 3005.3 576.9

Exact 2951.5 579.81

Table 3: Comparison between the average EISMINT experiment results, the

moving mesh approach and the exact steady state solution.
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8 Data Assimilation

While numerical models of ice sheets provide a good representation of the

dynamical flow, uncertainties in the initial input data lead to errors as the

simulation evolves. Moreover, observations describing the glacier system are

incomplete and contain inaccuracies. Using data assimilation the two can be

combined to gain a best representation of the true state of the ice sheet.

Here we employ a sequential assimilation approach, where the model is

evolved from a-priori initial estimates until observations are available. The

model prediction of the variables, denoted zf , is then corrected by a weighted

difference between the observations y and the predicted observations Czf to

obtain the analysis za, the best representation. Mathematically this may be

written as

za = zf +K(y −Czf ), (50)

where the matrix weight K is chosen to ensure that the scheme converges to the

truth. A full list of variables is provided in Table 4.

By perfoming the assimilation the mass of the glacier is altered by using external

information. Since the conservation principle depends on the total mass, a ’reset’

of the constants µi is required in order for the method to proceed.

8.1 Experimental Design

In the test scenario there are no real observations available, so they have to be

generated. To achieve this we assume that we know the exact initial domain,

x ∈ (0, 4.5× 105) with a corresponding ice thickness that satisfies the boundary

conditions, and perform a ’truth run’ using the output to generate ’observations’.

Then the initial domain is altered to x ∈ (0, 3×105), and the ice thickness to 1.1

times that of the truth. The altered initial conditions are then evolved through

time until the instant when observations of ice thickness taken from the exact
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Value Quantity

z Vector containing the unknown model

variables

y Vector of observations

a Superscript denoting the ’analysis’, or best

guess solution

f Superscript denoting the prior solution,

taken from the model

C Observation operator mapping observations

to the model space

K = BCT (CBCT +R)−1 Correction, or Gain Matrix

B Background error covariance matrix

R Observation error covariance matrix

Table 4: Data Assimilation variables

solution are applied and an assimilation step is performed. This procedure is

known as a twin experiment. The state vector represents all the unknown values

of the ice thickness, z = {Hi}Ni=1.

The observations are subject to random noise, y = Cza + e, where e ∼
N(0, σ2

o) to simulate observation errors. Each observation is assumed independent

of the others, so the covariance between them is zero and R = σ2
oI. Since the

observations are direct, linear interpolation is used to calculate the predicted

observations for the matrix C. We assume that the observations of ice thickness

are within
√
30m of the truth, i.e. σ2

o = 30.

The choice of the background error covariance matrix B is one of the most

critical aspects of any data assimilation scheme, primarily representing the

covariance relationship between the variables, although it also acts to spread

information between variables. For fixed grid methods a typical correlation

function between variables i and j to characterise the background errors is the
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Figure 5: Evolution of the B matrix; a) initial time, and b) after 40000 steps

SOAR function [10], given by

bij = σ2
b exp(−∆x/L)|i−j|, (51)

where ∆x is the constant grid spacing, L a length scale and σ2
b a corresponding

background error. This is modified for an irregular mesh method to

bij = σ2
b exp(−|Xi −Xj |/L), (52)

which allows for different spacing between points. We take σ2
b = 30, of the same

order as the observations. This approach means that the B matrix needs to

be recalculated at every assimilation step, which is computationally costly in

practice. How this matrix evolves is demonstrated in Figure 5. At the initial

time the mesh nodes are evenly distributed and the error covariances are evenly

spread on the diagonal. Once the points have begun to move they spread out in

the upper zone of the glacier and close up near the snout, reflected by a thinning
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and thickening respectively of the diagonal strip.

This evolution ofB is similar to the Kalman filter sequential approach, which

forecasts the matrix as part of the scheme [11].

8.2 Observing the boundary

The primary characteristic of a moving mesh approach is that the domain is

evolving over time. If the initial domain is in error then the evolution will also

contain errors. Therefore we include observations of a moving physical feature

to account for these errors, in this case the snout. To achieve this modification

the mesh is treated as unknown and included in the state vector along with the

ice thickness, so that

z =


X

H


 (53)

The B matrix then takes the form

B =


 Bx Bxh

(Bxh)
T Bh


 , (54)

where X and H are vectors representing the boundary and the ice thickness.

Both the Bh and the Bx entries use the modified SOAR function (eq. (52))

with a different σ2
b . We set the cross covariance terms Bxh = 0. This means that

if no observations of the boundary are available only the ice thickness variables

will be updated and the mesh is unchanged.

8.3 Results

We examine two scenarios, depending on whether the boundary is observed or

not. Figure 6 shows the results of an experiment for which no observations are

available. The model is then combined with 8 randomly distributed observations

of ice thickness at t = 2000a. Taking observations of the ice thickness does not

correct the boundary position (fig. 6(a)) at the assimilation time, but as the

simulation continues the corrected ice profile acts to pull the boundary back.
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The ice thickness at the divide (fig. 6(b)) is corrected at the time of assimilation,

along with the other ice thickness variables in the interior of the domain.
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Figure 6: Effect of data assimilation on two key features, (a) Position of the

moving boundary, and (b) Ice thickness at the divide. Solid lines represent the

prediction, dashed lines denote the truth.

By also including observations of the true location of the boundary, the

numerical representation of this point is pulled towards the true value (see fig.

7(a)). The interior mesh points are also updated through the form of (54).

The ice thickness profile (fig. 7(b)) response is unaffected by the addition of a

boundary observation. Fig. 7(c) shows the complete ice profile before (dash-dot)

and after (dashed) observations of the truth (solid) are assimilated at t = 2000.

We see from Fig. 7(d) that at the final time (t = 5000) the model that contained

an assimilation step (dashed) is considerably closer to the truth (solid) than the

model that contained no assimilation (dash-dot).

8.4 New Results

Taking two sets of observations shows the progression of the forecast towards

the truth. Taking a large number of observations (in this case 30), spread as

shown in Figure 8(c) and Figure 8(d), we expect the forecast to converge quickly

to the truth. This is evident from the characteristic plot of both the boundary
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Figure 7: The numerical domain is corrected as well as the ice thickness by

augmenting the data assimilation acheme.

(fig. 8(a)) and the ice divide (fig. 8(b)).

However in reality few observations are available. In that case we expect

the forecast to still be corrected towards the truth when the observations are

assimilated, but with less correction. Here we take six observations, spread as

in Figure 9(c) and Figure 9(d). We see that the corrections in the boundary

(fig. 9(a)) and the ice divide (fig. 9(b)) are smaller, and that the forecasted

profile at the second assimilation time (fig. 9(d)) is further from the truth than

fig. 8(d).
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Figure 8: Taking lots of observations causes the forecast to converge towards the

truth at a fast rate

9 Discussion

In this report, taking a standard one-dimensional glacier model under the shallow

ice approximation we analysed the ice diffusion velocity, showing that it can

exhibit a discontinuity at the snout (leading to a waiting time situation) and

that a positive velocity corresponds to a particular asymptotic form of the ice

thickness at the moving boundary. We also analysed the velocity of an arbitrary

point of the domain under a conservation of mass fractions (CMF) description

and showed that it can be written as a combination of the model velocity and

an additional term depending on the ice equivalent accumulation rate.

We then introduced the CMFmoving mesh method, based on the conservation
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Figure 9: When less observations are available the convergence to the truth is

slower

of mass fractions description, which qualitatively reproduces the main features

of the boundary movement, including the waiting time phenomena mentioned

above. By taking an expression that satisfies the boundary conditions and the

local profile close to the boundary we were able to qualitatively simulate a

waiting time situation for the snout velocity as the power law of the profile

evolved towards a critical value from above. The CMF moving mesh method

was then tested using the radially symmetric EISMINT scenario, with results

closer to the exact solution than traditional fixed grid methods.

The concepts of data assimilation were then applied, showing that established

methods can be extended to include the unknown mesh positions as part of the

system in order to take advantage of observations of positional co-ordinates. We
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noted that information is implicitly transfered through further iterations which

avoids the need to determine the relationship between the mesh and the other

model variables.

Whilst this paper uses a diffusive velocity given by the shallow ice equations the

moving mesh approach is independent of the form of the velocity and could be

used as a solver for mass conservation alongside the more complex Navier-Stokes

descriptions of diffusive flow.

An implementation of the CMF approach in modelling the grounding line can

be found in [4].
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