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ABSTRACT: The steric repulsion exerted on spherical particles by a semidilute polymer brush is evaluated
using numerical self-consistent field theory (SCFT) in cylindrical coordinates. This accurate treatment provides
the opportunity to test the conventional analytical approach, where the strong-stretching theory (SST) of Milner,
Witten, and Cates for uniform compression can be adapted to particles of any shape using the Derjaguin
approximation. While the Derjaguin approximation works well, at least, for the interaction energy, the SST proves
to be seriously inaccurate for realistic grafting densities. Nevertheless, an efficient and accurate treatment for
arbitrarily shaped particles remains possible if the uniform compression in the Derjaguin approximation is supplied
by SCFT.

I. Introduction

Polymer brushes, formed by densely grafting polymers to a
surface, produce a steric repulsion when deformed, which offers
a convenient means of countering van der Waals attractions.1

Brushes now provide a routine method of stabilizing colloidal
suspensions,2 and are being investigated as a way of preventing
adsorption on surfaces by nanoparticles and macromolecules
such as proteins.3,4 Experiments have examined the steric
repulsion by specially designed surface force apparatus (SFA)
that measure the interaction between two weakly curved
surfaces4-8 and by the highly curved tips of standard atomic
force microscopes (AFM),9 and there seems to be reasonable
agreement with theory.

The theoretical predictions are generally provided by calculat-
ing the repulsion of uniform compression, and then adapting it
to the nonuniform geometry by applying the standard Derjaguin
approximation.10 The uniform compression is typically treated
by either the simple scaling theory of Alexander and de Gennes11

or by the strong-stretching theory (SST) of Milner, Witten, and
Cates.12 The earlier scaling theory is regarded as the less rigorous
treatment, because it assumes a steplike profile with all the chain
ends located at the outer extremity of the brush, whereas the
SST allows the profile and end-segment distribution to adjust
in response to the compression. Furthermore, the SST makes
definitive predictions, while the scaling theory only predicts the
functional form of the interaction. As it turns out, the scaling
theory often performs as well as or better than the SST,4-6,13,14

but this can be attributed to the use of fitting parameters.
There are two separate sources of inaccuracy to consider in

this type of calculation. The first is that associated with the
Derjaguin approximation, which assumes surfaces of low
curvature. It remains unclear how large the curvature can
become before the approximation fails; it is certainly fine for
SFA measurements but is questionable when applied to AFM
tips.15,16 The second issue is the use of SST for the uniform
compression, which makes an unrealistic assumption that the
polymer chains are restricted to so-calledclassicaltrajectories.
Typical experiments5-8 come nowhere near the grafting densities
required for this assumption,17 and there is theoretical evidence18

that this results in considerable inaccuracy.

Here the steric force exerted on spherical particles by a
semidilute polymer brush is calculated using the numerical self-
consistent field theory (SCFT)19 in cylindrical coordinates (see
Figure 1). This approach explicitly treats the particle shape and
sums over all possible polymer trajectories, providing more
accurate predictions for small particles and realistic grafting
densities. The principle aim of this initial paper is to investigate
the inaccuracies associated with the Derjaguin and strong-
stretching approximations.

II. Theory

This section presents our underlying theoretical model for a
spherical particle of radiusR impinging upon a flat polymer
brush in a solvent background as depicted in Figure 1. The brush
is assumed to have a fixed uniform grafting density ofσ ≡
n/A, wheren is the total number of polymer chains andA is
the surface area of the substrate. The polymers are treated as
flexible Gaussian chains19 each with a natural end-to-end length
of aN1/2, wherea is the statistical segment length andN is the
number of segments per chain. For simplicity, we assume that
the particle and the substrate have no significant surface affinity
for either the polymer or the solvent, and thus they are regarded
as inert impenetrable objects. If necessary, a surface potential
can easily be incorporated into the theory.

To perform statistical mechanics on this system,17 the
configuration of theR’th chain is denoted by the space curve,
rR(s), wheres is a parameter that runs along the backbone of
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Figure 1. Schematic diagram of a polymer brush of thicknessL0

compressed by a spherical particle of radiusR at a distanceL above
the substrate. Positions are specified in cylindrical coordinates, (r⊥, θ,
z), to take advantage of the axial symmetry inθ.
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the polymer from 0 at the free end to 1 at the grafted end. This
allows the total polymer concentration to be specified as

where F0
-1 is the volume occupied by each segment. The

thermodynamic average of the brush profile,〈φ̂(r )〉 is calculated
in the mean-field approximation, where the molecular interac-
tions experienced by the segments are approximated by a static
field

Note that the excluded-volume parameter,V, is assumed to be
sufficiently positive (i.e., good solvent) so as to swell the brush
to semidilute conditions.12,17

For convenience, the grafting density,σ, can be removed from
the problem by defining the scaled concentration

normalized such that

This allows the field eq 2 to be rewritten as

in terms of the reduced interaction parameter

Likewise, the molecular-weight dependence,N, can be scaled
out of the problem by dividing all lengths (e.g.,R, L, r⊥, andz)
by aN1/2. In the end, our model is described by just three
parameters:Λ, R/aN1/2, andL/aN1/2. Later in this section, we
will substitute the parameterΛ by L0/aN1/2, whereL0 is the
classical brush height defined by SST.

A. Self-Consistent Field Theory (SCFT).The full mean-
field theory for flexible Gaussian chains is generally referred
to as self-consistent field theory (SCFT),20 and numerical
solutions for polymer brushes have been available for more than
a decade.17,18,21,22These earlier calculations considered uniform
brushes, where the grafted ends are allowed to float freely in a
two-dimensional plane a small distanceε above the substrate
(see ref 17 for an explanation of whyε must be nonzero). Here
the lateral symmetry is broken by the spherical particle, and
therefore we must instead follow a derivation that strictly
enforces the uniform grafting density.23

The starting point of a SCFT calculation is the partition
function for a chain fragment ofsNsegments with its ends fixed
at r and r ′. It is defined by

where the energy of a given configuration is

Rather than using the path integral in eq 7, the partition function
is more efficiently evaluated by solving a modified diffusion
equation,19,20

subject to the initial condition

The impenetrability of the particle and the substrate is accounted
for by enforcing the Dirichlet boundary condition,q(r , r ′, s) )
0, at r⊥

2 + (z - L - R)2 ) R2 andz ) 0.
In terms of the partition function, the average segment

concentration from a single chain grafted atr ′ is given by

where

is the partition function for a chain fragment with one free end.
Since it is just a linear combination ofq(r , r ′, s), it satisfies the
diffusion eq 9 with the Dirichlet boundary condition, but eqs
10 and 12 imply a different initial condition ofqf(r , 0) ) 1.
Note that the free-end distribution of the chain is

The average polymer concentration for the entire brush is then
given by the integral

where we have made the convenient definition

representing the partition function for a grafted portion of the
chain. Similarly,qg(r , s) obeys the diffusion eq 9 with the
Dirichlet boundary condition, and it must satisfy the initial
condition

according to eqs 10 and 16. This function also has the useful
property that it provides the distribution

of all the polymer free ends.
Once the field,w(r ), has been adjusted such thatφ(r ) satisfies

eq 5, the free energy of the system is given by

φ̂(r ) )
N

F0
∑
R)1

n ∫0

1
ds δ(r - rR(s)) (1)

w(r ) ) VN〈φ̂(r )〉 (2)

φ(r ) )
aF0

σN1/2
〈φ̂(r )〉 (3)

∫ dr φ(r ) ) AaN1/2 (4)

w(r ) ) Λφ(r ) (5)

Λ ≡ VσN3/2

aF0
(6)

q(r , r ′, s) ∝ ∫ DrR exp(-
E[rR; s]

kBT ) ×
δ(rR(0) - r ′)δ(rR(s) - r ) (7)

E[rR; s]

kBT
) ∫0

s
dt ( 3

2a2N | d
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rR(t)|2 + w(rR(t))) (8)

∂

∂s
q(r , r ′, s) ) [a2N

6
∇2 - w(r )]q(r , r ′, s) (9)

q(r , r ′, 0) ) δ(r - r ′)a3N3/2 (10)

φ(r ; r ′) )
∫0

1
ds qf(r , s)q(r , r ′, 1 - s)

qf(r ′, 1)
(11)

qf(r , s) ≡ 1

a3N3/2∫ dr ′ q(r , r ′, s) (12)

g(r ; r ′) )
q(r , r ′,1)

qf(r ′, 1)
(13)

φ(r ) ) 1

a2N
∫ dr ′ δ(z′ - ε)φ(r ; r ′) (14)

) ∫0

1
ds qf(r , s)qg(r , 1 - s) (15)

qg(r , s) ≡ 1

a2N
∫ dr ′ δ(z′ - ε)

q(r , r ′, s)

qf(r ′, 1)
(16)

qg(r , 0) )
δ(z - ε)aN1/2

qf(r , 1)
(17)

g(r ) ) qg(r , 1) (18)
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The first term integrates the single-chain free energy,-kBT ln
qf(r , 1), over the grafting distribution,σδ(z - ε), while the
second term subtracts half of the field energy to correct for the
usual double counting of the internal energy that occurs in mean-
field theory.

To solve the diffusion eq 9, we implement a Crank-Nicholson
algorithm in cylindrical coordinates, (r⊥, θ, z). Because of the
axial symmetry involved, none of our quantities have any
θ dependence and therefore the SCFT reduces to a 2-dimen-
sional computation. In the limit of uniform compression (i.e.,
R f ∞), ther⊥ dependence also disappears reducing the SCFT
to a quick 1-dimensional computation. In order to obtain
accurate results, we employ a fine mesh (typically∆r⊥ )
0.03aN1/2, ∆z ) 0.01aN1/2, and ∆s ) 0.00125) and use a
generous system size (up tor⊥ ) 15aN1/2 andz ) 6aN1/2). For
efficiency, the Crank-Nicholson method is done by the usual
operator-splitting technique,24 where a half time-step is done
treatingr⊥ implicitly and z explicitly and then vice versa for
the next half time-step. We find that the conservation of polymer
is best maintained by not splitting the field term and only having
it appear at the integer time-steps. To further improve the
conservation of material, all volume integrals,∫ dr f(r ), are
performed by a simple quadrature where the integrand,f(r⊥, z),
at each grid point is weighted by the volume of its own cell
(defined as the region of space closest to that particular grid
point). The Anderson-mixing algorithm25 provides an efficient
method of satisfying the self-consistent field condition, eq 5.

B. Strong-Stretching Theory (SST).For strongly stretched
brushes, the chains are eventually limited to the configurations
that minimizeE[rR; 1]. For an unperturbed brush, these ground-
state trajectories are straight paths,zR(s), in the vertical direction.
Using an analogy with classical mechanics, Milner, Witten, and
Cates12 argued that in this limit the mean field must adopt the
harmonic potential

for which theclassicaltrajectories are

where z0 denotes the position of the free end. (Note that
Semenov26 derived this potential several years earlier for melt
brushes using a variational approach, which is easily generalized
to include solvent.27) In the absence of compression,z ) xC
≡ L0 defines the point at which the polymer concentration
vanishes. This combined with eq 4 predicts aclassicalbrush
height relative to the characteristic polymer size of

From now on, we will characterize our brushes by this ratio
rather than the less intuitiveΛ parameter.

For uniform compressions ofL < L0, the potential remains
harmonic but the constant adjusts according to

so as to satisfy eq 4. The free energy of the compressed brush
is then obtained by taking the energy of a single chain in the
field, E[rR, 1] ) 3π2C/8a2N for all values ofz0, and subtracting
half the field energy (i.e., the second term in eq 19). This leads
to the simple analytical formula1,12

where

for u e 1 and is one otherwise.
Unfortunately, the exact SST solution for a brush in contact

with a spherical particle is intractable. The classical trajectories
become curved with the loss of lateral symmetry, and conse-
quently the argument for the parabolic potential breaks down.
Although there have been a number of SST calculations15,28-30

dealing with nonuniform brushes, they all involve additional
approximations and assumptions.

C. Derjaguin Approximation. The well-known Derjaguin
approximation10 provides a convenient means of estimating the
properties of nonuniform compression in terms of uniform
compression. This is accomplished by assuming that the local
details beneath the particle atr⊥ are well approximated by a
brush uniformly compressed to

the vertical separation between the substrate and the particle.
The method can be used in either the SCFT or SST framework,
provided the particle is large enough thatl(r⊥) is a slowly

varying function over the contact area,r⊥ j xR2-(R+L-L0)
2.

If this condition is satisfied, then the interaction energy can be
estimated as

where

is the free energy penalty per chain for a brush uniformly
compressed to a height ofl.

The form of the Derjaguin approximation in eq 27 is easily
generalized to particles of any shape, but a further simplification
is possible for the special case of spherical particles. Continuing
to assume large radii, we invoke the Taylor series approximation,

xR2-r⊥
2 ≈ R(1 - r⊥

2/2R2), and switch the integration vari-
able from r⊥ to l; this transforms eq 26 into the simpler
expression

which depends linearly on the particle size,R. For SST, the
integral can be performed analytically, giving
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) -σ ∫ dr δ(z - ε) ln qf(r , 1) -

σ
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w(z) )
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8a2N
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) (4Λ
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3

3L
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3
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2
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l(r⊥) ) L + R - xR2 - r⊥
2 (26)

∆F(L; R) ) σ ∫0

R
dr⊥ 2πr⊥ ∆f(l(r⊥)) (27)

∆f(l) ≡ [F(l; ∞) - F(∞; ∞)]/n (28)

∆F(L; R) ) 2πσR∫L

∞
dl ∆f(l) (29)

∆F(L; R)
kBT

)
9π3σRL0

3

20a2N
H(L/L0) (30)
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where

for u e 1 and is zero otherwise. A nice feature of eq 29 is that
it provides a simple expression for the force on a large spherical
particle

that only involves calculating the uniform compression for a
single brush height ofL. One will often see eq 32 referred to as
the Derjaguin approximation, even though it is in reality a
restricted version.

III. Results

We begin our study by examining a particle of radiusR )
2aN1/2 positioned a distanceL ) 2aN1/2 above a substrate grafted
with a brush of thicknessL0 ) 3aN1/2. (Note that this refers to
the classical brush thickness predicted by SST; the actual profile
includes a tail that extends a characteristic distance,ê )
L0

-1/3a4/3N2/3, beyondL0.17,31) Figure 2 shows the brush profile,
φ(r⊥, z), and corresponding end-segment distribution,g(r⊥, z),
obtained from a full 2-dimensional SCFT calculation. Although
the impenetrability causes the polymer concentration to vanish
at the substrate and the particle surface, it does recover quickly.
The depletion zone next to the substrate has a small width ofµ
) a2N/4L0,17 and the concentration next to the particle recovers
to φ∞ in a short distance that scales asêMF ∼ (Vaφ∞)-1/2.32

It is remarkable how there is almost no buildup of material
directly beneath the particle, as evident from the negligible effect
the particle has on the equi-concentration contour,φ(r⊥, z) )
0.4. There is a more significant accumulation of end-segments
directly below the particle, but theg(r⊥, z) ) 0.4 contour is
still reasonably flat. Clearly a considerable amount of polymer
has been displaced from under the particle, but this happened
without any significant disturbance beyond the contact zone (i.e.,
r⊥ J 1.7aN1/2). The reason is that the displaced segments are
spread over a relatively large area, on account of the fact that
the amount of brush betweenr⊥ andr⊥ + dr⊥ increases linearly
with r⊥. This response by the polymer concentration is in stark
contrast to the predictions in Figure 3 based on the Derjaguin
assumption, whereφ(r⊥, z) andg(r⊥, z) at r⊥ are approximated
by a uniformly compressed brush of thicknessl(r⊥). The
difference is attributed to the fact that the Derjaguin approxima-
tion prevents the lateral displacement of segments.

The validity of the Derjaguin assumption is most easily
assessed by Figure 4, where the concentration profiles,φ(0,z),
directly below particles of different radii,R, are compared with
that of uniform compression (dashed curve). Unfortunately the
convergence is very slow; even atR ) 30aN1/2, there is still a
significant gap between the 1- and 2-dimensional SCFT profiles.
This can be understood by examining Figure 5, which shows
the contributions from a single polymer chain, eqs 11 and 13,
grafted directly beneath a particle of radiusR ) 2aN1/2. It is
affected by the curvature of the particle due to the fact its
concentration extends laterally to aboutr⊥ ≈ aN1/2, but this is
not the main source of the slow convergence. The problem is
that φ(0, z) andg(0, z) receive a significant contribution from
chains grafted as far away asr⊥ ≈ aN1/2, where the vertical
separation has increased by about 10%. This inaccuracy in the
Derjaguin approximation will persist untilR is sufficiently large

Figure 2. Contour plots of (a) the polymer concentration,φ(r⊥, z),
and (b) the end-segment distribution,g(r⊥, z), calculated with the full
SCFT for a brush of thickness,L0 ) 3aN1/2, compressed by a particle
of radius,R ) 2aN1/2, at a distance,L ) 2aN1/2, above the grafting
surface. Note that someφ contours next to the substrate have been
omitted for clarity.

H(u) ≡ (-45 - 30 lnu + 54u - 10u3 + u6)/54 (31)

force≡ - d
dL

∆F(L; R) ) 2πσR∆f(L) (32)

Figure 3. Analogous plots to those in Figure 2, but obtained in the
Derjaguin approximation whereφ(r⊥, z) andg(r⊥, z) are estimated at
each value ofr⊥ by a 1-dimensional SCFT calculation for a uniform
compression ofl(r⊥).
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that l(r⊥) remains nearly constant over lateral distances ofaN1/2.
The slow convergence does not bode well for the utility of

the Derjaguin approximation. However, it is the force that
concerns us most, and fortunately the Derjaguin approximation
will prove to be far more successful in this regard. Its estimate
of the force, eq 32, only requires the free energy penalty of a
uniformly compressed brush, which is plotted in Figure 6 for
SCFT and SST. As expected, the SCFT predictions approach
the SST result (dashed curve) in the limit ofL0 f ∞, but this
convergence is again rather slow. For the realistic brush
thicknesses considered in Figure 6, the SCFT interaction begins
well beforeL ) L0 due to significant fluctuations about the
classical trajectories.17,31The resulting underestimation by SST
never really improves even for relatively high compressions.

The compression by finite-sized particles is examined in
Figure 7a, by plotting the free energy penalty vs particle radius
at a separation ofL ) 1.5aN1/2 and a typical brush thickness of
L0 ) 2aN1/2. This plot tests the linear dependence onRpredicted
by the Derjaguin approximation in eq 29, which gives a straight
line passing from the origin through the open circle. This and
the more accurate Derjaguin approximation in eq 27 both agree
nicely with the SCFT prediction using the full 2-dimensional
calculation. Furthermore, the agreement extends down to particle
sizes ofRJ 2aN1/2, which is remarkably better than the previous
performance regarding the segment concentrations. If we,
however, use the Derjaguin approximation with SST, eq 27 gives
the dashed curve while eq 29 predicts a straight line through
the filled circle. Although these SST results are consistent with
each other, they are more than an order of magnitude too small.
Figure 7b shows analogous results for a brush of twice the
thickness,L0 ) 4aN1/2, at the same relative compression. As
expected, the SST-based predictions become more accurate, but
they still underestimate the interaction by a factor of∼3 even

Figure 4. Polymer concentration,φ(0, z), directly beneath (i.e.,r⊥ )
0) particles of various radii,R, each compressing the brush from a
thickness ofL0 ) 3aN1/2 down toL ) 2aN1/3. The dashed curve denotes
the limit of uniform compression.

Figure 5. Polymer concentration,φ(r ; r ′), of a single chain grafted at
r′⊥ ) 0 andz′ ) ε in a brush of thicknessL0 ) 3aN1/2 (a) without and
(b) with a particle of radiusR ) 2aN1/2 at L ) 2aN1/2. For clarity, the
equi-concentration contours are omitted forφ > 0.5. Plots (c) and (d)
show the corresponding contour plots for the end-segment distribution,
g(r ; r ′).

Figure 6. Free energy penalty per chain,∆f, of a brush as a function
of uniform compression,L, plotted for several classical brush thick-
nesses,L0. The dashed curve denotes theL0 f ∞ limit given by SST
in eq 24.

Figure 7. (a) Free energy penalty,∆F, as a function of particle size,
R, for a brush thickness ofL0 ) 2aN1/2 compressed to a height ofL )
1.5aN1/2. Curves are shown for the full SCFT calculation as well as
the Derjaguin approximation in eq 27 using both SCFT and SST. The
symbols compare the further approximation in eq 29. (b) Analogous
results forL0 ) 4aN1/2 andL ) 3aN1/2.
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though the brush thickness is beyond typical experimental
conditions.

Now that the linear dependence,∆F ∝ R, has been estab-
lished, Figure 8 examines the energy penalty,∆F, as a function
of compression,L, for particles of a fixed radius,R ) 10aN1/2.
Again the full 2-dimensional SCFT predictions (symbols) are
well estimated by the Derjaguin approximation in eq 29 when
∆f(l) is supplied by SCFT (solid curves); even for this modest
particle size, the difference is only a few percent. On the other
hand, the SST-based prediction in eq 30 (dashed curve) seriously
underestimates the interaction energy for brushes of realistic
thickness.

IV. Discussion

Our full 2-dimensional SCFT calculation removes the re-
quirement of large particle radius,R, by the Derjaguin ap-
proximation and large brush thickness,L0, by the SST.
Nevertheless, there still remain a few conditions that any
application must adhere to. For instance, the spacing between
grafting points must be small enough (i.e.,σ-1/2 , aN1/2) to
ensure sufficient overlap among the chains to justify our mean-
field treatment, and the brush must be semidilute (i.e.,j30%
concentration) for the self-consistent field condition in eq 5 to
be valid. The polymers should also be flexible (i.e., many
persistent lengths long) and not overly extended (i.e., much
longer thanL0) for the Gaussian chain model to apply. We have
also assumed a neutral particle, but an affinity for the solvent
is unlikely to have any significant effect other than to slightly
widen the depletion zone. On the other hand, a significant
tendency to adsorb polymer will modify the interaction.5

Experimental brushes generally have unperturbed heights in
the range,L0/aN1/2 ≈ 1-3.5-8 Under such conditions, the SST
is the dominant source of inaccuracy in the analytical prediction,
eq 30, for the repulsive interaction. Of course, this is inevitable
given how the SST seriously underestimates the range and
strength of∆f(l) in Figure 6. Whitmore and Baranowski18 also
found similar problems with SST, although not quite as extreme
because they presented their results in a way that masks some
of the differences with SCFT. Experimental comparisons5,6 to
SST seem much better partly because they have been done on
a logarithmic scale, but sizable discrepancies are still apparent
at low compressions. These can supposedly be remedied by
accounting for polydispersity,33 but there are inconsistencies in
the parameters used to attain this agreement.34 In any case, the
difference with experiment is a convolution of numerous

inaccuracies from both assumptions in the underlying model
and uncertainties inN, a, V, and σ. On the other hand, our
comparison with SCFT is done using the identical model with
the same exact parameters, and thus the discrepancy with SCFT
reveals a purely mathematical inaccuracy caused by restricting
the polymers to their classical trajectories.

The scaling theory of Alexander and de Gennes11 has also
had reasonable success in explaining experimental results.4-7

For uniform compression, it predicts a free energy penalty per
chain of

to within a prefactor of order unity.35 Unlike the SCFT and SST
calculations, which use the Gaussian chain model, the scaling
theory does account for self-avoidance on small length scales
(defined by the so-called blob size,êblob ∼ σ-1/2), but this one
extra consideration cannot justify the crude assumption of a
uniform concentration profile.33 The theory undoubtedly owes
its success to the fact that the comparisons are done usingL0

and the amplitude as fitting parameters. If we treatL0 andσ as
fitting parameters, SCFT produces a better fit to the experiments
of Klein and co-workers5-7 than either scaling theory or SST.

Similar comparisons have also been done with simulations.
Murat and Grest13 found that the functional forms of∆f(l)
predicted by the scaling theory and SST perform equally well,
but for SST they setL0 to the actual brush height rather than
the classical height obtained by fitting to a parabolic profile.
Toral et al.36 did not compare their simulations with the scaling
theory, but they did find consistent agreement with SST although
with an arbitrary prefactor. In a third simulation study by Goujon
et al.,14 scaling theory actually performed somewhat better than
SST; once again they only tested the functional form of the
theoretical predictions. It should be noted that the small
molecular weights used in these simulations do not fully justify
comparison to the Gaussian chain model, particularly in the later
case14 whereL0 was not that much greater than the contour
length of the polymers.

The generally accepted criterion37 for the Derjaguin ap-
proximation is that the radius of curvature,R, is much larger
than the range of the interaction,L0, and therefore we should
not necessarily expect it to be accurate for submicron-sized
particles. However, our comparisons with the full 2-dimensional
SCFT calculation demonstrate that it can be used on much
smaller particles, at least for predicting the force. We have found
that reasonable predictions (i.e.,∼10% accuracy) can be
obtained for radii that are just a couple times larger thanaN1/2,
the typical width over which chains fluctuate in the lateral
direction (see Figure 5). For the case of thick brushes, the
equator of the particle must also remain well above the brush,
such that∆f(l) ≈ 0 before the slope ofl(r⊥) diverges. This results
in the more relaxed criteria

Note that when the approximation is pushed to such limits, it
is best to use eq 27 rather than eq 29. Of course, our conclusions
are specific to the particular geometry in Figure 1, but there is
every reason to expect the Derjaguin approximation to perform
similarly well in other brush applications.

In the SST, the Derjaguin approximation equates to an
assumption that the classical trajectories follow straight vertical
paths from the grafting surface. Given the chance, the polymer
trajectories would curve away from the particle in order to

Figure 8. Free energy penalty,∆F, as a function of compression,L,
for particles of radiusR ) 10aN1/2. The filled circles, open circles and
filled triangles are calculated with the full SCFT for brushes of
thicknesses,L0/aN1/2 ) 2, 3 and 4, respectively. The solid curves
compare the Derjaguin approximation in eq 29 using SCFT, while the
dashed curve does the same using SST.

∆f(l)
kBT

∼ L0σ
1/2 [ 7

12 ( l
L0

)-5/4
+ 5

12 ( l
L0

)7/4
- 1] (33)

R J 2aN1/2 and R J 2(L0 - L) (34)
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reduce the free energy. Thus, the Derjaguin approximation
provides an upper bound for∆F, and so the true 2-dimensional
SST prediction would be even smaller than the dashed curves
in Figures 7 and 8. This argument does not strictly extend to
the SCFT, because of the finite width of the individual polymer
profiles,φ(r ; r ′), as shown in Figure 5. Nevertheless, the full
SCFT calculation does predict a softer repulsion than the SCFT-
based Derjaguin approximation, except for very small particles
with R j aN1/2. However, the reduction in∆F is very slight,
despite the considerable lateral displacement of segments that
occurs in the full SCFT (compare Figures 2 and 3). This is
analogous to what happened in an earlier SST calculation for
the interaction between two brush-coated spheres.29 Evidently,
there is a weak sensitivity to the details of the polymer
trajectories that allows the Derjaguin approximation to ac-
curately predict the interaction force for much smaller particles
than one should realistically expect.

V. Summary

The steric repulsion on a spherical particle by a planar
polymer brush has been predicted using the standard Gaussian
chain model for high-molecular-weight polymers with a mean-
field treatment appropriate to semidilute brushes. It has been
common practice to estimate such forces analytically by adapting
the strong-stretching theory (SST) of Milner, Witten, and Cates12

for uniform compression to curved geometries using the
Derjaguin approximation.10 The SST requires the brush thick-
ness,L0, to be large relative to the characteristic polymer size,
aN1/2, but small relative to the polymer contour length. The
Derjaguin approximation assumes the particle radius,R, is large
relative toL0. Here these assumptions have been removed by
using the full numerical self-consistent field theory (SCFT),
which reduces to a 2-dimensional computation due to the axial
symmetry (see Figure 1).

The full SCFT treatment allowed us to consider particles of
small radii and brushes with realistic grafting densities, and it
also gave us the opportunity to test the validity of the SST and
Derjaguin approximation. For realistic grafting densities, the
SST seriously underestimates the free energy penalty for uniform
compression,∆f, by typically an order of magnitude. Although
the Derjaguin approximation does not predict the perturbation
on the composition profile particularly well, it does provide a
good estimate of the compression force on nanosized particles
when the uniform compression is supplied by a 1-dimensional
SCFT calculation. Not only is this approach computationally
efficient, it also has the versatility to handle with equal ease
particles without axial symmetry, for which the full SCFT would
become a costly 3-dimensional computation.
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