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Abstract.

In this paper we explore classification techniques for ill-posed problems. Two classes

are linearly separable in some Hilbert space X if they can be separated by a hyperplane.

We investigate stable separability, i.e. the case where we have a positive distance

between two separating hyperplanes. When the data in the space Y is generated

by a compact operator A applied to the system states ϕ ∈ X, we will show that in

general we do not obtain stable separability in Y even if the problem in X is stably

separable. In particular, we show this for the case where a nonlinear classification is

generated from a non-convergent family of linear classes in X.

We apply our results to the problem of quality control of fuel cells where we classify

fuel cells according to their efficiency. We can potentially classify a fuel cell using

either some external measured magnetic field or some internal current. However we

cannot measure the current directly since we cannot access the fuel cell in operation.

The first possibility is to apply discrimination techniques directly to the measured

magnetic fields. The second approach first reconstructs currents and then carries out

the classification on the current distributions. We show that both approaches need

regularization and that the regularized classifications are not equivalent in general.

Finally, we investigate a widely used linear classification algorithm Fisher’s linear

discriminant with respect to it’s ill-posedness when applied to data generated via a

compact integral operator. We show that the method cannot stay stable when the

number of measurement points becomes large.

1. Introduction

Classification techniques have been applied widely in medical imaging, process

monitoring and computer science, for example to face recognition [10] and classification
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of tumours [1]. In [4] the cancer area classification problem is investigated with voxels

produced by (DCE-)MRI data as inputs. The author uses unsupervised clustering

techniques first and then goes on to classify the voxels in the tumoral regions where

‘voxels of the same cluster are fed with the same label into the classifier’. The magnetic

tomography problem which we will investigate as our main application appears in the

form of MEG in medical problems; and it is an important tool for quality control in fuel

cell engineering.

Many medical imaging or reconstruction techniques are instable or ill-posed with

respect to the measurements and a variety of regularization methods to treat this

instability have been introduced in recent years ([8], [6], [15], [20]). The phenomenon is

much less studied for classification methods, though the classification method usually

inherits the underlying ill-posedness from the operator which generates the data under

consideration.

A problem is called ill-posed according to Hadamard (compare [6]), if the solution

does not always exist, if it is non-unique or does not depend stably on the measured

data. For example, a classification problem often is ill-posed when there is a small

amount of input data but the dimensionality of the input data is relatively large. This

can be dealt with in a number of different ways. In [5] a semi-supervised learning

approach is considered whereby both labelled and unlabelled data is used in training.

Regularization methods are often used to give an approximate solution of an ill-posed

problem. For example for the problem of cancer classification and the inverse problem

of computational vision [1] and [19] respectively use regularization methods to restore

stability. In [7] the authors discuss several discrimination methods that can be used

for the problem of cancer classification including Fisher’s linear discriminant. Fisher’s

linear discriminant is found to perform poorly here, since ‘the matrices of between-group

and within-group sums of squares and cross-products are quite unstable’ [7]. For our

problem classification via magnetic field yields an unstable within-class scatter matrix

too, which we deal with by using regularization techniques.

The key purpose of this work is threefold. First, we want to investigate the

phenomenon of ill-posedness of supervised classification algorithms in a rather general

framework by looking at separating hyperplanes in a Hilbert space setting. We will

show that with a compact operator A : X → Y generating the data y(ω) ∈ Y with some

index ω ∈ Ξ, in general the classification problem applied to data y(ω) = Aϕ(ω) ∈ Y is

unstable, even if the original system states ϕ(ω) ∈ X can be stably separated. We will

study several key situations in which the different phenomena can be clearly observed,

for example a case where classes are defined by the singular vectors of the operator A.

An important observation will be that stable separation in the image space under an

operator A depends on the condition v ∈ A∗Y for the normal vector v to the hyperplane

in the state space.

Second, we investigate a popular classification method, Fisher’s Linear

Discriminant, with respect to it’s ill-posedness, when the dimensionality of the space of
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training patterns which are used for discrimination is high. We show that, in the case of

data generated by a compact integral operator, it cannot stay stable when the number

of measurement points tends to infinity.

Third, we investigate the application of classification algorithms to classify fuel

cells according to their efficiency. Fuel cells work by electrolysis, compare [3] for more

details. An issue is that fuel cells can be unreliable [18] and it is difficult to determine

their efficiency since, unlike a standard engine, they do not have moving parts [12].

This makes quality control of fuel cells extremely difficult in both their manufacture

and maintainance.

We can potentially classify a fuel cell by its current or by its magnetic field. However

if we wish to classify a fuel cell by its current, we must first use techniques in magnetic

tomography to reconstruct the current from the magnetic field as introduced in [17], [22].

The second option carries out a classification without performing any reconstruction

of the current of the current densities. This is carried out by an application of linear

classification techniques. We will see that the classification of fuel cells by their magnetic

field is instable in general. Also, we provide a regularization for the classification and

investigate the relation of a regularized classification via the magnetic field with the

classification by the regularized reconstruction of the current densities. We show that

the two approaches are not equivalent in general.

The structure of the subsequent sections is as follows. First, we investigate linear

and particular nonlinear supervised classification techniques in Section 2. In Section

3 we summarize the results of static magnetic tomography. We focus on the ill-

posedness of the problem and describe discrete versions of the magnetic field and

current operators involved. The ill-posedness of classification problems for magnetic

tomography is investigated in Section 4. We then study the ill-posedness of Fisher’s

Linear Discriminant applied to data generated by a compact operator in Section 5. Here,

we also show that regularization applied to the classification generally is not identical

to the classification applied to a regularized solution. Finally, we provide numerical

examples from magnetic tomography in Section 5.3.

2. Classification and Ill-Posedness

Here, we will think of classification as a tool to define or identify a subset C of some

space X. We will restrict our attention to Hilbert spaces X with some scalar product

〈·, ·〉. All elements in C are considered as elements of class C. If C is an affine halfspace,

U in X, then we call the classification linear, i.e. if C is given in the form

U := {x : 〈x, v〉 ≥ ρ} (2.1)

with some vector v ∈ X and a number ρ ∈ R. A linear class is uniquely described by

a vector v with ||v|| = 1 and the number ρ. The number ρ gives the distance of the

boundary of the halfspace to the origin of X and is called affine distance. We will also
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study particular nonlinear classes which are obtained from linear classes as intersections

of affine halfspaces Uℓ, ℓ = 1, ..., n, i.e.

C :=
n

⋂

l=1

Uℓ. (2.2)

In this case we can reduce the study of stability of the classification to the stability in the

linear case. For smooth classes, i.e. where the boundary of C is a smooth manifold in X,

we can locally approximate the general nonlinear classification by a linear classification,

such that in this case the stability analysis can also be carried over from the linear to

the nonlinear case.

The process of classification is given by the way to achieve a definition of a class C.

Definition 2.1 (Supervised Classification) Classification methods start with

some elements or samples x
(1)
1 , ..., x

(N1)
1 ∈ X, also known as a training set. The task

here is to define an appropriate set C1 ⊂ X such that all elements x
(ω)
1 , ω = 1, ..., N1

are in C1. Often, there are also elements x
(ω)
2 , ω = 1, ..., N2 of a complementary class

C2 = X \C1. We may also have access to some target values which indicate which class

these samples belong to. We call an algorithm a supervised classification algorithm, if

it takes the samples and corresponding target values as input and calculates the classes

C1, C2 in such a way that new samples can be classified successfully.

Before we consider a particular classification algorithm, we first study the behaviour

of a class C and its image C̃ = AC with some linear operator A in a general framework.

We will put a particular emphasis on classes which are composed of a set of linear

classes.

2.1. General Results on the Ill-Posedness of Classification in the Image Space

Here, we investigate classification in connection with ill-posed problems. We assume that

we have Hilbert spaces X,Y with scalar products 〈·, ·〉 and a compact linear operator

A : X → Y . We are interested in supervised classification problems and their interplay

with the instability of the inverse A−1 of A.

To be more precise, let us assume that we have two Classes C1, C2 in X which are

linearly separable, i.e. we assume that there is halfspace U1 ⊂ X which contains C1

and has no intersection with C2. We are interested in the stability of the separation.

We call two classes stably separable, if there are two halfspaces U1, U2 with positive

distance ρ > 0 such that C1 ⊂ U1 and C2 ⊂ U2. In this case, if we have measurements

of elements x1 ∈ C1 or x2 ∈ C2 with error of size smaller than ρ/2, then we can still

identify x1 as an element of C1 and x2 as an element of C2.

Compact operators A : X → Y have the property that the image of a bounded

sequence has a convergent subsequence. In general, there can be elements x1, x2 in X

which are well separated, i.e. ||x1 − x2|| ≥ ρ, but the distance ||y1 − y2|| of the images

yξ := Axξ, ξ = 1, 2, is arbitrarily small. Here, our goal is to investigate the situation
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when we study stable classifications in X and how they can be achieved on the images

in Y without the inversion of the operator A.

A generic example. As a first step towards the clarification of the situation we

first want to consider a special case. We use the singular value decomposition of the

operator A, compare [6], i.e. we have an orthonormal basis {ϕℓ ∈ X, ℓ ∈ N} in X and

an orthonormal basis {gℓ ∈ Y, ℓ ∈ N} and a monotonously decreasing sequence (µℓ)ℓ∈N

of positive real values such that

Aϕℓ = µℓgℓ, A∗gℓ = µℓϕℓ (2.3)

for all ℓ ∈ N. We define a linear stable classification by

C
(1)
ℓ,ρ := {x : 〈x, ϕℓ〉 ≥ ρ}, C

(2)
ℓ,ρ := {x : 〈x, ϕℓ〉 ≤ −ρ}, (2.4)

which we call a stable linear separation along the direction of the singular values. Clearly,

the distance between C
(1)
ℓ,ρ and C

(2)
ℓ,ρ is 2ρ > 0. For every pair C

(1)
ℓ,ρ , C

(2)
ℓ,ρ from the sequence

of classes the classification is stable uniformly with respect to ℓ ∈ N.

The images of the classes C
(1)
ℓ,ρ , C

(2)
ℓ,ρ under the application of the operator A is given

by

C̃
(1)
ℓ,ρ := {y = Ax : 〈x, ϕℓ〉 ≥ ρ},

= {y ∈ A(X) : 〈A−1y, ϕℓ〉 ≥ ρ},
= {y ∈ A(X) : 〈y, (A∗)−1ϕℓ〉 ≥ ρ},
=

{

y ∈ A(X) :
〈

y, 1
µℓ
gℓ

〉

≥ ρ
}

,

= {y ∈ A(X) : 〈y, gℓ〉 ≥ µℓρ}, (2.5)

and

C̃
(2)
ℓ.ρ := {y : 〈y, gℓ〉 ≤ −µℓρ}. (2.6)

The distance between the classes C̃
(1)
ℓ,ρ and C̃

(2)
ℓ,ρ is 2µℓρ. The distance is depending on

ℓ ∈ N and since the singular values µℓ tend to zero for ℓ → ∞, the stability of the

separation of the pairs of classes is no longer uniform in ℓ. We summarize these basic

but important observations in the following lemma.

Lemma 2.2 Consider a compact linear operator A between Hilbert spaces X and Y .

Then the image classes for stable linear separation along the direction of the singular

values for a uniform separation distance ρ will no longer be uniformly separable in the

image space Y .

The general case. Next, we consider the general case of a sequence of linear

classes C1, C2, C3, .... Let vℓ, ℓ ∈ N be the corresponding vectors in X and ρℓ, ℓ ∈ N

be the affine distances. Here, we also assume that the sequence (vℓ) does not have a

convergent subsequence. Clearly, the classes are given by

Cℓ = {x : 〈x, vℓ〉 ≥ ρℓ}, ℓ ∈ N. (2.7)
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We use a calculation similar to (2.5) to show that if vℓ is in the range of A∗, then

C̃ℓ := ACℓ = {y : 〈y, (A∗)−1vℓ〉 ≥ ρℓ}. (2.8)

With the definition

ψℓ := (A∗)−1vl (2.9)

we can write this in the form

C̃ℓ := ACℓ =
{

y :
〈

y, ψℓ

||ψℓ||

〉

≥ ρℓ

||ψℓ||

}

. (2.10)

Here, the distance of the image class boundary to the origin of Y is given by

ρ̃ℓ :=
ρℓ

||ψℓ||
, ℓ ∈ N. (2.11)

We are now prepared to prove the following basic instability result.

Theorem 2.3 Let Cℓ, ℓ ∈ N be linear classes in X with boundary of distance ρℓ to the

origin such that (ρℓ)ℓ∈N is bounded. We assume that the vectors vℓ ∈ X do not contain

a convergent subsequence. Further, let A : X → Y be a compact linear operator such

that vℓ ∈ A∗Y for ℓ ∈ N. Then for ρ̃ℓ defined in (2.11) there will be a subsequence ℓk,

k ∈ N, of the image classes C̃ℓ := ACℓ in Y with

ρ̃ℓk → 0, k → ∞. (2.12)

Proof. We show that for ψℓ defined in (2.9) there is a subsequence ℓk, k ∈ N, such

that

||ψℓk || → ∞, k → ∞. (2.13)

Since A is compact, also A∗ is a compact operator Y → X. We carry out a proof

via contradiction. Assume that the sequence (ψℓ)ℓ∈N is bounded in Y . Then, it must

contain a weakly convergent subsequence. Since A∗ is a compact operator Y → X, in

this case the image sequence

(vℓ)ℓ∈N = A∗(ψℓ)ℓ∈N (2.14)

defined via (2.9) must contain a convergent subsequence. However, we have assumed

that this is not the case. Thus, in this case (ψℓ)ℓ∈N cannot be bounded in Y , i.e. we have

shown (2.13). Since (ρℓ)ℓ∈N is bounded, from (2.13) and (2.11) we now finally conclude

(2.12). �

For the previous result we needed to impose the condition vℓ ∈ A∗(Y ) for ℓ ∈ N.

To study the case where this condition is no longer satisfied, we need to investigate

regularization of classifications.
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2.2. Regularization of Classifications.

The image class AC of some class C = {x ∈ X : 〈x, v〉 ≥ ρ} under a compact linear

operator A : X → Y is given by

C̃ := AC = {y ∈ A(X) : 〈A−1y, v〉 ≥ ρ}. (2.15)

If v ∈ A∗(X), then this can be transformed into

C̃ = {y ∈ A(X) : 〈y, (A∗)−1v〉 ≥ ρ}. (2.16)

The operators A−1 and (A∗)−1 are unbounded and it will be an important step for the

analysis of the ill-posedness of classifications in Y to study the regularized version of

(2.15). To this end we use Rα = (αI + A∗A)−1A∗ to define the regularized image class

C̃α := {y ∈ A(X) : 〈Rαy, v〉 ≥ ρ}. (2.17)

If we need to study this class in dependence of ρ, we use the notation C̃α = C̃
(ρ)
α . We

calculate

C̃α = {y ∈ A(X) : 〈Rαy, v〉 ≥ ρ}
= {y ∈ A(X) : 〈y,R∗

αv〉 ≥ ρ}. (2.18)

We note that

R∗
α =

(

(αI + A∗A)−1A∗
)∗

= A(αI + A∗A)−1

= (αI + AA∗)−1A, (2.19)

where the last equality is obtained by multiplication by the invertible operators αI+A∗A

from the right and αI +AA∗ from the left. Thus, the adjoint of the Tikhonov operator

Rα is the Tikhonov operator for the adjoint A∗. Now, if v is in A∗(Y ), then we have the

convergence

R∗
αv → (A∗)−1v, α → 0. (2.20)

In this case we have
〈

y, (A∗)−1v
〉

= lim
α→0

〈y,R∗
αv〉 . (2.21)

The upcoming arguments basically work as follows. We have a bounded linear form

L(y) on Y and a family of bounded linear forms Lα(y) with Lα(y) → L(y) for α → 0 for

every fixed y ∈ Y . Let αℓ be a sequence of parameters with αℓ → 0 for ℓ → ∞. Then

from Lαℓ
(y) ≥ ρ for all sufficiently small αℓ > 0, we deduce that L(y) ≥ ρ. Further, if

L(y) ≥ ρ, we have that for any ǫ > 0 we know that Lαℓ
(y) ≥ ρ − ǫ for all sufficiently

small αℓ. However, for ǫ = 0 this is not the case in general, which makes the following

arguments necessary. We obtain that
〈

y,R∗
αℓ
v
〉

≥ ρ ∀αℓ > 0 suff. small ⇒
〈

y, (A∗)−1v
〉

≥ ρ. (2.22)

and thus

y ∈ C̃αℓ
∀αℓ suff. small ⇒ y ∈ C̃ (2.23)
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and with the same argument we also have the slightly more general form of this statement
(

∀0 < ǫ < ρ : y ∈ C̃(ρ−ǫ)
αℓ

∀αℓ suff. small
)

⇒ y ∈ C̃(ρ). (2.24)

Further, from (2.21) we obtain
〈

y, (A∗)−1v
〉

≥ ρ

⇒
(

∀0 < ǫ < ρ : 〈y,R∗
αv〉 ≥ ρ− ǫ ∀αℓ suff. small

)

. (2.25)

Thus we have

y ∈ C̃ ⇒
(

∀0 < ǫ < ρ : y ∈ C̃(ρ−ǫ)
αℓ

∀αℓ suff. small
)

. (2.26)

Now, from (2.24) and (2.26) we obtain the equivalence

y ∈ C̃ ⇔
(

∀0 < ǫ < ρ : y ∈ C̃(ρ−ǫ)
αℓ

∀αℓ suff. small
)

. (2.27)

Next, consider the case where v 6∈ A∗(Y ). In this case the representation of (2.16)

is not defined. However, if we define

Cα := {x : 〈RαAx, v〉 ≥ ρ}, (2.28)

then since RαAx → x, α → 0 pointwise in X, with the same arguments as in (2.24),

(2.26) and (2.27) we obtain

x ∈ C(ρ) ⇔
(

∀0 < ǫ < ρ : x ∈ C(ρ−ǫ)
αℓ

∀αℓ suff. small
)

. (2.29)

From the definitions (2.17) and (2.28) we have C̃α = ACα, leading to

y ∈ C̃(ρ) ⇔
(

∀0 < ǫ < ρ : y ∈ C̃(ρ−ǫ)
αℓ

∀αℓ suff. small
)

. (2.30)

We summarize these result as a Lemma.

Lemma 2.4 The regularized image class C̃α tends to the image class C̃

C̃(ρ−ǫ)
αℓ

→ C̃(ρ), ℓ→ ∞, ǫ→ 0 (2.31)

in the sense of (2.30).

Finally, we rewrite the representation (2.18) into

C̃α = {y ∈ A(X) : 〈y,R∗
αv〉 ≥ ρ}

=
{

y ∈ A(X) :
〈

y, R∗

αv

||R∗

αv||

〉

≥ ρ

||R∗

αv||

}

. (2.32)

If v 6∈ A∗Y , then we know that

||R∗
αv|| → ∞, α→ 0. (2.33)

Due to the representation (2.32) this yields

ρ̃α → 0, α → 0, (2.34)

for the distance ρ̃α between C̃α and zero.
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Theorem 2.5 Consider a linear class C in X defined by its normal vector v and some

distance ρ to the origin and let A be a compact linear operator A : X → Y . If v 6∈ A∗Y ,

then the distance of C̃ = AC to the origin is zero.

Proof. Since the norm of R∗

αv

||R∗

αv||
is bounded by one, there is a weakly convergent

subsequence for α → 0, for which we denote the regularization parameters by αℓ, ℓ ∈ N.

We call the limit element ψ∗ ∈ Y . We note that for j ∈ N the element

yαj
:= ψ∗ · 2

ρ

||ψ∗||2||R∗
αj
v|| (2.35)

satisfies

〈

yαj
,
Rαℓ

v

||Rαℓ
v||

〉

=
2ρ

||ψ∗||2||Rαj
v||

〈

ψ∗,
Rαℓ

v

||Rαℓ
v||

〉

→ 2ρ

||Rαj
v|| , ℓ→ ∞,

such that yαj
is an element in C̃

(ρ−ǫ)
αℓ for all 0 < ǫ < ρ and all sufficiently small αℓ > 0.

Thus, according to (2.30), it is in C̃(ρ). Finally, ||yαj
|| → 0 for j → ∞ proves the

statement. �

Finally, we will work out the consequences of the above result for the discrimination

task. Please note that we have not studied a particular algorithm yet, but worked with

the general classes which are implicit in any classification algorithm.

Theorem 2.6 Let U
(1)
ℓ , U

(2)
ℓ for ℓ ∈ N be a sequence of halfspaces in X with distance

ρℓ between U
(1)
ℓ and U

(2)
ℓ for ℓ ∈ N. We assume that the sequence (ρℓ) is bounded and

that the vℓ which are normal to the boundary of U
(1)
ℓ and U

(2)
ℓ do not have a convergent

subsequence in X. We denote the images of U
(1)
ℓ , U

(2)
ℓ under a compact linear operator

A : X → Y by Ũ
(1)
ℓ , Ũ

(2)
ℓ and the distance between Ũ

(1)
ℓ and Ũ

(2)
ℓ by ρ̃ℓ for ℓ ∈ N. Then,

there is a subsequence ℓk, k ∈ N such that

ρ̃ℓk → 0, k → ∞. (2.36)

Proof. To begin with we assume vℓ ∈ A∗(Y ). We apply the previous theorem first

to the sequence of classes
(

U
(1)
ℓ

)

ℓ∈N

. We obtain a subsequence ℓk, k ∈ N, for which the

distance of its boundary to the origin tends to zero. Now, we apply the theorem again to

the sequence of classifications given by
(

U
(2)
ℓk

)

k∈N

with vectors vℓk . We get a subsequence

ℓkj
, j ∈ N, of the subsequence (ℓk)k∈N for which the distance of the boundary of U

(2)
ℓkj

to the origin tends to zero. For this subsequence, the distance between the two classes

U
(1)
ℓkj

and U
(2)
ℓkj

must tend to zero for j → ∞.

Secondly, consider the case where any of the vℓ is not in the range of A∗. In this

case according to Theorem 2.5 we have ρ̃ℓ = 0 and (2.36) remains true. �

We have shown that in the image space Y under a compact linear operator,

classification will no longer be uniformly stable even if the classes of elements are stably

separable in the original space.
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3. Static Magnetic Tomography

Here, we collect basic notation and results on static magnetic tomography, for more

details we refer to [21], [11], [12], [13].

We represent our fuel cell or fuel cell stacks by a Lipschitz domain, Ω, in R
3. We

assume that the current j is in L2(Ω). Its magnetic field H(x) at some point x ∈ R
3 is

calculated by the Biot-Savart integral operator

(Wj)(x) = ∇x ×
∫

Ω

Φ(x, y)j(y) dy (3.1)

where Φ is the fundamental solution

Φ(x, y) =
1

4π|x− y| (3.2)

for x 6= y ∈ R
3 [21]. Static magnetic tomography aims to find the current inside the

domain Ω using some magnetic field measured on an open subset Λ of a surface ∂G

outside of Ω, where ∂G is a smooth boundary of some domain G with Ω ⊂ G. The size

of G depends on the measurement device but ‘it is usually well separated from the cell

area Ω’ [11]. This leads to the integral equation of the first kind (c.f. [16])

Wj = Hmeas (3.3)

for j on ∂G, where Hmeas is some magnetic field measured on ∂G. For details of how

the magnetic field measurements are taken in practice, the reader is referred to [14]. As

in [13] we define a region Ωdis by

Ωdis :=
{

y ∈ R
3,−a1

2
< y1 <

a1

2
,−a2

2
< y2 <

a2

2
,−a3

2
< y3 <

a3

2

}

, (3.4)

where a1, a2, a3 > 0 and consider a discretization with ni levels in the xi direction for

i = 1, 2, 3. We use finite integration technique (FIT) to model the currents in this

discretization. This involves using Kirchoff’s laws to find the current flow J in Ωdis, see

[21] for details. We employ a set {xℓ ∈ Λ : ℓ = 1, ...,M} of measurement points and

a grid with K wires γk, k = 1, ..., K. We find the current vector J with components

Jk representing the current strength in each wire γk, k = 1, ..., K, using FIT. We then

obtain a magnetic field vector, H, using the definition of a discrete version of the Biot-

Savart operator given by

(WJ)ℓ = − 1

4π

K
∑

k=1

∫

γk

J̃k × (xℓ − p)

|x− p|3 dγ(p), ℓ = 1, ...,M, (3.5)

where J̃k = (Jk, 0, 0)T if wire γk is parallel to the x−axis, J̃k = (0, Jk, 0)T if wire γk is

parallel to the y−axis or J̃k = (0, 0, Jk)
T if wire γk is parallel to the z−axis. The integrals

can be carried out analytically [11], [13]. Thus, the linear operator W : J → WJ

mapping R
K into R

M is represented by a matrix which we also call W. Later, we will

also work with a different discretization of W by more general numerical quadrature.

All proofs will work with either of these options.

Key questions on (3.3) with respect to existence, uniqueness and stability given

Hmeas have been investigated in a series of papers by Kühn, Kress, Potthast, Hauer,
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Wannert et.al. In [12] the authors show that the nullspace contains j := △m for

m ∈ C2
0(Ω), i.e. in general our current distribution is not uniquely determined by

measurements. In fact in [11] it is shown that the nullspace of the Biot-Savart operator

is

N(W ) = {∇ × v : v ∈ H1
0 (Ω),∇ · v = 0}. (3.6)

As a consequence the equation (3.3) is ill-posed in the sense of Hadamard. However

in [11] it is also shown that the magnetic tomography is always uniquely solvable for

discrete wire networks.

It is well-known that a compact linear operator on an infinite dimensional space

cannot have a bounded inverse, compare [16]. Therefore the operator W−1 is unbounded

and not continuous. Thus, the solution of the integral equation (3.3) does not depend

stably on the measurement data and it is ill-posed.

It is common to use regularization techniques to replace W−1 by some bounded

operator Rα with

lim
α→0

RαWj = j, (3.7)

where α ∈ R, α > 0, is known as the regularization parameter. Here, we will follow [17]

and employ Tikhonov regularization as a very popular and widely used method, where

Rα := (αI +W ∗W )−1W ∗. (3.8)

This defines a regularization scheme with

||Rα|| ≤
1

2
√
α
, (3.9)

compare [6]. Tikhonov regularization projects j onto N(W )⊥ [12] and so we can only

reconstruct the projection onto N(W )⊥ without further a priori knowledge [11]. A

characterization of this space has been derived in [11] as

N(W )⊥ = {j ∈ Hdiv=0(Ω) : ∃q ∈ L2(Ω),∇× j = ∇q}. (3.10)

Different algorithms for magnetic tomography based on Tikhonov type regularization

are given in [13].

It is well-known that an inherently unstable problem cannot be made stable [8].

We simply ‘recover partial information about the solution as stably as possible’ by use

of regularization methods. We will work out next that this observation remains valid

for the task of classification of fuel cells by their currents or their magnetic fields.

4. Classification for Magnetic Tomography

The goal of this section is to study classification of current densities j in some domain

Ω using measurements of their magnetic fields H on a surface ∂G outside of the domain

Ω. The operator which maps j to H is the Biot-Savart operator W defined in (3.1).



On Discrimination Algorithms for Ill-Posed Problems 12

There are two basic options to approach the classification problem from magnetic

field measurements Hmeas, when an ill-posed problem

Wj = Hmeas (4.1)

is involved. First, we can use reconstruction methods to calculate an approximation

jα to the current distribution j in Ω. Then, classification methods can be applied to

the reconstructed current jα. The second approach is to directly apply classification in

the measurement space, i.e. to the magnetic fields Hmeas. We will work out that, as a

consequence of the previous Section 2, the classifications on the magnetic fields cannot

be stable, i.e. we have an ill-posed classification problem.

j

C

H

C̃

W

Classification on j Classification on H

W

Figure 1. Classification can be carried out on the currents j directly or on the

magnetic fields H. We will study the role of the ill-posedness of the equation Wj = H

on the behaviour of the classes C and C̃.

4.1. Classification via current j

Here, we describe and analyse classification of a current distribution based on sets of

classes which can be grouped into levels of higher and higher precision. Assume that

for the level L ∈ N we are given a set of vectors

χ
(L)
1 , ..., χ(L)

nL
∈ L2(Ω), nL ∈ N (4.2)

with
∣

∣

∣

∣

∣

∣χ
(L)
ℓ

∣

∣

∣

∣

∣

∣ = 1, ℓ = 1, ..., nL (4.3)

and

nL → ∞, L→ ∞. (4.4)

We study a sequence of linear classifications which are based on the vectors χ
(L)
ℓ ,

ℓ = 1, ..., nL. Given real numbers ρ
(L)
ℓ , ℓ = 1, ..., nL, we define classes C

(L)
ℓ by

C
(L)
ℓ :=

{

j ∈ L2(Ω) :
〈

j, χ
(L)
ℓ

〉

≥ ρ
(L)
ℓ

}

, ℓ = 1, ..., nL. (4.5)

Further, we define a nonlinear class C(L) by

C(L) =

nL
⋂

ℓ=1

C
(L)
ℓ . (4.6)
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Example. As a two-dimensional example for our nonlinear class we consider the

space R
2 with two classes C1, C2 defined by

C1 := {j ∈ R
2 : j1 ≥ ρ and j2 ≥ ρ} (4.7)

and

C2 := {j ∈ R
2 : j1 < ρ or j2 < ρ}, (4.8)

where j = (j1, j2)
T . This is illustrated in Figure 2.

j2

j1ρ

ρ
C1

C2

Figure 2. A linearly unseparable problem. The two classes shown cannot be separated

by a line.

Clearly, this is not a linearly separable problem but it is composed of two linearly

separable problems. This is illustrated in Figure 3, where we see that C1 = C ∩ C ′ and

C2 simply consists of all input vectors that do not lie in C1.

j2

j1

ρ

C

j2

j1ρ

C ′

Figure 3. The unseparable problem shown in Figure 2 can be broken down into 2

linearly separable problems.

In particular, let us consider a hierarchy of subsets Ω
(L)
ℓ , ℓ = 1, ..., nL for L ∈ N of

Ω such that the sets are disjoint on each level, i.e.

Ω
(L)
ℓ ∩ Ω(L)

m = ∅ for ℓ 6= m, (4.9)

we have a real refinement moving from level L to L+ 1, i.e.

∀ℓ = 1, ..., nL ∃ m ∈ {1, ..., nL+1} such that Ω
(L+1)
ℓ ⊂ Ω(L)

m (4.10)

and the subsets on each level add up to the full set Ω, i.e.

Ω =

nL
⋃

ℓ=1

Ω
(L)
ℓ (4.11)
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for every L ∈ N. With the area or volume
∣

∣

∣Ω
(L)
ℓ

∣

∣

∣, respectively, of some set Ω
(L)
ℓ we define

χ
(L)
ℓ (x) :=







1
∣

∣

∣Ω
(L)
ℓ

∣

∣

∣

1/2 , x ∈ Ω
(L)
ℓ ,

0, otherwise.
(4.12)

the functions χ
(L)
ℓ are in L2(Ω) for ℓ = 1, ..., nL and L ∈ N. Then we have

∣

∣

∣

∣

∣

∣χ
(L)
ℓ

∣

∣

∣

∣

∣

∣

L2(Ω)
= 1 (4.13)

We now collect all vectors χ
(L)
ℓ for ℓ = 1, ..., nL and L = 1, 2, 3, ... into one sequence, for

which we use the letter vk, k ∈ N.

For the fuel cell application nonlinear classes will naturally appear when the flow

through the cell membrane is monitored. For example, the vectors χ
(L)
ℓ can be chosen to

be the special basis used for current reconstructions by Wannert and Potthast [22]. Here,

the class C
(L)
ℓ is the set of all currents which have a component larger than ρ

(L)
ℓ along the

direction χ
(L)
ℓ ∈ L2(Ω). Good cells are those where we have a homogeneous distribution

of the current, which means that all components are larger than some threshold ρ. This

corresponds to the nonlinear class C defined in (4.6), which is composed of a sequence

of linear classes.

We may choose a hierarchy of finer and finer discretizations to test the homogeneity

by using the sequence vk, k ∈ N defined in (4.12). Clearly, the discretization in the space

of current densities is perfectly stable and when we distinguish currents which have

components larger than ρ from those smaller than ρ − ǫ, we obtain stably separable

classes in the space X of current densities. In the next section we will see that this is

no longer the case when we try to classify these classes by their magnetic field values.

As a preparation to the next section, where we want to use Theorem 2.6, we state

the following result.

Lemma 4.1 The sequence vk defined via (4.12) does not contain a convergent

subsequence in L2(Ω).

Proof. Assume there exists a convergent subsequence vki
of (vk)k∈N, i.e. there is

some element v∗ ∈ L2(Ω) such that

||v∗ − vki
||L2(Ω) → 0, i→ ∞. (4.14)

We remark that the volume (or area, respectively) of the support supp(vki
) tends to

zero for i→ ∞. Then the support of v∗ must be zero as well, but for L2 functions that

cannot be the case. Thus, a convergent subsequence does not exist. �
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4.2. Classification via magnetic field H

For applications, a basic task is to classify current distributions from their magnetic

field H ∈ L2(∂G). Here, we would like to work with the classes

C
(1)
k := {y ∈ A(X) : 〈A−1y, vk〉 ≥ ρ},

C
(2)
k := {y ∈ A(X) : 〈A−1y, vk〉 ≤ ρ− ǫ}, (4.15)

for k ∈ N defined by the vectors (4.12). However, the corresponding image classes

C̃
(j)
k = AC

(j)
k , j = 1, 2, are no longer stably separable.

Theorem 4.2 Consider a classification algorithm based on the current vectors vk
defined via (4.12). Then, the distance ρ̃k of the image classes C̃

(1)
k and C̃

(2)
k in L2(∂G)

is ρ̃k = 0.

Proof. We show that vk cannot be in the image of the adjoint W ∗ of the Biot-Savart

integral operator. We rewrite W as

(Wj)(x) =
∑

ξ,p,η

eξǫξpη

∫

Ω

∂xp (Φ(x, y)) jη(y)dy, (4.16)

where the sum is over ξ, p, η = 1, ..., 3 and ǫξpη is the total antisymmetric tensor, i.e. it

is 1 if ξ, p, η is an even permutation of 1, 2, 3, it is −1 if the permutation is odd and it

is zero if any two of the indices are the same. Thus, the adjoint of W is given by

(W ∗ψ)(y) =
∑

ξ,p,η

∫

∂G

ψξ(x)ǫξpη∂xpΦ(x, y)eη ds(x), y ∈ Ω. (4.17)

The operator has an analytic kernel. Since the function vk is discontinuous at the

boundary ∂Ω
(L)
ℓ of its support Ω

(L)
ℓ with appropriately chosen parameters L and ℓ, the

vector vk cannot be in the image of W ∗. Now, by an application of Theorem 2.5 we

obtain that both classes have distance zero to the origin, which yields ρ̃k = 0 and ends

the proof. �

Finally, we remark that classification by magnetic fields will also be unstable if

vectors vk ∈ W ∗(L2(∂G)) are chosen. In this case classification for one single direction

vk for k fixed will be stable, but if we choose a sequence of directions vk, k = 1, ..., n

without convergent subsequence, then for n → ∞ the distance ρ̃k between two image

classes C
(1)
k and C

(2)
k of the classification must satisfy

ρ̃k → 0, k → ∞, (4.18)

in the same way as in Theorem 2.6.

The above phenomenon corresponds to well-known effects in the numerical

treatment of ill-posed problems. When projection methods are used, a refinement

of the discretization which us achieved by using a larger projection space increases

the ill-conditioning of the corresponding matrices. This increase is exponential for

exponentially ill-posed problems, as we have in the case of magnetic tomography. Here,

a refinement in the classification leads to stronger instability and reduced separability.
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5. On the Ill-Posedness of Fisher’s Linear Discriminant for Remote Data

So far we have studied the ill-posedness of classification problems which can be based on

linear classification. We have shown that in general linear compact operators map stably

separable problems into classifications which are no longer stably separable. However,

we have not yet studied a particular algorithm for such classifications.

The task of this section is to investigate a well-known scheme for supervised

classification 2.1 known as Fisher’s Linear Discriminant. We will show that the method

is also ill-posed in the sense that for an increased number of measurement points the

norm of the inverse operators employed by the method become unbounded. As a

particular application, we will apply the method to the problem of fuel cell classification

and investigate the relationship between different ways to regularize the problem.

5.1. Fisher’s Linear Discrimination on j and H

Fisher’s linear discriminant is not strictly speaking a discriminant but rather a method

of reducing the dimensionality of the input space in such a way that we have maximum

class separation in the new space. We call this the reduction step or step one. Once we

have performed this dimensionality reduction we can use the projected data to construct

a discriminant, compare [2]. This is denoted as the discrimination step or step two.

Dimensionality reduction is desirable for example of the application of classification

algorithms to the problem of quality control of fuel cells, since we will typically be

working in a high dimensional input space.

We consider the two class case, so for example class C1 represents ‘working’ and

class C2 represents ‘not working’. Suppose the training set contains the training vectors

β
(ω)
ξ for ω = 1, . . . , Nξ for the two classes Cξ with ξ = 1, 2. In the reduction step we

project β
(ω)
ξ into a one dimensional space by

y
(ω)
ξ = wTβ

(ω)
ξ , (5.1)

where w is some weight vector to be determined. For linearly separable classes such a

vector w will always exist, it is the normal vector to the hyperplane separating the two

classes.

The basic target of Fisher’s linear discriminant is to avoid losing too much

information when projecting the input vectors. To achieve this we aim to choose w

such that we have maximum class separation [2] by considering parameters in both the

input space and the projection space. This is carried out as follows.

Definition 5.1 Assume that we have Nξ input vectors β
(ω)
ξ , ω = 1, ..., Nξ, in each

class Cξ for ξ = 1, 2, then the mean of this training set before projection is

mξ =
1

Nξ

Nξ
∑

ω=1

β
(ω)
ξ , (5.2)
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where Nξ is the number of training vectors for class Cξ. Given w, the projected class

mean is then

mξ = wTmξ. (5.3)

Furthermore, we define matrices Sξ and scalars sξ which measure the scatter of class Cξ
before and after projection respectively

Sξ =
1

Nξ − 1

Nξ
∑

ω=1

(β
(ω)
ξ − mξ)(β

(ω)
ξ − mξ)

T
(5.4)

s2
ξ =

1

Nξ − 1

Nξ
∑

ω=1

(y
(ω)
ξ −mξ)

2
, (5.5)

where yξ is given by (5.1).

Note that in contrast to parts of the literature about Fischer’s Linear Discriminant

here we have used the scaling by 1/(Nξ− 1), ξ = 1, 2. With this scaling the quantity Sξ

is an estimator for the covariance matrix and we as long as N1 = N2 the constant does

not change the arguments leading to Fischer’s linear discriminant.

Fischer’s Linear Discriminant simultaneously maximizes the distance between the

mean values of the two clusters and minimizes the variance of the input vectors in each

class around their respective mean values. This is used as a heuristical approach to

determining w. The so-called Fisher’s criterion is the functional

µ(w) =
(m2 −m1)

2

s2
1 + s2

2

=
wTSBw

wTSFw
, (5.6)

where SF = S1 + S2 is the within-class scatter matrix and SB = (m2 −m1)(m2 − m1)
T

is the between-class scatter matrix. Maximizing Fisher’s criterion with respect to w (c.f.

[2], [9]) leads to

w ∝ S−1
F (m2 − m1). (5.7)

Given a training set, we calculate mξ, ξ = 1, 2 according to (5.2) and w according

to (5.7). Then, we employ (5.1) to complete the reduction step, which yields a one-

dimensional version of our training set. In the second step we calculate a discrimination

boundary based on the values y
(w)
ξ . There are several methods to do this last step,

compare [2]. The second step is carried out on a one-dimensional space, and it is well-

posed in general.

The reduction step, however, is usually ill-posed, when applied to data in some

image space under a compact linear operator as for magnetic tomography. In this case

the training set β
(ω)
ξ consists of a discretized version H of magnetic fields H = Wj.

We obtain the vector H by choosing mesurement points xk ∈ Λ and then sorting the

Cartesian components of H(xk) in the form

H =
(

H1(x1), H2(x1), H3(x1), H1(x2), ...
)T

. (5.8)
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We will complete this section by a rigorous proof showing that in this case the norm

of the inverse S−1
F of SF = S

(H,M)
F tends to infinity when the number of discretization

points M , i.e. the dimension of the space of training vectors β
(ω)
ξ , tends to infinity.

Theorem 5.2 Consider the dependence of the matrix S
(H)
F = S

(H,M)
F on the dimension

of the space of training vectors R
3M , where M is the number of measurement points on

Λ. Then we have
∣

∣

∣

∣

∣

∣

∣

∣

(

S
(H,M)
F

)−1
∣

∣

∣

∣

∣

∣

∣

∣

∞

→ ∞, M → ∞. (5.9)

Proof. The key tool for showing the result (5.9) is given in Lemma 5.6 below,

showing that if we have the inverse A−1
M of a sequence of operators AM which is

converging pointwise towards some compact linear operator A, then
∣

∣

∣

∣A−1
M

∣

∣

∣

∣ → ∞, M → ∞. (5.10)

To construct a continuous operator for the covariance matrix S
(H,M)
F we remark that

within our framework a training vector H
(ω)
ξ with ξ ∈ {1, 2} and ω ∈ {1, ..., Nξ} is

arizing from a true current j
(ω)
ξ ∈ (C(Ω))3 (for real data as training set) or some

numerical approximation of it (for simulated data for training). For the two classes

Cξ, ξ = 1, 2, we define the integral operators

(S
(j)
ξ ϕ)(z, k) :=

1

Nξ − 1

Nξ
∑

ω=1

3
∑

ℓ=1

∫

Ω

(

j
(ω)
ξ,k (z) − jξ,k(z)

)

(5.11)

·
(

j
(ω)
ξ,ℓ (y) − jξ,ℓ(y)

)

ϕℓ(y) dy

and

(S
(H)
ξ ψ)(x, k) :=

1

Nξ − 1

Nξ
∑

ω=1

3
∑

ℓ=1

∫

Λ

(

H
(ω)
ξ,k (x) −Hξ,k(x)

)

(5.12)

·
(

H
(ω)
ξ,ℓ (y) −Hξ,ℓ(y)

)

ψℓ(y) ds(y)

for z ∈ Ω, x ∈ Λ and k ∈ {1, 2, 3}. Then, we set

S
(j)
F := S

(j)
1 + S

(j)
2

S
(H)
F := S

(H)
1 + S

(H)
2 . (5.13)

Using H = Wj we readily verify

S
(H)
F = WS

(j)
F W ∗. (5.14)

Lemma 5.3 Assume that Ω is a bounded set and all j
(ω)
ξ , ω = 1, ..., N , ξ = 1, 2 are

uniformly bounded on Ω by some constant C, then the operator S
(j)
F is a bounded operator

in (C(Ω))3.

Proof. We estimate

sup
z∈Ω,k=1,2,3

∣

∣

∣
S

(j)
F ϕ(z, k)

∣

∣

∣
≤ C2 ·

(∫

Ω

1 dy

)

· ||ϕ||∞,
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from which the statement follows. �

Since W : (C(Ω))3 → (C(Λ))3 is compact and W ∗ : (C(Λ))3 → (C(Ω))3 is compact

as well, the operator S
(H)
F is compact in (C(Λ))3.

A discretization of this operator is achieved by using numerical quadrature for all

three of its factors. With nodes zκ, κ = 1, ...,M in Ω and quadrature weights sκ we

discretize x via zι and y via zκ. Then, the operator S
(j)
F is approximated via the matrix

S
(j,M)
F :=





∑

ξ=1,2

1

Nξ − 1





Nξ
∑

ω=1

(

j
(ω)
ξ (zι) − jξ(zι)

) (

j
(ω)
ξ (zκ) − jξ(zκ)

)T

sκ









ι,κ=1,...,M.

Note that S
(j,M)
F is an M ×M -matrix of 3 × 3 matrices, i.e. it is a 3M × 3M -matrix

operating on R
3M . If the quadrature formula is convergent for x = zι we obtain

(S
(j,M)
F ϕ)ι → S

(j)
F ϕ(x), M → ∞, (5.15)

where we employ the projection operator

P
(M)
Ω : (C(Ω))3 → R

3M , ϕ 7→ ϕ = (ϕκ)κ=1,...,M (5.16)

with ϕκ := ϕ(zκ) ∈ R
3 for κ = 1, ...,M . Further, assume that Q

(M)
Ω is a bounded

interpolation operator R
M → C(Ω) for scalar functions or R

3M → (C(Ω))3 in the

vectorial case, based on the nodes zκ ∈ Ω, κ = 1, ...,M , where we have

||Q(M)
Ω ϕ||∞ ≤ c||ϕ||∞ (5.17)

with some constant c uniformly for M ∈ N. Further, we assume that we have

convergence of the interpolation operator in the sense that

||Q(M)
Ω P

(M)
Ω ϕ− ϕ||∞ → 0, M → ∞. (5.18)

On a regular grid in two or three dimensions such an operator with c = 1 is obtained

by piecewise linear interpolation along the canonical axes. We now combine the

interpolation operator with S
(j,M)
F to obtain the following pointwise convergence result.

Lemma 5.4 The operator Q
(M)
Ω S

(j,M)
F P (M) is pointwise convergent towards S

(j)
F in

(C(Ω))3, i.e. we have

Q
(M)
Ω S

(j,M)
F P

(M)
Ω ϕ→ S

(j)
F ϕ, M → ∞, in C(Ω). (5.19)

Proof. The statement is a result of (5.15) and the convergence of the interpolation

operator (5.18) applied to the continuous function S
(j)
F ϕ. �

To construct an interpolation operator when Λ is a smooth two-dimensional surface

surrounding Ω, we can use local parametrizations and a triangularization in the space

R
2 which takes the nodes xη, η = 1, ...,M as nodes of the triangles. On a triangle we

employ a linear interpolation, which is then mapped back into R
3 with a norm bounded
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uniformly for all M̃ ∈ N, such that (5.20) is satisfied. We denote an interpolation

operator on Λ by Q
(M̃)
Λ and assume to have

||Q(M̃)
Λ ψ||∞ ≤ c||ψ||∞ (5.20)

with some constant c uniformly for M̃ ∈ N and a result analogous to (5.18).

The continuous form of the Biot-Savart operator W is given by (3.1). A

discretization of W via standard quadrature or via finite integration technique leads

to some matrix W for W and to a matrix W∗ for W ∗. In the same way as in Lemma

5.4 we obtain the following result.

Lemma 5.5 The operator Q
(M)
Λ W(M)P

(M)
Ω is pointwise convergent towards W as

operator (C(Ω))3 → (C(Λ))3, i.e. for fixed ϕ ∈ (C(Ω))3 we have

Q
(M)
Λ W(M)P

(M)
Ω ϕ→ Wϕ, M → ∞, in (C(Λ))3. (5.21)

The operator Q
(M)
Ω W∗(M)P

(M)
Λ is pointwise convergent towards W ∗ as operator

(C(Λ))3 → (C(Ω))3, i.e. for fixed ψ ∈ (C(Λ))3 we have

Q
(M)
Ω W∗(M)P

(M)
Λ ψ → W ∗ψ, M → ∞, in (C(Ω))3. (5.22)

We now consider the discretized version of the product WS
(j)
F W ∗ as a mapping

(C(Λ))3 → (C(Λ))3. We remark that we have P
(M)
Ω Q

(M)
Ω = I(3M) where I(3M) denotes

the identity in R
3M . This yields

Q
(M)
Λ W(M)S

(j,M)
F W∗(M)P

(M)
Λ

=
(

Q
(M)
Λ W(M)P

(M)
Ω

)(

Q
(M)
Ω S

(j,M)
F P

(M)
Ω

)(

Q
(M)
Ω W∗(M)P

(M)
Λ

)

. (5.23)

Since we have pointwise convergence of all three operators, we obtain pointwise

convergence of the product. We are now able to study the ill-posedness of the discretized

operator using the general result of Lemma 5.6.

We now complete the proof of Theorem 5.2. We first note that according to

Lemma 5.6 the inverse of the operator Q
(M)
Λ W(M)S

(j,M)
F W∗(M)P

(M)
Λ cannot be uniformly

bounded for M → ∞. Finally, since Q
(M)
Λ and P

(M)
Λ are uniformly bounded for M ∈ N,

and by

Q
(M)
Λ

(

W(M)S
(j,M)
F W∗(M)

)−1

P
(M)
Λ =

(

Q
(M)
Λ W(M)S

(j,M)
F W∗(M)P

(M)
Λ

)−1

, (5.24)

the discrete matrix
(

W(M)S
(j,M)
F W∗(M)

)−1

cannot be boundedly invertible either, which

completes the proof. �

Above we needed the following result to investigate the ill-posedness of Fisher’s

linear discriminant when applied to magnetic fields.



On Discrimination Algorithms for Ill-Posed Problems 21

Lemma 5.6 Let W : X → X be a compact linear operator where X is a Banach space.

Let WN : X → X be a family of operators which are invertible on a subspace XN ⊂ X

of dimension N , such that WN tends to W pointwise. Then
∣

∣

∣

∣W−1
N

∣

∣

∣

∣ → ∞ (5.25)

as N → ∞.

Proof. Assume
∣

∣

∣

∣W−1
N

∣

∣

∣

∣ ≤ C for all N ∈ N. Since W is compact, there exists some

sequence (ϕn) ⊂ X with ||ϕn|| = 1 such that

Wϕn → 0 (5.26)

as n→ ∞. Furthermore, since WN → W pointwise, for every fixed n ∈ N we have

WNϕn → Wϕn (5.27)

as N → ∞. Therefore ∀ǫ > 0, ∃nǫ such that ∀n ≥ nǫ

||Wϕn|| ≤
ǫ

2
(5.28)

and choosing one fixed n ≥ nǫ there is Nǫ such that ∀N ≥ Nǫ

||WNϕn −Wϕn|| ≤
ǫ

2
. (5.29)

Thus ∀ǫ > 0 ∃n and Nǫ such that ∀N ≥ Nǫ

||Wϕn|| + ||WNϕn −Wϕn|| ≤ ǫ. (5.30)

Thus

||WNϕn|| ≤ ||Wϕn|| + ||WNϕn −Wϕn|| ≤ ǫ. (5.31)

Choosing ψn = WNϕn we obtain

∣

∣

∣

∣W−1
N

∣

∣

∣

∣ = sup
||ψn||6=0

∣

∣

∣

∣W−1
N ψn

∣

∣

∣

∣

||ψn||
= sup

||ψn||6=0

∣

∣

∣

∣W−1
N ψn

∣

∣

∣

∣

∣

∣

∣

∣W−1
N WNψn

∣

∣

∣

∣

≥
∣

∣

∣

∣W−1
N ψn

∣

∣

∣

∣

∣

∣

∣

∣WNW
−1
N ψn

∣

∣

∣

∣

=
||ϕn||

||WNϕn||
=

1

||WNϕn||
. (5.32)

Thus
∣

∣

∣

∣W−1
N

∣

∣

∣

∣ ≥ 1

ǫ
(5.33)

and so
∣

∣

∣

∣W−1
N

∣

∣

∣

∣ cannot be bounded. �
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5.2. Comparison of the two approaches

The goal of this part is to work out the analysis to compare the two approaches to the

classification problem, i.e.

(i) Classification after the reconstruction: first reconstruct the current densities j and

then carry out a classification on the reconstructed current densities,

(ii) Classification on the field data: Apply the classification directly to the magnetic

field data.

We will first look at the unregularized problem and then study their relation when

Tikhonov regularization is applied. We will find that the unregularized approaches are

equivalent, but of course they are not practically applicable since the ill-posedness needs

to be taken care of. We prove that the regularized versions cannot be equivalent.

Theorem 5.7 The unregularized Fisher’s linear discriminant algorithm applied to the

magnetic field vectors is equivalent to the algorithm applied to the currents which are

reconstructed from the magnetic fields by an unregularized inversion of the operator B.

Proof. For the classification task we start with the samples H(ω). When we carry

out the reconstruction by a numerical method, the corresponding currents are linked to

these by

H(ω) = Bβ(ω) = WJ
(

β(ω)
)

, (5.34)

where W is a discretized version of the Biot-Savart operator and J and B are discretized

current and magnetic field matrices respectively. Then, the scatter matrix for the

approach in the image space is

S
(H)
F =

∑

ξ=1,2

∑

H(ω)∈Cξ

(

H(ω) − m
(H)
ξ

) (

H(ω) − m
(H)
ξ

)T

=
∑

ξ=1,2

∑

β(ω)∈Cξ

(

WJβ(ω) − WJm
(β)
ξ

) (

WJβ(ω) − WJm
(β)
ξ

)T

(5.35)

where m
(H)
ξ and m

(β)
ξ represent the means of the magnetic field and basis function

coefficient classes respectively. Therefore

S
(H)
F = WJS

(β)
F JTWT

= BS
(β)
F BT . (5.36)

If we substitute (5.36) into (5.7) we find that the classification vector w(H) in the image

space is given by

w(H) ∝
(

S
(H)
F

)−1 (

m
(H)
2 − m

(H)
1

)

=
(

BS
(β)
F BT

)−1 (

m
(H)
2 − m

(H)
1

)

, (5.37)
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where w(H) represents the weight vector found by applying Fisher’s linear discriminant

to H. Then

w(H) ∝
(

BT
)−1

(

S
(β)
F

)−1

B−1
(

WJm
(β)
2 − WJm

(β)
1

)

=
(

BT
)−1

(

S
(β)
F

)−1 (

m
(β)
2 − m

(β)
1

)

. (5.38)

It is linked to the classification vector w(β) in the input space by

w(H) ∝
(

BT
)−1

w(β), (5.39)

which is a discrete version of (2.9). Classification in the image space given some data

H is carried out by calculating (w(H))TH. In the state space it is given by
(

w(β)
)T
β =

(

w(β)
)T

B−1H =
(

w(H)
)T

H, (5.40)

which proves the theorem. �

Finally, we need to study the relation between the two regularized versions of

Fisher’s linear discriminant. The first version uses Tikhonov regularization directly

applied to invert S
(H)
F , i.e. we calculate

R(H)
α :=

(

αI +
(

S
(H)
F

)∗

S
(H)
F

)−1 (

S
(H)
F

)∗

, α > 0. (5.41)

The regularized version of (5.37) is thus given by

w(H)
α := R(H)

α

(

m
(H)
2 − m

(H)
1

)

. (5.42)

The second version applies the discrimination algorithm to the reconstructed coefficients,

i.e. it uses

β(ω)
α :=

(

αI + BTB
)−1

BTH(ω), α > 0. (5.43)

We define mξ,α as the mean of the β(ω)
α for Cξ and

S
(β)
ξ,α :=

∑

β(ω)∈Cξ

(

β(ω)
α − mξ,α

)(

β(ω)
α − mξ,α

)T

(5.44)

for ξ = 1, 2 and S
(β)
F,α = S

(β)
1,α + S

(β)
2,α as usual. Then, we calculate

S
(β)
F,α =

(

αI + BTB
)−1

BTS
(H)
F B

(

αI + BTB
)−1

. (5.45)

Now, the second version calculates a regularized verson of the discrimination vector w(β)

by

w(β)
α :=

(

S
(β)
F,α

)−1 (

m
(β)
2,α − m

(β)
1,α

)

. (5.46)

Lemma 5.8 The two regularizations of the discrimination problem for magnetic

tomography are not equivalent, in the sense that in general they will not provide

identical classifications, even if all corresponding parameters and discretizations are

chosen appropriately.
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Proof. The classifications can only be equivalent, if the classification vectors satisfy

(5.39). To show that this in general cannot be the case when regularized calculations are

carried out, we study the behaviour of w
(β)
α and w

(H)
α for α → ∞. Standard behaviour

of the Tikhonov regularization yields

∣

∣

∣

∣w(H)
α

∣

∣

∣

∣ = O

(

1

α

)

, α→ ∞. (5.47)

The same holds for β(ω)
α , from which by using (5.44) we obtain

S
(β)
ξ,α = O

(

1

α2

)

, (5.48)

such that for (5.46) we obtain

w(β)
α ∼ α, α→ ∞. (5.49)

Since both terms depend analytically on α on R
+, we conclude that they cannot be

equal on any open subset of R
+, which ends the proof. �

5.3. Numerical Examples

We complete our investigation by some numerical examples which demonstrate the ill-

posedness of the discrimination problem in the image space under the compact operator

W for the case of magnetic tomography and also show that regularized classification

leads to satisfactory results. From Section 3 we have the discretized problem

WJ = H (5.50)

to solve with a discrete Biot-Savart operator W, the measurements H ∈ R
M and the

unknown currents J ∈ R
K . Often, we use a special basis of currents to define the matrix

F =
{

J(1), ...,J(L)
}

∈ R
K×L and employ

WFβ = H, (5.51)

where β ∈ R
L is a vector of basis function coefficients. The J(ℓ) might be chosen to

represent the current flowing through some particular subset of the fuel cell membrane,

such that βℓ provides information about the quality of the particular part of the

membrane, compare [13]. For all simulations the finite integration technique as

introduced in Section 3 has been employed.

Now, the quality of fuel cells can be judged by the size of βℓ for ℓ = 1, ..., L. If the

homogeneous distribution is given by βℓ = c > 0 for all ℓ, then a good cell would have βℓ
close to c and bad cells would have βℓ significantly smaller than c for some ℓ ∈ {1, ..., L}.
We might choose a threshold parameter ρℓ < c to distinguish classes Cℓ where

βℓ ≥ ρ or βℓ < ρ. (5.52)

This corresponds to the classes introduced in (4.5) on a particular level L of detail.

Further, physical constraints lead to βℓ ≥ 0.

For training we choose the vectors β(ω) =
(

β
(ω)
1 , ...β

(ω)
L

)

of basis function coefficients

randomly, so that their entries lie in the interval [0, 1], where we assume 0 < c < 1 for the
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homogeneous situation described above. Then, for training the classification is achieved

testing β
(ω)
ℓ ≥ ρℓ, leading to t(ω) = 1 or t(ω) = 0.

Here, we will focus on using Fisher’s linear discriminant applied to one of the

classes Cℓ for fixed ℓ and its complement. The calculations of the nonlinear classes

(4.6) is then straightforward by taking appropriate intersections, which are achieved

logically by multiplication of the corresponding target values t
(ω)
ℓ . Figure 4 shows the

projected values y(ω) for the case that we use vectors β(ω) of basis function coefficients

as input vectors. Projections of input vectors with t(ω) = 1, i.e. belonging to class 1,

have been shown as small red spheres and projections with t(ω) = 0, i.e. belonging to

the complementary class 2, have been shown as large blue spheres. The small purple

sphere is some new input vector to be classified. When its magnetic field H is given,

we first solve (5.51) to calculate an approximation βα to the coefficients by Tikhonov

regularization. Then, we classify βα via (5.1). For the values shown in Figure 4 the

target values were defined using the first entry of the input vectors, i.e. ℓ = 1. The

training set size, N , is 50.

Fisher’s Linear Classification on H. To perform classification using magnetic

field vectors we start with random coefficients β(ω) as above. Then, for every vector

β(ω) we calculate corresponding magnetic field vectors H(ω). The training set is
{(

H(1), t(1)
)

, · · · ,
(

H(N), t(N)
)}

, (5.53)

where H(ω) are simulated values of magnetic field measurements and t(ω) are the

corresponding target values for ω = 1, . . . , N .

As in the previous part, we use (5.52) to define our target values. As described

in (5.41) we need to use regularization techniques to calculate an approximate inverse

of the within-class scatter matrix S
(H)
F . Now, Fisher’s linear discriminant is set-up by

calculation of (5.42). The projection for some measured magnetic field H is calculated

by

y =
(

w(H)
α

)T
H. (5.54)

Figure 5 shows results of this process for the choice ℓ = 1. As for the corresponding

classification on β, the projections of input vectors with t(ω) = 1, i.e. belonging to class

1, have been shown as small red spheres and the projections with t(ω) = 0, i.e. belonging

to the complementary class 2, have been shown as large blue spheres. The small purple

sphere is some new input vector projected by (5.54), which is to be classified.

Finally, we illustrate the ill-posedness by visualization of the within-class scatter

matrix S
(H)
F in Figure 7. The corresponding matrix S

(β)
F is shown in Figure 6. In the

case of β we can see that the covariance matrix is diagonally dominant, which we expect

since it is the covariance matrix of vectors with mutually independent entries. This is

no longer the case for the within-class covariance matrix of the magnetic fields.
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Figure 4. Fisher’s linear discriminant was performed on vectors β(ω) of basis function

coefficients, with a classification based on (5.52) for some fixed ℓ ∈ {1, ..., L} (with

ℓ = 1 for the particular example). Here, we show the projected values y(ω) as small

red spheres for t(ω) = 1 and large blue spheres for t(ω) = 0. The small purple sphere

indicates a test vector which is to be classified via Fisher’s linear discriminant.

Figure 5. Regularized Fisher’s linear discriminant was performed on vectors H(ω)

of basis function coefficients, with a classification based on (5.52) for some fixed

ℓ ∈ {1, ..., L} (with ℓ = 1 for the particular example). As in Figure 4 we show the

projected values y(ω) as small red spheres for t(ω) = 1 and large blue spheres for

t(ω) = 0. Again, the small purple sphere indicates a test vector which is to be classified

via Fisher’s linear discriminant.
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