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Abstract

The problem of state estimation occurs in many applications of fluid flow.
For example, to produce a reliable weather forecast it is essential to find
the best possible estimate of the true state of the atmosphere. To find this
best estimate a nonlinear least squares problem has to be solved subject to
dynamical system constraints. Usually this is solved iteratively by an approx-
imate Gauss-Newton method where the underlying discrete linear system is
in general unstable. In this paper we propose a new method for deriving low
order approximations to the problem based on a recently developed model
reduction method for unstable systems. To illustrate the theoretical results,
numerical experiments are performed using a two dimensional Eady model
– a simple model of baroclinic instability, which is the dominant mechanism
for the growth of storms at mid-latitudes. It is a suitable test model to show
the benefit that may be obtained by using model reduction techniques to
approximate unstable systems within the state estimation problem.

Keywords: State estimation, Gauss-Newton methods, variational data
assimilation, unstable models, balanced truncation

1. Introduction

The problem of state estimation occurs in many applications of fluid flow.
For example, to make reliable predictions of weather and ocean systems, of
reservoir dynamics, or even of traffic flows, it is essential to find the best
possible estimate of the true state of the system with which to initialize
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a forecast. Data assimilation techniques aim to find this best estimate by
combining observational data with a numerical model of the system. In the
popular technique of four-dimensional variational data assimilation (4D-Var)
the assimilation problem is posed as a large nonlinear least squares problem
of the form

min
x
ϕ(x) = f(x)Tf(x), (1)

where the function f(x) includes the nonlinear forecast model. This is often
solved by applying a few iterations of an approximate Gauss-Newton method,
in an algorithm known as incremental 4D-Var [1, 2]. We note that in order
to apply such a method we need the Jacobian of the function f(x) and
hence the Jacobian of the nonlinear forecast model, which is referred to
as the tangent linear model (TLM). Significant properties of the numerical
prediction models are their large dimensions and their unstable behaviour.
Instability in the TLM arises where the underlying nonlinear forecast model
is linearly unstable over a finite time interval. This motivates the necessity
to be able to approximate large unstable models by low order systems.

A commonly used approach to reduce the complexity of the problem
(1) is to approximate the full TLM by a linearized model at low spatial
resolution. Whilst this leads to an algorithm that is practical to compute
in real-time, the approximations made do not take into account whether the
most important parts of the dynamical system are being retained. Recently
it has been shown that model reduction techniques from the field of control
theory can be used to approximate the solution of the full order problem if
the underlying dynamical system is asymptotically stable [3, 4, 5].

However, the systems occurring in the state estimation problem (1) are
in general unstable whilst most of the known model reduction methods are
for asymptotically stable systems only. We consider the recently derived
model reduction method of α-bounded balanced truncation [6]. In contrast to
existing approaches for model reduction of unstable systems, this new method
approximates the input-output behaviour of the asymptotically stable as well
as of the unstable part of the full order system, no matter how many unstable
poles there are.

Employing this new method of α-bounded balanced truncation we show
how model reduction may be used in the inner step of the Gauss-Newton al-
gorithm to give an approximate iteration procedure that retains the most im-
portant properties of the dynamical system response if the underlying system
is unstable. We demonstrate the application of this technique to the prob-
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lem of variational data assimilation, which corresponds to an optimal state
estimation problem. The results are illustrated by numerical experiments
with a two dimensional Eady model, a simple model of baroclinic instability,
which is the dominant mechanism for the growth of storms at mid-latitudes.
It is a suitable test model (with a considerable number of unstable poles) to
show the benefit that may be obtained by using the new balanced truncation
method for unstable systems within the Gauss-Newton algorithm. In the
experiments we compare the new model reduction technique with the stan-
dard low resolution approach and with the standard extension of balanced
truncation for unstable systems within the state estimation problem.

In the next section we describe the state estimation problem as it occurs
in the field of data assimilation. Section 3 then presents how the model
reduction technique of α-bounded balanced truncation can be used to solve
the state estimation problem approximately when the underlying TLM is
unstable. In Section 4 we illustrate the method by numerical experiments
with a 2-dimensional Eady model. Finally we draw conclusions in section 5.

2. State estimation within data assimilation

The aim of variational data assimilation is to match the output response
of a dynamical system model to observed measurements of the outputs over
a specified time window [t0, tN ]. For a discrete dynamical system, we let
xj ∈ Rn be the model state vector, yj ∈ Rp be a vector of p observations and
hj : Rn → Rp be a nonlinear observation operator that relates the system
states to the observations at time tj. The model state vectors satisfy the
nonlinear model equations xj = mj,0(x0).

The 4D-Var method can be stated as a nonlinear least squares problem
of the form (1) with the nonlinear function f : Rn → Rn+(N+1)p defined as

f(x0) :=


B

− 1
2

0 (x0 − x
(b)
0 )

R
− 1

2
0 (h0[x0]− y0)

. . .

R
− 1

2
N (hN [xN ]− yN)

 . (2)

The background estimate x
(b)
0 of the initial state x0 is known and the initial

errors (x0 − x
(b)
0 ) and the observational errors (hj[xj] − yj) are assumed to

be unbiased, Gaussian random vectors with covariance matrices B0 and Rj,
respectively.
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In practice, the nonlinear least squares problem (1) with f as defined in
(2) can be solved by applying the Gauss-Newton method. This is an iterative
algorithm that minimizes in each iteration step (k) the linear least squares
function

ϕ̃(δx
(k)
0 ) = ∥Jfδx(k)0 + f(x

(k)
0 )∥22, (3)

where Jf denotes the Jacobian of f . The new iterate is then defined as

x
(k+1)
0 = x

(k)
0 + δx

(k)
0 . It follows from (2) that the Jacobian Jf is given by

Jf =

[ (
B

− 1
2

0

)T (
R

− 1
2

0 H0

)T (
R

− 1
2

1 H1M1,0

)T

. . .
(
R

− 1
2

N HNMN,0

)T
]T
,

(4)

with linearized observation and model matrices Hi :=
∂hi

∂xi
(x

(k)
i ), i = 0, . . . , N ,

and Mi,0 :=
∂mi,0

∂x0
(x

(k)
0 ) for i = 1, . . . , N , respectively.

In cases where the dimension of the state vector is very large it is com-
putationally expensive to solve (3). A common approach for simplifying the
problem is to consider the linear model at a lower spatial resolution. This
reduces the complexity substantially and thus makes a solution of (3) feasi-
ble for very large dimension, but it is not assured that the most important
information in the full order model is retained. In [4, 5] it has been shown
that the model reduction method of balanced truncation can be used instead
to solve (3) approximately, but only if the system is asymptotically stable.
This method projects the tangent linear system

δx
(k)
i+1 = Mi+1,iδx

(k)
i ,

d
(k)
i = Hiδx

(k)
i ,

(5)

where Mi+1,i =
∂mi+1,i

∂xi
(x

(k)
i ), to a lower dimensional space, where the cost

function is then minimized approximately. Compared to the low resolution
approach, the use of model reduction techniques supplies better approxima-
tions to the solution of the full order problem. The next section shows how
this idea can be extended to unstable systems.

3. Model reduction for unstable systems

The aim is to solve (3) by finding low order approximations to the linear
system (5) within the (k) − th iteration step of the Gauss-Newton method.
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For ease of notation the iteration index (k) is omitted in the following. We
consider a time-invariant approximation

S :

{
δxi+1 = Mδxi,
di = Hδxi,

(6)

to the linear system (5), where the constant matrices M and H are approx-
imations to the time-varying operators Mi+1,i and Hi over the time window

[t0, tN ]. The initial state δx0 = B
1
2
0 ω is a normally distributed random vari-

able with mean zero and covariance matrix B0 ∈ Rn×n, where ω ∼ N (0, I).
The transfer function T of the system (6) is a complex matrix valued

function describing the behaviour of the system in frequency domain. It is
defined as

T : C → Rp×m, (7)

z 7→ T (z) := H(zI −M)−1B
1
2
0 . (8)

The system (6) is in general unstable, i.e. the eigenvalues of the system
matrix M may lie outside as well as inside the unit circle. To be able to find
low order approximations to (6) we need a reliable model reduction technique
for unstable systems. The method of α-bounded balanced truncation has
recently been developed [6] for α-bounded systems, i.e. for systems where all
eigenvalues of the system matrixM lie in a circle around the origin with real
positive radius α. For any regular unstable system S it is possible to find
such an α. The α-bounded balanced truncation then computes restriction
and prolongation matrices U and V , respectively, such that the projected
system,

Ŝ :

{
δx̂i+1 = UTMV δx̂i,

d̂i = HV δx̂i,
(9)

with low order state vector δx̂i = UT δxi ∈ Rr, r ≪ n, approximates the full
order system S very well. More precisely, there exists a global error bound
with respect to the h∞,α-norm of the error system [6]:

∥T − T̂∥h∞,α ≤ 2(σ
(α)
r+1 + . . .+ σ(α)

n ), (10)

where ∥T∥h∞,α := supθ∈[0,2π] σmax

(
T (αeiθ)

)
and σmax denotes the largest sin-

gular value of the operator T . The h∞,α-norm is well-defined for any function
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F : C → Rm×p that is holomorphic in the complement of the circle around
the origin with radius α and, therefore, for α-bounded systems. The scalars
σ
(α)
r+1, . . . , σ

(α)
n are the Hankel singular values of the α-scaled system Sα, given

by the transfer function

Tα =
1

α
H(zI − 1

α
M)−1B

1
2
0 ,

that are not matched by the corresponding reduced order system.
We show next that the low order system (9) can be used to solve the least

squares problem within the Gauss-Newton iteration approximately. Instead
of minimizing (3) we minimize the cost function

ϕ̂(δx̂0) = ∥Ĵδx̂0 + f̂∥22 (11)

where

Ĵ =



(UTB0U)
− 1

2

R
− 1

2
0 HV

R
− 1

2
1 HV (UTMV )

...

R
− 1

2
N HV (UTMV )N


, f̂ = −



UT δx
(b)
0

R
− 1

2
0 d0

R
− 1

2
1 d1
...

R
− 1

2
N dN


, (12)

with δx
(b)
0 := x

(b)
0 − x0 and di := yi − hi[xi]. The minimization of (11) is

computationally much more efficient than solving (3); the solution δx̂0 has
dimension r ≪ n. The prolongation operator V is then applied to lift the
solution δx̂0 back into the space Rn. The lifted state vector δx̂

(lift)
0 := V δx̂0

is in general a good approximation to the solution δx0 of the full problem
(3).

In [6] the superior performance of the α-bounded balanced truncation
method of model reduction has been shown over a standard extension of bal-
anced truncation for unstable systems based on an additive decomposition
of the system into its asymptotically stable and its unstable parts. We inves-
tigate in the next section whether this result continues to hold when these
two model reduction methods are used to solve the state estimation problem
(3) approximately.

4. Numerical experiments

We now perform numerical experiments to illustrate the benefit of the new
α-bounded model reduction method for approximating the unstable linear
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system inside the Gauss-Newton procedure. As a test model we consider a
two dimensional Eady model in the x−z plane – a simple model of baroclinic
instability, which is the dominant mechanism for the growth of storms at
mid-latitudes.

4.1. Experimental design

The nondimensional equations for the 2D Eady model [7] are now de-
scribed. The basic state is given by a linear zonal wind shear with height, z,
in a domain between two rigid horizontal boundaries, z = ±1

2
.

Following [8] it is assumed that the interior quasi-geostrophic potential
vorticity (QGPV) is zero. The initial state is given by the perturbation
buoyancy, b = b(x, z, t), on the boundaries, z = ±1

2
, at time t = 0. This

is used to calculate the corresponding perturbation geostrophic stream func-
tion, ψ = ψ(x, z, t), which satisfies:

∂2ψ

∂x2
+
∂2ψ

∂z2
= 0, in z ∈ [−1

2
,
1

2
], x ∈ [0, X], (13)

with boundary conditions

∂ψ

∂z
= b, on z = ±1

2
, x ∈ [0, X]. (14)

Perturbations to the basic state are advected zonally by the basic shear flow
as described by the non-dimensional QG thermodynamic equation:(

∂

∂t
+ z

∂

∂x

)
b =

∂ψ

∂x
, on z = ±1

2
, x ∈ [0, X]. (15)

The spatial boundary conditions in the x-direction are taken to be periodic
such that at any time, t, and height, z, b(0, z, t) = b(X, z, t) and ψ(0, z, t) =
ψ(X, z, t). As in [8] we use dimensionless values for x, z, and t.

In the experimental studies here, the Eady model is discretized using 11
vertical levels for stream function. There are 20 grid points in the horizontal,
giving 40 degrees of freedom in the state vector b. The advection equations
are discretized using a leap-frog advection scheme. We refer to [8] for further
details. The observation matrix H is chosen such that the observations are
taken from the lower-level buoyancy only.
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4.2. Comparison of low order and low resolution approximations

To investigate the quality of the approximations of the tangent linear
model we compare the lifted solutions δx̂

(lift)
0 of the low order least squares

problem (11) with the solution δx0 of the full order least squares problem (3).

We define a true solution δx
(true)
0 as the growing mode of the Eady model, i.e.

the eigenvector associated with the largest eigenvalue in absolute value. Then
perfect observations are generated from the true solution: di = HM iδx

(true)
0 ,

whereM represents the linear model operatorMi+1,i. For the computation of
the low order solutions δx̂0 of (11) we consider three different approximation
techniques: the low resolution approach and two model reduction methods
that use the standard extension of balanced truncation for unstable systems
and also the new α-bounded balanced truncation method.

Figure 1(a) shows the buoyancy b on the lower boundary and its low order
approximations where the reduction order is half the size of the dimension of
the full order problem. We see that the true solution (solid line) is approxi-
mated very well by the solution computed by α-bounded balanced truncation
with α = 1.12 (solid line with stars). We note that the solid line and the solid
line with stars lie on top of each other and, thus, they are indistinguishable in
the figure. The error is of order 10−12 (see Figure 1(b), solid line with stars).
In contrast, the standard balanced truncation method for unstable systems
(dashed line with circles) and the low resolution approach (dotted line with
triangles) supply solutions that approximate the true solution (solid line)
rather poorly with average errors of order of magnitude 10−1 (Figure 1(b),
dashed line with circles) and 10−3 (Figure 1(b), dotted line with triangles),
respectively.

The standard balanced truncation method supplies a very poor approxi-
mation. This is caused by the fact that the Eady model has a large number of
unstable poles (i.e. eigenvalues that are larger than one in absolute value).
Only two of the 40 eigenvalues lie inside the unit circle (see Figure 3(a)).
The standard balanced truncation approach additively decomposes the sys-
tem into an asymptotically stable subsystem (of order 2) and and unstable
subsystem (of order 38). The attempt to reduce the order of the system
to an order smaller than the number of unstable poles leads to a low order
system that only captures a part of the unstable modes. It is not even as-
sured that at least the most dominant unstable part is kept. Additionally,
the asymptotically stable components are ignored completely. This explains
why this technique is not capable of computing a good approximation when
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we reduce the order of the system to 20, which is much smaller than the
number of unstable poles.
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Figure 1: Comparison of low resolution (dotted line with triangles), standard balanced
truncation (dashed line with circles) and α-bounded balanced truncation (solid line with
stars) approximations to the buoyancy on the lower boundary.

Very similar results continue to hold for the buoyancy on the upper bound-
ary. In Figure 2(a) the approximation by the α-bounded method (solid line
with stars) is indistinguishable from the true solution (solid line). The error
is still of order of magnitude 10−11 to 10−12. This is a good result taking
into account that in our experimental setting we have no observations at
the upper boundary. The errors in the low resolution approximation (dotted
line with triangles) and in the standard balanced truncation approximation
(dashed line with circles) are of order of magnitude 10−1 to 10−2. This means
that the approximation using the new α-bounded approach is approximately
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10 orders of magnitude more accurate.
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Figure 2: Comparison of low resolution (dotted line with triangles), standard balanced
truncation (dashed line with circles) and α-bounded balanced truncation (solid line with
stars) approximations to the buoyancy on the upper boundary

The experiments have shown the clear superiority of the α-bounded ap-
proximation technique. This benefit can be explained in part by examining
the eigenstructure of the reduced dimensional systems. With the α-bounded
method it is possible to match more of the significant eigenvalues of the full
system than is the case for the low resolution model and for the standard
balanced truncation model. Figure 3(a) shows the eigenvalues of the system
matrix of the original full order system (crosses) while Figures 3(b), 4(a) and
4(b) show the eigenvalues of the different low order approximations. The
α-bounded approximation method matches almost all of the eigenvalues of
the full order system, inside as well as outside the unit circle (see Figure 3(b),
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circles). In contrast, the standard balanced truncation method (Figure 4(a),
circles) is capable of matching only some of the eigenvalues outside the unit
circle, but none inside. Thus, we cannot expect this method to capture the
dominant behaviour of the full order system successfully. The low resolution
method, on the other hand, matches eigenvalues inside and outside the unit
circle (Figure 4(b), circles), but there is still a considerable number of eigen-
values that are not captured at all. We see in the figures that the α-bounded
method matches the widest range of eigenvalues of the full order system.
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Figure 3: Eigenvalues of (a) full order M and (b) α-reduced M .
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Figure 4: Eigenvalues of (a) standard reduced M and (b) low resolution M .

5. Conclusions

State estimation problems occur in many different applications. Within
numerical weather prediction, data assimilation techniques seek to find the
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best estimate of the true state of the atmosphere at the initial step of a given
time window. In the well-known 4D-Var method this is achieved by solving
a nonlinear least squares problem constrained by nonlinear model equations
that describe the evolution of the state of the atmosphere with time. In
operational weather forecasting, this complex problem is solved using an
approximate Gauss-Newton procedure. Each step of this iterative method
contains a linear least squares problem subject to linear model equations, the
tangent linear model (TLM). The TLM is deduced from a nonlinear system
and may be unstable over a finite time window. The state vectors have
very large dimension and further approximations are therefore indispensable.
Usually the TLM is approximated by using a model with a lower spatial
resolution.

In this paper we have proposed that the model reduction method of α-
bounded balanced truncation may be employed to obtain better approxima-
tions to the unstable TLM within the Gauss-Newton procedure. This model
reduction technique computes a low order approximation to the TLM while
still capturing its most important properties. It can be applied independently
of the number of unstable poles of the full order system. The existence of a
global error bound can be proved.

The proposed method is computationally expensive, however, and more
work is needed in order to make it feasible for operational systems. However,
it is possible to make the method more practical for very large systems by
using Krylov subspace techniques for finding the projections.

We have compared the α-bounded balanced truncation method with the
standard balanced truncation approach for unstable systems and with the low
resolution approximation using numerical experiments with a 2-dimensional
Eady model. The Eady model is a simple model of baroclinic instability,
which is the dominant mechanism for the growth of storms at mid-latitudes.
In the numerical experiments we demonstrate the clear superiority of the α-
bounded approximation method. It captures the dominant behaviour of the
full order system. The low order approximation of the buoyancy on the lower
and upper boundary is hardly distinguishable from the full order solution. In
the experiments performed, the error was found to be on average ten orders of
magnitude smaller than the errors of the other two approximation techniques.
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