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APPROXIMATION BY HARMONIC POLYNOMIALS IN STAR-SHAPED
DOMAINS AND EXPONENTIAL CONVERGENCE OF TREFFTZ HP -DGFEM∗

R. HIPTMAIR†, A. MOIOLA‡, I. PERUGIA§, AND CH. SCHWAB¶

Abstract. We study the approximation of harmonic functions by means of harmonic polynomials in two-
dimensional, bounded, star-shaped domains. Assuming that thefunctions possess analytic extensions to aδ-neigh-
bourhood of the domain, we prove exponential convergence of the approximation error with respect to the degree of
the approximating harmonic polynomial. All the constants appearing in the bounds are explicit and depend only on
the shape-regularity of the domain and onδ.

We apply the obtained estimates to show exponential convergence with rateO(exp(−b
√
N)), N being the

number of degrees of freedom andb > 0, of ahp-dGFEM discretisation of the Laplace equation based on piecewise
harmonic polynomials. This result is an improvement over the classical rateO(exp(−b

3
√
N)), and is due to the use

of harmonic polynomial spaces, as opposed to complete polynomial spaces.

1. Introduction. We fix a domain that meets the following requirements, see Figure1.1.
ASSUMPTION1.1. The domainD ⊂ C is open and satisfies1

i) diam(D) = 1;
ii) there exists0 < ρ ≤ 1/2 such thatBρ ⊆ D;
iii) there exists0 < ρ0 < ρ such thatD is star-shaped with respect toBρ0 , i.e.,∀w ∈ D

and∀v ∈ Bρ0 , the straight segment with endpointsw andv is contained inD.
In this article we investigate the best approximation onD of a functionf : D → C

by means of (complex variable) polynomials. We obtainexponential convergencein the
polynomial degree provided thatf is holomorphic in an open neighbourhood ofD. Our main
approximation result from Section4.2reads as follows.2

THEOREM 1.2. Fix 0 < δ ≤ 1/2 and define the inflated domainDδ = {w ∈ C :
d(w,D) < δ}. There existC, b > 0 only depending onρ, ρ0 andδ such that, for any function
f which is holomorphic and bounded inDδ, there is a sequence of polynomials{qp}p≥1 of
degree at mostp such that

‖f − qp‖L∞(D) ≤ C e−bp ‖f‖L∞(Dδ)
.

In Section4, the values ofC andb will be madefully explicit in terms ofδ and the geometry
of D, and we will prove similar results for the derivatives off .

Our considerations follow the pioneering work of M. Melenk in [25, Chapter II] and [26],
refining and completing his arguments. The linchpin is Hermite’s representation formula
for the error of polynomial interpolation of holomorphic functions in complex domains, see
Section4.2. It is applied using, as integration contours, the level lines of the holomorphic
mappingϕD : C \ B1 → C \ D provided by the Riemann mapping theorem. Thus we
need rather precise information about the position of theselevel lines, and this information is
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1We writeBr(w0) := {w ∈ C : |w − w0| < r} andBr := Br(0).
2Here and in the following, we denote the distance between a point w ∈ C and a setD ⊂ C and the distance

between two setsD1,D2 ⊂ C by

d(w,D) := inf
w′∈D

∣

∣w − w′
∣

∣ , d(D1,D2) := inf
w1∈D1,w2∈D2

|w1 − w2| .
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gleaned in Section3 by means of fairly intricate estimates. A result similar to Theorem1.2
was stated in [25, Theorem 2.2.10]; the novelty of the present contribution lies in theexplicit
expressionsfor the constantsC andb in terms of the parametersδ, ρ andρ0 only.

Our work was motivated by the desire to obtain convergence estimates for thehp-version
of Trefftz-type discontinuous Galerkin finite element methods (dGFEM) for second-order
scalar elliptic boundary value problems. For the Laplace equation∆u = 0, these methods
rely on harmonic polynomials for the local approximation onthe cells of a mesh. Thus, with
D standing for a mesh cell (after the identification ofR2 with C and, possibly, a similarity
transformation), estimates like that of Theorem1.2 become instrumental for showing expo-
nential convergence of the discretisation error in terms ofthe dimensions of the trial spaces.
This will be outlined in Section5, in the case of (straight) triangular and quadrilateral meshes,
building on the substantialhp-dGFEM convergence theory of [38]. On geometrically graded
meshes, this scheme features faster exponential convergence than standard methods, namely
the energy norm of the error decays asexp(−b

√
N),N being the number of degrees of free-

dom andb > 0, as opposed to standard schemes which achieve onlyexp(−b 3
√
N). A dGFEM

based on harmonic polynomial has already been introduced in[22,23]; only the convergence
under mesh refinement was discussed there.

We intend to pursue the extension of these results to more general second-order ellip-
tic equations by means of the so-called Vekua theory [29,34]. In particular, the extension to
Helmholtz boundary value problems is relevant, since several Trefftz-type numerical schemes
have recently been proposed for their efficient approximation at medium and high wave num-
bers; see [8,13,14,19–21,27,30], the references therein, and the review in [28, §1.2].

D

ρ ρ0

1− ρ

Λπ

λπ

01

FIG. 1.1.Geometry of domainD, see Assumption1.1.

We close this introduction with some remarks on the geometryof the domainD in
our approximation results. We refer to Figure1.1 for an illustration of the notation in the
following statements. By Assumption1.1, D is bounded, simply connected,0 ∈ D and
D ⊆ B1−ρ. Moreover,D satisfies the followinguniform cone conditions: there existH0 > 0,
andΛ, λ ∈ (0, 1] satisfying

min{Λ, λ} ≥ 2

π
arcsin

ρ0
1− ρ

, (1.1)
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such that, for anyw ∈ ∂D,
a) there exists a cone3 with vertexw, opening angleΛπ and heightH0 contained inD,
b) there exists an infinite cone with vertexw and opening angleλπ contained inC\D.

The proof is postponed to LemmaA.1 in AppendixA. The uniform cone conditions imply
thatD is Lipschitz (see, e.g., [16, Theorem 1.2.2.2]).

REMARK 1.3. If D is convex, we could chooseρ0 = ρ. However, in order to avoid
the discussion of special cases, we will always assumeρ0 < ρ, obviously with no loss of
generality.

We also notice that, in the convex case, the exterior cone condition holds withλ = 1
(the cone is a half plane throughw that does not intersectD), while for the interior cone
condition one always hasΛ < 1.

2. Exterior conformal mappings. Let D ⊂ C be a non-empty, simply connected
“generic” domain that is either compact or open and bounded.SetDc := (C∪{∞}) \D and
Bc1 := (C∪ {∞}) \B1. Owing to the Riemann mapping theorem, there exists a uniqueone-
to-one conformal mappingϕD : Bc1 → Dc such thatϕD(∞) = ∞ andϕ′

D(∞) is real and
positive. The proof can be found in [17, Corollary 5.10c] (where “regions” are non-empty,
open, connected sets as defined in [17, §3.2]) or in [24, Vol. III, Theorems 1.2 and 1.3] after
using the inversion across∂B1. If ∂D is a Jordan curve, thenϕD can be extended to a home-
omorphism fromBc1 → Dc, i.e., it is bijective and continuous, with continuous inverse also
on the boundary (see [31, §17.20] or [17, Theorem 5.10e]).

For everyh > 0, we define thelevel line ofϕD by

Lh[D] := ϕD(∂B1+h). (2.1)

SinceϕD is a homeomorphism, the level lineLh[D] partitionsC into two connected compo-
nents and we denote byIntLh[D] the closure of the bounded connected component. When-
everD = D, which satisfies Assumption1.1, we set for brevityϕ := ϕD andLh := Lh[D].

In Section 16.5.II of [18] (eq. (16.5-7), page 374) and in [35, Sec. 4.4, p. 74]4, the value
ϕ′
D(∞) (which is real and positive by definition ofϕD) is identified as the classic analytic

capacityof D.
If D1 ⊂ D2, thenϕ′

D1
(∞) ≤ ϕ′

D2
(∞). Besides, Theorem 16.6j of [18] asserts that

ϕ′
BR(w)(∞) = R and, thus, for the domainD,

ρ < ϕ′
D(∞) < 1− ρ. (2.2)

Let P be a boundedpolygonwith counterclockwise ordered vertices{wk}Nk=1 and cor-
responding internal angles{αkπ}Nk=1. Then, using conformal inversion across∂B1 and [11,
Eq. 4.6], the conformal mappingϕP is given by the Schwartz–Christoffel formula

ϕP (z) = A+ CSC

∫ 1/z

ζ−2
N∏

k=1

(
1− ζ

zk

)1−αk

dζ |z| > 1, (2.3)

wherezk = ϕ−1
P (wk), |zk| = 1. We have

∑N
k=1 αk = N − 2 (or

∑N
k=1(1 − αk) = 2); see

also [24, Vol. III, eq. (9.10) page 331]. The constantA ∈ C depends on translations ofP and

3Following [25, Proposition 2.1.6] we call “cone” an isosceles triangle, “infinite cone” the sector of the plane
delimited by two half lines with common origin, and “opening angle” the angle adjacent to the two sides with equal
length of a cone, or to the two half lines of a infinite cone.

4Notice that, in both these references, the inverse conformalmapϕ−1

D
is used.
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on the initial point in the integration; the constantCSC is related to rotations/dilations and
from [11, p. 53] we have

|CSC | = ϕ′
P (∞). (2.4)

The complex derivative of the Schwarz–Christoffel mappingcan easily be computed as

ϕ′
P (z) = −CSC

N∏

k=1

(
1− 1

zzk

)1−αk

= −CSC
1

z2

N∏

k=1

(z − zk)
1−αk , (2.5)

where in the last step we have used|zk| = 1 and
∑
k(1− αk) = 2. Whenz approaches one

of thezk ’s, thenϕ′
P (z) tends either to0 or to∞, depending on the sign of1− αk.

Next, we recall the estimates of [25, Lemma 2.1.3] applied to our domainD.
LEMMA 2.1. Letϕ be the conformal mapping fromBc1 ontoDc. Then

d(Lh, Lh′) ≥ ρ2

8ϕ′(∞)

h′

(1 + h)3
(h− h′) for 0 < h′ < h,

|ϕ′(z)| ≤ ϕ′(∞)|z|
|z| − 1

|z| > 1.

Proof. We refer to [25, Appendix A.2] for the second bound, which is based on the “area
formula” of [24, Vol. III, Th. 1.4], while here we report the proof of the firstbound given
in [25, Appendix A.2], taking into account our assumptions onD.

Fix 0 < h′ < h; Lh, Lh′ are compact, thus we can choose1 < |z1| = 1 + h′ < |z2| =
1 + h such thatd(Lh, Lh′) = |ϕ(z2)− ϕ(z1)|. Then,

h− h′ ≤ |z2 − z1| = |ϕ−1(ϕ(z2))− ϕ−1(ϕ(z1))|

=

∣∣∣∣∣

∫ ϕ(z2)

ϕ(z1)

(ϕ−1)′(w) dw

∣∣∣∣∣ ≤ |ϕ(z2)− ϕ(z1)| sup
1+h′≤|ϕ−1(w)|≤1+h

∣∣(ϕ−1)′(w)
∣∣

= |ϕ(z2)− ϕ(z1)| sup
1+h′≤|z|≤1+h

∣∣∣∣
1

ϕ′(z)

∣∣∣∣
[25, p. 165]

≤ |ϕ(z2)− ϕ(z1)| ϕ′(∞) sup
1+h′≤|z|≤1+h

(1 + |z|)3
(|z| − 1)|ϕ(z)|2

≤ d(Lh, Lh′)ϕ′(∞)
(2 + h)3

h′ρ2
≤ d(Lh, Lh′)ϕ′(∞)

8(1 + h)3

h′ρ2
,

which gives the result. The bound we used from [25, p. 165] is a consequence of the “distor-
tion theorem”, see [24, Vol. III, Theorems 1.7 and 1.9].

The following result is a direct consequence of Schwarz’s Lemma [17, Theorem 5.10b],
i.e., of the fact that every holomorphic functionf : B1 → B1 satisfies|f(z)| ≤ |z| ∀z ∈ B1,
applied to the functionz 7→ 1/(ϕ−1

D1
(ϕD2

(1/z))).
LEMMA 2.2. LetD1 ⊂ D2 be two bounded, simply connected, Lipschitz domains. Then

IntLh[D1] ⊂ IntLh[D2] ∀h > 0.
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3. Distance estimates for level lines of ϕD. We need precise quantitative information
of how far the level linesLh move away from∂D ash increases. It is provided by the
following key result.

THEOREM 3.1. Let Lh be theh-level line of the conformal mapping ofD. Define
0 < ξ ≤ 1 as

ξ :=





2

π
arcsin

ρ0
1− ρ

if D is non convex,

1 if D is convex.

Then, provided that0 < h ≤ 1, we have

∀w ∈ ∂D, ∀wh ∈ Lh, |w − wh| ≥ CIh
2, (3.1)

∀wh ∈ Lh ∃w ∈ ∂D : |w − wh| ≤ CEh
ξ, (3.2)

where we have set

CI :=
ρ

4
, CE :=

27

ξ
.

REMARK 3.2. In the case of a convex polygonal domainD, (3.2) holds withCE = 9
instead of27 and, for more general convex domains,CE can be improved up to9 + c0, with
anyc0 > 0; see Section3.2below.

REMARK 3.3. The bounds(3.1) and (3.2) can be rewritten as

d(Lh, ∂D) ≥ CIh
2, d(wh, ∂D) ≤ CEh

ξ ∀wh ∈ Lh.

A result in the spirit of Theorem3.1 is proved in [25, Proposition 2.1.6]. There, an upper
bound ford(w,Lh) withw ∈ ∂D is given, which is different from our estimate(3.2). Another
difference is that the exponents ofh in the bounds(3.1) and (3.2), as well as the expressions
of the constantsCI andCE , are specified under our assumptions onD.

The proofs of the two bounds (3.1) and (3.2) are given in the following Section3.1and
3.2, respectively. On first reading these may be skipped.

3.1. Proof of the lower bound (3.1). We state the following auxiliary result.
LEMMA 3.4. LetS ⊂ C be the segment[−ρ, ρ], ρ > 0, on the real axis. Then

d(ρ, Lh[S]) =
ρh2

2(1 + h)
∀h > 0.

Proof. For anyρ > 0, the Joukowski map [17, §5.1, page 294]

J(z) =
ρ

2

(
z +

1

z

)
(3.3)

is the conformal mapping that mapsBc1 in the exterior of the segmentS, with J(∂B1) = S,
J(∞) = ∞ andJ ′(∞) = ρ/2. It level lines are ellipses whose foci are the endpoints ofS.
For everyh > 0,

d(ρ, Lh[S]) = min
z∈∂B1+h

|ρ− J(z)|

= min
θ∈[−π,π]

∣∣∣∣ρ−
ρ

2

(
(1 + h)eiθ +

1

(1 + h)eiθ

)∣∣∣∣

=
ρ

2(1 + h)
min

θ∈[−π,π]

∣∣∣∣
2(1 + h)eiθ − (1 + h)2e2iθ − 1

eiθ

∣∣∣∣

=
ρ

2(1 + h)
min

θ∈[−π,π]

∣∣(1 + h)eiθ − 1
∣∣2 ;
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the minimum ish2 and it is achieved forθ = 0; the proof is complete.
Proof of (3.1). The proof proceeds along the lines of [25, Proposition 2.1.6]. SinceD

is star-shaped with respect to the origin andBρ ⊆ D, then for anyw ∈ ∂D, there exists a
(closed) straight segmentSw with one endpoint atw and length2ρ such thatSw ⊂ D. By
Lemma3.4and Lemma2.2, we have

ρh2

2(1 + h)
= d(w,Lh[Sw]) ≤ d(w,Lh) ∀w ∈ ∂D,

which implies (3.1) with CI = ρ/4, sinceh ≤ 1.
REMARK 3.5. In Proposition 2.1.6 of [25] a bound similar to(3.1) was established

with a better power ofh, i.e., 2 − Λ instead of2. This was proved by comparing the level
lines ofD with those of a triangle, instead of comparing with those of asegment. We were
not able to prove this result with a fully explicit constantCI . On the other hand, exponent
2 is sufficient to establish exponential convergence for the approximations of holomorphic
functions by complex polynomials.

3.2. Proof of the upper bound (3.2) for convex domains. In this section we consider
the case of convexD, which already reveals the key ideas with moderate technical complex-
ity. For the much more intricate case of generalD with non convex boundary, we refer to
AppendixB.

Proof of (3.2) for convex domains.We consider first the case whenD is a convex polygon
(with straight sides) with vertices{wk}Nk=1 and corresponding internal angles{αkπ}Nk=1; set
zk = ϕ−1(wk) ∈ ∂B1, k = 1, . . . , N .

Fix wh ∈ Lh and setzh = ϕ−1(wh) ∈ ∂B1+h; thus zh = (1 + h)eiθ, for some
θ ∈ [−π, π]. Definez = eiθ, w = ϕ(z), and denote byS the straight segment of lengthh
connectingz andzh. From (2.5) and (2.4) we have

|wh − w| = |ϕ(zh)− ϕ(z)| ≤
∫

S

|ϕ′(y)| dy ≤ ϕ′(∞)

∫

S

1

|y|2
N∏

k=1

|y − zk|1−αk dy.

For anyy ∈ S, we have|y − zk| ≤ 2 + h and, due to the convexity ofD, 1 − αk ≥ 0,
k = 1, . . . , N . Then, recalling that

∑N
k=1(1− αk) = 2, we arrive at

N∏

k=1

|y − zk|1−αk ≤ (2 + h)
∑N

k=1(1−αk) = (2 + h)2.

Notice that this bound is independent of the numberN of the vertices ofP . Using |y| ≥ 1
and (2.2), sinceh ≤ 1, we obtain

|wh − w| ≤ (1− ρ)(2 + h)2
∫

S

1 dy ≤ (2 + h)2h ≤ 9h.

If a convexD has more general shape, we exploit the fact that, for any fixedε > 0, we
can find a convex polygonPε containingD such that, for allw ∈ ∂Pε, d(w, ∂D) < ε, [36,
Theorem 3.1.6]; forε small enough,Pε ⊂ B1, thusϕ′

Pε
(∞) ≤ 1.

Fix wh ∈ Lh = Lh[D]. Let Pε be an approximating polygon as before, withε ≤
1
2d(wh, ∂D). Then,wh ∈ Lh′ [P ε] with h′ ≤ h, as a consequence of Lemma2.2. Let
zh′ = ϕ−1

Pε
(wh) = (1 + h′)eiθ, and definez = eiθ. Then,

d(wh, ∂D) ≤ d
(
wh, ϕPε

(z)
)
+ d

(
ϕPε

(z), ∂D
)
= |ϕPε

(zh′)− ϕPε
(z)|+ d

(
ϕPε

(z), ∂D
)
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≤ (2 + h′)2h′ + ε ≤ (2 + h)2h+
1

2
d
(
wh, ∂D

)
,

which implies

d(wh, ∂D) ≤ 2(2 + h)2h ≤ 18h.

4. Interpolation estimates. In this section, we prove error estimates for the approx-
imation of holomorphic functions by means of polynomials. We first state some auxiliary
results.

4.1. Auxiliary results. We define the “polar parametrisation”Ψ : C→ C such that

Ψ(B1) = D, Ψ(reiθ) = ψ(θ)reiθ, ψ : [−π, π) → [ρ, 1− ρ].

LEMMA 4.1. The functionψ : [−π, π) → [ρ, 1−ρ] is Lipschitz continuous with constant
Lψ satisfying

Lψ := sup
θ∈[−π,π]

ψ′(θ) ≤ (1− ρ)2

ρ0
.

Proof. Assumption1.1 guarantees thatD is a Lipschitz domain, therefore by Radema-
cher’s theorem (see [12, §3.1.2]),ψ is differentiable almost everywhere and, for almost every
point of ∂D, there exists a tangent line. Because of the star-shapedness requirement, no
tangent line to∂D can intersect the open ballBρ0 .

Therefore the steepest (in polar coordinates) possible tangent line at a pointψ(θ) is tan-
gent to∂Bρ0 . Since the angular derivative of a straight line is larger for points with larger
moduli, we can boundψ′(θ) with the angular derivative atθ = 0 of one of the two straight
lines through1− ρ that are tangent toBρ0 .

0 1− ρ

θ∗

ρ0e
iθ∗

FIG. 4.1.The extremal case in the proof of Lemma4.1and the angleθ∗.

This line has polar representationr(θ) = ρ0/ cos(θ
∗ − θ), whereθ∗ = arccos ρ0

1−ρ (i.e.,
θ∗ is the angle at0 of the rectangular triangle of vertices 0,1− ρ and the tangent point of the
line to∂Bρ0 ; see Figure4.1). Its “polar slope” inθ = 0 is given by

|r′(θ)|θ=0 =

[
ρ0| sin(θ∗ − θ)|
cos2(θ∗ − θ)

]

θ=0

=
ρ0| sin θ∗|
cos2 θ∗

=
(1− ρ)2

ρ0

∣∣∣∣sin arccos
ρ0

1− ρ

∣∣∣∣ ≤
(1− ρ)2

ρ0
.
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Then|ψ′(0)| ≤ (1−ρ)2

ρ0
and the proof is complete.

The inverse ofΨ is given byΨ−1(reiθ) = 1
ψ(θ)re

iθ or, in Cartesian coordinates (after

the identification ofC with R2),

Ψ−1(r cos θ, r sin θ) =

(
r

ψ(θ)
cos θ,

r

ψ(θ)
sin θ

)
=: (F1, F2). (4.1)

Of course,Ψ−1 is Lipschitz continuous as well, and an estimate for its Lipschitz constant is
given in the next Lemma.

LEMMA 4.2. The functionΨ−1 : C → C is Lipschitz continuous with constantLΨ−1

satisfying

LΨ−1 := sup
w,v∈C, w 6=v

|w − v|
|Ψ(w)−Ψ(v)| ≤

2(2ρ+ Lψ)

ρ2
,

withLψ as in Lemma4.1.
Proof. LetDΨ−1 be the Jacobian ofΨ−1. Considering the representation (4.1) of Ψ−1,

we have

∂F1

∂x
=
x

r

cos θ

ψ(θ)
− y

r

− sin θψ(θ) + cos θψ′(θ)

(ψ(θ))2
,

∂F2

∂x
=
x

r

sin θ

ψ(θ)
− y

r

cos θψ(θ) + sin θψ′(θ)

(ψ(θ))2
,

∂F1

∂y
=
y

r

cos θ

ψ(θ)
+
x

r

− sin θψ(θ) + cos θψ′(θ)

(ψ(θ))2
,

∂F2

∂y
=
y

r

sin θ

ψ(θ)
+
x

r

cos θψ(θ) + sin θψ′(θ)

(ψ(θ))2
.

Since|x|, |y| ≤ r and0 < ρ < |ψ(θ)| < 1, we can bound
∥∥DΨ−1

∥∥
L∞(C)

(in the matrix
∞-norm) as

∥∥DΨ−1
∥∥
L∞(C)

≤ 2

(
1

ρ
+

1

ρ
+
Lψ
ρ2

)
=

2(2ρ+ Lψ)

ρ2
.

SinceLΨ−1 =
∥∥DΨ−1

∥∥
L∞(C)

the proof is complete.
LEMMA 4.3. For every positiveh, the following bound holds:

∣∣eiθ − (1 + h)
∣∣2 ≥

(
2

π

)2

(θ2 + h2) =: C2
B(θ

2 + h2) ∀θ ∈ [−π, π].

Proof. Using1− cos θ ≥ 2
π2 θ

2 for anyθ ∈ [−π, π], we have

∣∣eiθ − (1 + h)
∣∣2 = (1+ h− cos θ)2 + (sin θ)2 = h2 +2(1− cos θ)(h+1) ≥ 4

π2
(θ2 + h2).

Now, we provide a refined version of [25, Lemma 2.1.8].
LEMMA 4.4. If 0 < h ≤ CI is such thatLh ⊂ B1+ρ andw0 ∈ Lh, then

∫

∂D

1

|w − w0|
dw ≤ CD |log h| ,
8



where

CD = 4π
√
2LψLΨ−1 ,

withLψ andLΨ−1 as in Lemma4.1and Lemma4.2, respectively.
Proof. Fix w0 ∈ Lh, and assume, with no loss of generality, thatw0 is on the positive

real axis. Defined := w0 − ψ(0) and notice thatd(w0, ∂D) ≤ d ≤ 1.
Settingw(θ) := Ψ(eiθ) = ψ(θ)eiθ ∈ ∂D, using Lemma4.2, Lemma4.3andψ(θ) < 1,

we obtain, for allθ ∈ [−π, π],

|w(θ)− w0|2 ≥ L−2
Ψ−1 |Ψ−1(w(θ))−Ψ−1(w0)|2 = L−2

Ψ−1 |eiθ − w0/ψ(0)|2 (4.2)

≥ L−2
Ψ−1C

2
B

[
θ2 +

(
w0

ψ(0)
− 1

)2
]
= L−2

Ψ−1C
2
B

[
θ2 +

(
w0 − ψ(0)

ψ(0)

)2
]

> L−2
Ψ−1C

2
B

[
θ2 + (w0 − ψ(0))2

]
=

4

π2
L−2
Ψ−1(θ

2 + d2) =: L2
D(θ

2 + d2).

Then,
∫

∂D

1

|w − w0|
dw =

∫ π

−π

1

|w(θ)− w0|
|w′(θ)| dθ

Lem.4.1
≤ Lψ

∫ π

−π

1

|w(θ)− w0|
dθ

(4.2)
≤ LψL

−1
D

∫ π

−π

1√
θ2 + d2

dθ ≤ 2
√
2LψL

−1
D

∫ π

0

1

θ + d
dθ

≤ 2
√
2LψL

−1
D

(
log(π + d)− log d

)
.

Since

h ≤ CI =
ρ

4
≤ 1

8
<

1

π + 1
≤ 1

π + d
< 1,

we havelog(π + d) ≤ | log h| and

∫

∂D

1

|w − w0|
dw ≤ 2

√
2LψL

−1
D (| log h|+ | log d|)

d≥d(w0,∂D)

≤ 2
√
2LψL

−1
D (| log h|+ | log d(w0, ∂D)|)

w0∈Lh, (3.1)
≤ 2

√
2LψL

−1
D

(
| logCI |+ 3| log h|

)

h≤CI<1

≤ 8
√
2LψL

−1
D | log h| = 4π

√
2LψLΨ−1︸ ︷︷ ︸
=:CD

| log h|,

where we can use (3.1), becauseh ≤ CI < 1.
REMARK 4.5. Using Lemma4.2, Lemma4.1andρ0 < ρ ≤ 1/2, we have the bound

CD = 4π
√
2LψLΨ−1 ≤ 4π

√
2Lψ

2(2ρ+ Lψ)

ρ2
≤ 8π

√
2
(1− ρ)2(2ρρ0 + (1− ρ)2)

ρ20ρ
2

≤ 8π
√
2

ρ20ρ
2
[(1− ρ)2(2ρ2 + (1− ρ)2)] ≤ 8π

√
2

ρ20ρ
2
[(1− ρ)2(1 + ρ2)] ≤ 8π

√
2

ρ20ρ
2
,

since(1− ρ)2(1 + ρ2) = 1− 2ρ+ 2ρ2 − 2ρ3 + ρ4 < 1.

9



Define the sequence of complex polynomials{ωp}p∈N with

ωp(w) :=

p−1∏

k=0

(
w − ϕ(e2πik/p)

)
,

whereϕ is the exterior conformal mapping ofD.
LEMMA 4.6. [25, Lemma 2.2.9] Under the same hypothesis onh as in Lemma4.4 we

find

hCD |ϕ′(∞)|p(1 + h)p ≤ |ωp(w)| ≤ h−CD |ϕ′(∞)|p(1 + h)p ∀w ∈ Lh, ∀p ∈ N,

whereCD is the constant in Lemma4.4.
Proof. We refer to the proof of [25, Lemma 2.2.9]. The constant at the exponents ofh is

equal toCD and the threshold onh is the one needed by Lemma4.4.

4.2. Main interpolation estimates. As in Theorem1.2, for δ > 0, define the inflated
domain

Dδ := {w ∈ C : d(w,D) < δ}. (4.3)

Assumeℓ > 0; then Theorem3.1guarantees that

0 < h <
1

ℓ

(
δ

CE

)1/ξ

⇒ Lℓh ⊂ Dδ.

Our main approximation results is a refinement of [25, Theorem 2.2.10].
THEOREM 4.7. Fix 0 < δ ≤ 1/2. Provided that

0 < h < h∗(δ) := min

{
1

3

(
δ

CE

)1/ξ

,
ρ

4

}
, (4.4)

there existCappr > 0 andα > 0 depending only onD throughρ andρ0, such that, for anyf
holomorphic inDδ, there is a sequence of polynomials{qp}p≥1 of degree at mostp such that

‖f − qp‖L∞(IntLh)
≤ Capprh

−α(1 + h)−p ‖f‖L∞(IntL3h)
,

where

Cappr ≤
20(1− ρ)2

3ρ2
≤ 7

ρ2
, α ≤ 3 +

16
√
2π

ρ20ρ
2

≤ 72

ρ20ρ
2
.

REMARK 4.8. Compared to [25, Theorem 2.2.10], this estimate features fully explicit
bounds in terms of shape parameters ofD. Moreover, no complete proof of Theorem 2.2.10
was given in [25], cf. Remark3.3.

Proof of Theorem4.7. We chooseqp as the polynomial of degreep which interpolates
f at thep + 1 pointsϕ(e2πik/(p+1)), k = 0, . . . , p. SinceL3h ⊂ Dδ, using the Hermite
interpolation error formula (see [25, p. 17] or [9, Theorem 3.6.1]), we have

‖f − qp‖L∞(IntLh)
= sup
w∈IntLh

∣∣∣∣
1

2πi

∫

L3h

ωp(w)f(t)

ωp(t)(t− w)
dt

∣∣∣∣

≤
length(L3h) supw∈IntLh

|ωp(w)| ‖f‖L∞(IntL3h)

2π inft∈IntL3h
|ωp(t)| d(Lh, L3h)

.
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Sinceϕ is a curve parametrisationϕ : ∂B1+3h → L3h,

length(L3h) ≤ 2π(1 + 3h) sup
|z|=1+3h

|ϕ′(z)| ;

this, together with the lower bound ofd(Lh, L3h) and the upper bound of|ϕ′(z)| given in
Lemma2.1, and the bounds in Lemma4.6, gives

‖f − qp‖L∞(IntLh)
≤ 8(1 + 3h)5ϕ′(∞)2

6h3ρ2
(3h2)−CD

(
1 + h

1 + 3h

)p
‖f‖L∞(IntL3h)

≤ 4ϕ′(∞)2

31+CDρ2
h−3−2CD

(
1 + h

1 + 3h

)p
(1 + 3h)5 ‖f‖L∞(IntL3h)

≤ 20(1− ρ)2

3ρ2
h−3−2CD

(
1

1 + h

)p
‖f‖L∞(IntL3h)

,

where in the last step we have used31+CD > 3, |ϕ′(∞)| < 1 − ρ, 1+h
1+3h ≤ 1

1+h , and
(1 + 3h)5 < 5, sinceh ≤ ρ/4 ⇒ h < 1/8. The use of Lemma4.6(and thus of Lemma4.4)
is legitimate due to the hypothesis imposed onh andδ. The result of the theorem follows
from the bound ofCD derived in Remark4.5.

Obviously, Theorem1.2 from the Introduction is an immediate consequence of Theo-
rem4.7: given0 < h < h∗, just defineC := Cappr(h

∗(δ))−α andb := log(1 + h∗(δ)).
The polynomialsqp defined in the proof of Theorem4.7 as the complex interpolants of

f in special points,simultaneouslyapproximate the firstp derivatives off (denotedf (j),
j = 1, . . . , p), as established by the following corollary.

COROLLARY 4.9. Under the assumptions of Theorem4.7, for any5 j ∈ N, j ≤ p, we
have

∥∥∥f (j) − q(j)p

∥∥∥
L∞(D)

≤ Cappr
j!

(CIh2)j
h−α(1 + h)−p ‖f‖L∞(IntL3h)

.

Proof. We use Cauchy’s inequalities [24, Vol. I, Theorem 14.7] for the interpolation error
f (j) − q

(j)
p to obtain a sharp bound on the complex derivatives of holomorphic functions:

∥∥∥f (j) − q(j)p

∥∥∥
L∞(D)

≤ j!

d(Lh, ∂D)j
‖f − qp‖L∞(IntLh)

;

the assertion of the corollary follows from the bound (3.1) and from Theorem4.7.
As a consequence of the previous results, we can gauge the approximation of real-valued

harmonic functions by harmonic polynomials. To this purpose, settingz = x+iy we identify
S ⊆ C and{(x, y) ∈ R2| z = x + iy ∈ S} and now regardf : Dδ → C as areal analytic
function of two real variablesf = f(x, y). We also adopt this perspective for the polynomials
qp, which have been defined in the proof of Theorem4.7as the complex interpolants off in
special points.

The statement of the following results makes use of the (standard)W j,∞(S)-seminorms,
j ∈ N, and of the weighted SobolevW 1,∞(S)-norm, for sufficiently smooth functions, and
S ⊆ Dδ:

|u|W j,∞(S) := sup
β∈N2

0, |β|=j

∥∥Dβu
∥∥
L∞(S)

,

5We use the following standard notation:N = {1, 2, . . .}, N0 = {0, 1, 2, . . .}.

11



‖u‖W 1,∞(S) := ‖u‖L∞(S) + diam(Dδ) ‖∇u‖L∞(S) .

THEOREM 4.10.Fix 0 < δ ≤ 1/2, and leth satisfy(4.4). For any real, harmonic func-
tionu in the inflated domainDδ defined in(4.3), there is a sequence of harmonic polynomials
{Qp}p≥1 of degree at mostp such that

‖u−Qp‖L∞(D) ≤ Capprh
−α(1 + h)−p ‖u‖W 1,∞(IntL3h)

,

|u−Qp|W j,∞(D) ≤ Cappr

(
2j

CIh2

)j
h−α(1 + h)−p ‖u‖W 1,∞(IntL3h)

,

‖u−Qp‖L2(D) ≤
√

|D|Capprh
−α(1 + h)−p ‖u‖W 1,∞(IntL3h)

,

|u−Qp|Hj(D) ≤
√
|D|(j + 1)Cappr

(
2j

CIh2

)j
h−α(1 + h)−p ‖u‖W 1,∞(IntL3h)

for all j ∈ N, j ≤ p, where|D| < 1 is the Lebesgue measure ofD, and the constantsCappr

andα are the same as in Theorem4.7.
Proof. For any real, harmonic functionu on a simply-connected domainD ∋ (x0, y0),

there exists a unique holomorphic functionf onD, with f(x0+iy0) ∈ R, such thatu(x, y) =
Re f(x + iy) [24, Vol. II, Theorem 5.2]. More precisely,f(z) = u(x, y) + iv(x, y), with
z = x+ iy andv a real, harmonic function satisfying the Cauchy–Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

andv(x0, y0) = 0. If D is star-shaped with respect to(x0, y0), and‖u‖L∞(D), ‖∇u‖L∞(D)

are bounded, it holds

‖f‖L∞(D) ≤ ‖u‖L∞(D) + diam(D) ‖∇u‖L∞(D) .

Moreover, iff is a holomorphic function, thenu(Re z, Im z) = Re f(z) is harmonic; thus,
the real part of any complex polynomial is a harmonic polynomial. Obviously,‖u‖L∞(D) ≤
‖f‖L∞(D) holds true.

With these considerations, definingQp := Re qp, with qp as in Theorem4.7, the desired
bound inL∞-norm is direct consequence of Theorem4.7. Notice that‖u‖L∞(IntL3h)

and
‖∇u‖L∞(IntL3h)

are bounded (and thus‖u‖W 1,∞(IntL3h)
< +∞) because, by (4.4), the

(closed) setIntL3h is contained inDδ, the (open) domain of analyticity ofu.
For the bounds inW j,∞-norms, the inclusionD ⊂ Lh, the interior estimates for the

derivatives of harmonic functions in [15, Theorem 2.10], and the bound (3.1) give

|u−Qp|W j,∞(D) = sup
β∈N2

0, |β|=j

∥∥Dβ(u−Qp)
∥∥
L∞(D)

≤
(

2j

d(Lh,Ω)

)j
‖u−Qp‖L∞(IntLh)

≤
(

2j

CIh2

)j
‖u−Qp‖L∞(IntLh)

;

again, Theorem4.7allows to conclude.
Finally, the bounds in integral norms follow from

|u−Qp|2Hj(D) :=
∑

β∈N
2
0

|β|=j

∫

D

∣∣Dβ
(
u(x)−Qp(x)

)∣∣2 dx ≤ |D|(j + 1) |u−Qp|2W j,∞(D)
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and the previous inequalities.
From Theorem1.2, with the same considerations as in the proof of Theorem4.10, we

obtain the following result.
COROLLARY 4.11. Fix 0 < δ ≤ 1/2 and j ∈ N0. There existC > 0 and b > 0,

depending only onρ, ρ0, δ andj, such that, for any real-valued, harmonic functionu which
is bounded along with its first-order derivatives in the inflated domainDδ defined in(4.3),
there is a sequence of harmonic polynomials{Qp}p of degree at mostp such that

|u−Qp|W j,∞(D) ≤ C e−bp ‖u‖W 1,∞(Dδ)
,

|u−Qp|Hj(D) ≤ C e−bp ‖u‖W 1,∞(Dδ)
.

REMARK 4.12. The constantsC andb in Theorem1.2and Corollary4.11depend onδ
only throughh∗(δ) defined in(4.4).

The boundedness off , u and∇u in Theorem1.2 and Corollary4.11 is assumed only
in order to write estimates withL∞-norms in the wholeDδ on the right-had side. Actually,
the estimates hold true also with‖f‖L∞(IntL3h)

and ‖u‖W 1,∞(IntL3h)
respectively, on the

right-hand side, for any0 < h < h∗, with no need of assuming boundedness off , u and∇u
in Dδ.

REMARK 4.13. The interpolating polynomialsqp (andQp) in Theorem1.2, Theorem
4.7 and Corollary4.9 (Theorem4.10 and Corollary4.11, respectively) interpolate exactly
the functionf (u, respectively) in at leastp+1 points lying on the boundary ofD. The exact
location of the points depend on the conformal mapϕD. This fact follows from the definition
of qp given in the proof of Theorem4.7and the relationsu = Re f andQp = Re qp.

5. Application: exponential convergence of Trefftz hp-dGFEM. In this section, we
outline how to apply the estimates of Corollary4.11and prove exponential convergence of
a Trefftzhp-dGFEM for the mixed Laplace boundary value problem (BVP), i.e. a FEM with
discontinuous, piecewise harmonic, polynomial basis functions on a geometrically graded
mesh. We establish exponential convergence with rateO(exp(−b

√
N)), for someb > 0,

in terms of the overall numberN of degrees of freedom. This result is an improvement
over the classical rateO(exp(−b 3

√
N)) shown for inhomogeneous problems in [2, 4]; this

improvement is due to the use of harmonic polynomials, instead of complete polynomials, in
the trial spaces.

Since we rely on thehp-dGFEM theory from [37], we restrict ourselves to the case of
(straight) polygonal domains and meshes comprising (straight) triangles or parallelograms.
The extension to curvilinear domains and mesh elements would require to develop, for such
elements, several tools as polynomialhp-inverse estimates, scaling estimates of Sobolev
seminorms, and approximation estimates for linear and bilinear polynomials near corners.
This goes beyond the scope of this paper.

5.1. The Laplace BVP. Without further explanation, we use the notation for the weight-
ed Sobolev spaces (Hm,l

β (Ω)) and the countably normed spaces (Bℓβ(Ω) andCℓβ(Ω)) from [2,

§2], along with the analyticity and analytic continuation results given in [2–5].
Let Ω ⊂ R2 be a bounded, Lipschitz polygon with cornerscν , 1 ≤ ν ≤ na, whose

boundary is partitioned into a Dirichlet and a Neumann boundaryΓ[0] andΓ[1], respectively,

such that the interiors ofΓ[0] andΓ[1] do not overlap andΓ
[0] ∪ Γ

[1]
= ∂Ω. Moreover, we

assume thatΓ[0] has positive 1-dimensional measure. Consider the following (well-posed)
boundary value problem: giveng[i], i = 0, 1, findu ∈ H1(Ω) such that

∆u = 0 in Ω, (5.1a)
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γ0u
∣∣
Γ[0] = g[0] onΓ[0], γ1u

∣∣
Γ[1] = g[1] onΓ[1]. (5.1b)

Here,γ0 andγ1 denote trace and normal derivative operators, respectively.

There exists a weight vectorβ ∈ (0, 1)na such that, ifg[i] ∈ B
3
2−i
β (Γ[i]), i = 0, 1, prob-

lem (5.1) admits a unique solutionu which belongs toC2
β(Ω), [2, Theorem 3.5]. Moreover,

as in [2, page 841], it can be proved that there exist two constantsCu > 0 anddu ≥ 1 such
that

|(Dαu)(x0)| ≤ Cu

(
du

Φ(x0)

)k
k! ∀x0 ∈ Ω, α ∈ N2

0, |α| = k ≥ 1, (5.2)

whereΦ(x0) :=
∏na

ν=1 min{1, |x0 − cν |}, thusu admits a real analytic continuation to the
set

N (u) :=
⋃

x0∈Ω\
⋃na

ν=1 cν

{
x ∈ R2 : |x− x0| <

Φ(x0)

2du

}
⊂ R2. (5.3)

5.2. Trefftz hp-dGFEM. We now formulate thehp-dGFEM discretisation of the BVP
(5.1) on geometric mesh familiesMσ = {T ℓ

σ }∞ℓ=1 in Ω, with increasing numberℓ of layers
and geometric grading factor0 < σ < 1.

5.2.1. Geometric meshes. Given ℓ ∈ N, the meshT ℓ
σ is a partition of the domainΩ

into open triangles or parallelogramsΩℓij (such thatΩ =
⋃
i,j Ω

ℓ

ij andΩℓij ∩ Ωℓi′j′ = ∅ if
(i, j) 6= (i′, j′)). The elements are grouped inlayers, denoted byLℓσ,i, 1 ≤ i ≤ ℓ, such that

T ℓ
σ =

ℓ⋃

i=1

Lℓσ,i =
{
Ωℓij : 1 ≤ i ≤ ℓ, 1 ≤ j ≤ Ĵ(i)

}
,

whereĴ(i) ≥ 1 is the number of the elements ini-th layerLℓσ,i. Given an elementΩℓij ∈ T ℓ
σ ,

the indexi denotes the layerΩℓij belongs to, andj identifies it among thêJ(i) elements
belonging to thei-th layer. We say thatT ℓ

σ is a geometric mesh if it belongs to a family
Mσ = {T ℓ

σ }∞ℓ=1 that satisfies the assumptions (GM1)–(GM4) listed below.
For every elementΩℓij , we define the following parameters:hℓij := diam(Ωℓij); ρ

ℓ
ij and

x
ℓ
ij the radius and the centre, respectively, of the largest ballinscribed inΩℓij ; andrℓij :=

min1≤ν≤na
d(cν ,Ω

ℓ
ij) its distance from the nearest corner ofΩ.

ASSUMPTION5.1. The familyMσ = {T ℓ
σ }∞ℓ=1 satisfies the following conditions.

(GM1) The elements areuniformly shape-regulartriangles/parallelograms:∃ 0 < κ1 ≤
1/2, independent ofσ, ℓ, i andj, such that, for allT ℓ

σ ∈ Mσ andΩℓij ∈ T ℓ
σ ,

ρℓij ≥ κ1 h
ℓ
ij > 0.

(GM2) The distancerℓij between an elementΩℓij and the nearest corner ofΩ depends geo-
metrically on its layer indexi: ∃ 0 < κ2− ≤ κ2+ < ∞, independent ofσ, ℓ, i and
j, such that for allT ℓ

σ ∈ Mσ andΩℓij ∈ T ℓ
σ , with 1 ≤ i < ℓ,

κ2− σ
i ≤ rℓij ≤ κ2+ σ

i.

Theℓ-th layer is the set of the elements abutting at domain corners (i.e.,rℓij = 0 ⇔
i = ℓ).
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(GM3) The size of an elementΩℓij depends geometrically on its layer indexi: ∃ 0 < κ3− ≤
κ3+ <∞, independent ofσ, ℓ, i andj, such that for allT ℓ

σ ∈ Mσ andΩℓij ∈ T ℓ
σ ,

κ3− σ
i ≤ hℓij ≤ κ3+ σ

i.

(GM4) For ℓ ≥ 2, T ℓ
σ is obtained fromT ℓ−1

σ by only refining the elements in the layer
Lℓ−1
σ,ℓ−1 adjacent to the domain corners, forming two new layersLℓσ,ℓ−1 andLℓσ,ℓ.

Equivalently, the elements ofLℓσ,i are uniquely defined for allℓ ≥ i+ 1:

Lℓσ,i = Lℓ′σ,i ∀i ∈
{
1, 2, . . . ,min(ℓ, ℓ′)− 1

}
; Lℓσ,ℓ =

ℓ′⋃

i=ℓ

Lℓ′σ,i ∀ℓ′ > ℓ ≥ 1.

(5.4)
Note that (GM2) and (GM3) imply that the diameter of an element Ωℓij is proportional to

its distance from the domain corners:

κ3−
κ2+

rℓij ≤ hℓij ≤
κ3+
κ2−

rℓij 1 ≤ i < ℓ, 1 ≤ j ≤ Ĵ(ℓ). (5.5)

Using (GM1) and (GM3), we can control the area|Ωℓij | of each element: for allΩℓij ∈ T ℓ
σ ,

ℓ ∈ N,

(hℓij)
2 ≥ |Ωℓij | ≥

∣∣∣Bρℓij (x
ℓ
ij)

∣∣∣ = π(ρℓij)
2 ≥ π(κ1h

ℓ
ij)

2 ≥ π(κ1κ3−)
2σ2i.

Moreover, (GM2) and (GM3) imply

Ĵ(i)⋃

j=1

Ωℓij ⊆
na⋃

ν=1

(
B max

1≤j≤Ĵ(i)
(rℓij+h

ℓ
ij)

(cν)

)
⊆

na⋃

ν=1

(
B(κ2++κ3+)σi(cν)

)
1 ≤ i ≤ ℓ,

from which
∣∣∣
⋃Ĵ(i)
j=1 Ω

ℓ
ij

∣∣∣ ≤ naπ(κ2+ + κ3+)
2σ2i. Therefore, the number of elements per

layer is uniformly bounded ini:

Ĵ(i) ≤

∣∣∣
⋃Ĵ(i)
j=1 Ω

ℓ
ij

∣∣∣
min1≤j≤Ĵ(i) |Ωℓij |

≤ na

(κ2+ + κ3+
κ1κ3−

)2

=: J∗(Mσ) 1 ≤ i ≤ ℓ, ℓ ∈ N. (5.6)

5.2.2. hp-subspaces on Mσ . For a positive integerp, letPp(D) be the space of bivariate
real polynomials of degree at mostp on a domainD ⊂ R2. Define the spacesSp(T ℓ

σ ) of
discontinuous, piecewise polynomial functions of total degree at mostp onT ℓ

σ :

Sp(T ℓ
σ ) :=

{
v ∈ L2(Ω) : v

∣∣
Ωℓ

ij

∈ Pp(Ωℓij) for every Ωℓij ∈ T ℓ
σ

}
, (5.7)

and its subspace of discontinuous, piecewise harmonic polynomials (i.e., the Trefftz sub-
space):

Sp,∆(T ℓ
σ ) :=

{
v ∈ Sp(T ℓ

σ ) : ∆
(
v|Ωℓ

ij

)
= 0 for every Ωℓij ∈ T ℓ

σ

}
. (5.8)

For the sake of simplicity, we confine ourselves to the case where the same polynomial degree
is used in every element of the mesh; the results below can be extended to more sophisticated
degree distributions. For example, in the elements adjacent to the domain corners, the use
of linear polynomials on triangles and bilinear polynomials on parallelograms preserves the
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exponential convergence. Thus, if quadrilateral elementsare used near the domain corners,
we will choosep ≥ 2 in order to include bilinear functions in the trial space. Polynomial
degrees linearly decreasing with the layer index will also give the same convergence.

LEMMA 5.2. If the familyMσ satisfies Assumption5.1, for all p, ℓ ≥ 1, we have

dim
(
Sp(T ℓ

σ )
)
≤ J∗(Mσ)

(p+ 1)(p+ 2)ℓ

2
= O(p2ℓ),

dim
(
Sp,∆(T ℓ

σ )
)
≤ J∗(Mσ) (2p+ 1)ℓ = O(pℓ),

whereJ∗(Mσ) is defined in(5.6) and is independent ofℓ andp.
Proof. The meshT ℓ

σ has at mostJ∗(Mσ) elements in each layerLℓσ,i, 1 ≤ i ≤ ℓ,
therefore at mostℓJ∗(Mσ) elements in total. Thus,dim(Pp(Ωℓij)) = (p + 1)(p + 2)/2 and
dim(Pp(Ωℓij) ∩ {v : ∆v = 0}) = 2p+ 1 imply the assertion.

5.2.3. hp-dGFEM. We consider both thesymmetric interior penalty(SIP) and thenon
symmetric interior penalty(NIP) methods introduced, respectively, in [10], [6], and in [7],
[32] (see [1] for a survey of interior penalty and other dGFEM for elliptic problems).

For a given meshT ℓ
σ ∈ Mσ onΩ, let Vp(T ℓ

σ ) be either of the subspaces defined in (5.7)
and (5.8). For simplicity, we denote here byK a generic element ofT ℓ

σ , instead of using the
more detailed notationΩℓij . Let Eint be the set the interior edges ofT ℓ

σ , i.e., the intersections
between two elements ofT ℓ

σ that have positive 1-dimensional measure; moreover, letED be
the set of the edges ofT ℓ

σ lying onΓ[0], and setEint,D := Eint ∪ ED. For a piecewise smooth
functionv, we define jumps and averages across the edgese ∈ Eint,D:

{{v}}|e : =
v|K + v|K′

2
, [[v]]|e := v|KnK + v|K′nK′ e ∈ K ∩K ′

, K,K ′ ∈ T ℓ
σ ,

{{v}}|e : = [[v]]|e := v|e e ⊆ Γ[0],

wherenK is the outgoing unit normal on∂K. We sethK := diam(K) and define the
meshwidth functionh : Eint,D → R ash(x) := min{hK : x ∈ K ∈ T ℓ

σ }.
Forθ ∈ {1,−1} andv, w ∈ Vp(T ℓ

σ ), define the two bilinear forms and linear functionals

BθT (v, w) :=
∑

K∈T ℓ
σ

∫

K

∇v · ∇w dx

+
∑

e∈Eint,D

∫

e

(
− {{∇v}} · [[w]] + θ[[v]] · {{∇w}}+ a[[v]] · [[w]]

)
ds,

LθT (w) :=

∫

Γ[1]

g[1]w ds+ θ

∫

Γ[0]

g[0] γ[1]w ds+

∫

Γ[0]

a g[0] w ds.

Here,a is the discontinuity stabilisation function given bya(x) := α p2/h(x), whereα > 0
is a parameter independent ofh andp.

Fixing θ ∈ {1,−1}, thehp-dGFEM reads: finduθp ∈ Vp(T ℓ
σ ) such that

BθT (u
θ
p, vp) = LθT (vp) ∀vp ∈ Vp(T ℓ

σ ). (5.9)

The method defined in (5.9) is SIP, forθ = −1, and NIP, forθ = 1.
We recall the following result from [37], where the mesh-dependent norm‖ · ‖2dG is

defined by

‖w‖2dG :=
∑

K∈T ℓ
σ

‖∇w‖2L2(K) +
∑

e∈Eint,D

∥∥√
a [[w]]

∥∥2
L2(e)

w ∈ Vp(T ℓ
σ ).
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PROPOSITION5.3. [37, Theorem 2.3.7, Corollary 2.4.2] Letβ ∈ (0, 1)na be such that
the analytical solutionu to (5.1) belongs toC2

β(Ω). If either θ = 1 andα is positive, or

θ = −1 andα is sufficiently large, then thehp-dGFEM (5.9) admits a unique solution.
Moreover, letπT : H2,2

β (Ω) → Vp(T ℓ
σ ) be an arbitrary operator such that, for every

elementK ∈ T ℓ
σ , there exist at least two zeros ofη := u − πT u in K. For θ = ±1 (with

sufficiently largeα, if θ = −1), it holds

‖u− uθh‖2dG (5.10)

≤ C p2
{ ∑

K∈T ℓ
σ

|η|2H1(K) +
∑

K∈T ℓ
σ \Kℓ

σ

h2K |η|2H2(K) +
∑

K∈Kℓ
σ

h
2(1−β[K])

K |η|2H2,2
β

(K)

}

whereC > 0 is independent ofσ, ℓ andp. Here,Kℓσ := Lℓσ,ℓ ⊆ T ℓ
σ designates the set of

elements abutting at domain corners and, for anyK ∈ Kℓσ, β[K] := sup{βν : cν ∈ ∂K}.

5.3. Exponential convergence of hp-dGFEM. We apply the approximation estimates
proved in Section4.2 to establish exponential convergence of thehp-dGFEM scheme. We
begin with the following lemma, which puts in relation the domain of analyticity ofu and the
geometric meshMσ.

LEMMA 5.4. Let Mσ be a family of geometric meshesT ℓ
σ on Ω satisfying Assump-

tion 5.1, and letu be the solution of the BVP(5.1) onΩ. Then, there existsδ∗ > 0 depending
onu (only throughdu in (5.2)), σ andMσ, such thatu is analytic inΩℓij + Bδ∗hℓ

ij
= {x ∈

R2 : d(x,Ωℓij) < δ∗h
ℓ
ij} for all Ωℓij ∈ T ℓ

σ \ Kℓσ, T ℓ
σ ∈ Mσ.

Proof. We define the domain parameter

EΩ := min

{
1, min

1≤ν 6=ν′≤na

|cν − cν′ |
2

}
,

which depends only on the position of the corners ofΩ, and consider an arbitrary element
Ωℓij ∈ T ℓ

σ \ Kℓσ.

First, we consider the caseΩℓij ⊆ BEΩ
(cν′) for someν′ ∈ {1, . . . , na}. Fix x ∈ Ωℓij ;

by the triangular inequality|x − cν | ≥ |cν − cν′ | − |x − cν′ | ≥ EΩ, for all ν 6= ν′. The
definition ofΦ and the bound (5.5) give

Φ(x) =

na∏

ν=1

max{1, |x−cν |} ≥ |x−cν′ |Ena−1
Ω ≥ rℓijE

na−1
Ω ≥ hℓij

κ2−
κ3+

Ena−1
Ω ∀x ∈ Ωℓij .

This, together with the definition of the domain of analyticity N (u) in (5.3) and of the pa-
rameterdu in (5.2), implies that

d
(
Ωℓij , ∂N (u)

)

hℓij
≥

inf
x∈Ωℓ

ij
Φ(x)

2du hℓij
≥ κ2−E

na−1
Ω

2du κ3+
=: δ1.

Now consider the case whenΩℓij * BEΩ
(cν) for anyν ∈ {1, . . . , na}. Fix x ∈ Ωℓij such

that|x− cν | ≥ EΩ for everyν ∈ {1, . . . , na}. Thus, by (GM2) and (GM3),

EΩ ≤ inf
1≤ν≤na

|x− cν | ≤ rℓij + hℓij ≤ (κ2+ + κ3+)σ
i ⇒ i ≤

⌈
log EΩ

κ2++κ3+

log σ

⌉
=: i∗,
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i.e., Ωℓij belongs to one of the firsti∗ layers. The elements in firsti∗ layers are uniquely
defined in all the meshes with at leasti∗ + 1 layers, see (5.4). Thus we can define

δ2 := min
i,j,ℓ∈N

i≤i∗, i<ℓ, 1≤j≤Ĵ(i)

d
(
Ωℓij , ∂N (u)

)

hℓij
,

which is strictly positive since it is the minimum of a finite number of positive values, al-
thoughℓ can take any value inN.

Therefore, ifδ∗ := min{δ1, δ2}, for any elementΩℓij ∈ T ℓ
σ \ Kℓσ, for anyT ℓ

σ ∈ Mσ, the
solutionu is analytic inΩℓij + Bδ∗hℓ

ij
. Note thatδ∗ depends onu through the parameterdu,

onσ throughi∗, but is independent ofi, j andℓ.
THEOREM 5.5. Consider the solutionu ∈ C2

β(Ω) of the Laplace mixed BVP(5.1) and

its approximationuθp ∈ Vp(T ℓ
σ ) := Sp,∆(T ℓ

σ ) computed with the Trefftzhp-dGFEM (5.9)
(with α > 0, if θ = 1, or α sufficiently large, ifθ = −1) on a familyMσ of geometric
meshesT ℓ

σ satisfying Assumption5.1. Assume uniform polynomial degreep = ℓ and define
N := dim(Vp(T ℓ

σ )). Then,uθp converges exponentially tou: there existb, C > 0 (depending
onu, Ω, σ andMσ, but independent ofp = ℓ) such that

‖u− uθp‖dG ≤ C exp(−b
√
N).

Proof. SinceN = O(pℓ) by Lemma5.2 andp = ℓ, we have to prove‖u− uh‖h ≤
Ce−bℓ. Thanks to Proposition5.3, we only need to define an operatorπT : H2,2

β (Ω) →
Vp(T ℓ

σ ) with suitable approximation and interpolation properties. We treat separately the
elementsΩℓℓj adjacent to a domain corner (Ωℓℓj ∈ Kℓσ) and the remaining ones (Ωℓij with
1 ≤ i ≤ ℓ− 1).

In the elementsΩℓℓj ∈ Kℓσ, we defineπT (u) as the (piecewise) linear or bilinear in-
terpolant ofu at the vertices ofΩℓℓj , if Ωℓℓj is a triangle or a parallelogram, respectively.
Then,πT (u) is obviously harmonic. Using [33, Lemma 4.16, Lemma 4.25] (see also [37,
Lemma 2.5.2]), and taking into account (GM3) withi = ℓ, the contribution of the elements
Ωℓℓj ∈ Kℓσ to the right-hand side of (5.10) has exponential order of convergence inp = ℓ (for
someb ≥ (1−maxν βν)(− log σ)).

Consider now the elementsΩℓij ∈ T ℓ
σ \ Kℓσ. For anyΩℓij ∈ T ℓ

σ \ Kℓσ, due to Lemma5.4,
the solutionu is analytic inΩℓij + Bδ∗hℓ

ij
, for someδ∗ independent ofi, j andℓ. Define the

corresponding scaled elementD := Ω̂ℓij := {x̂ := (x − x
ℓ
ij)/h

ℓ
ij ∈ R2 : x ∈ Ωℓij} and the

scaled solution̂u(x̂) := u(hℓij x̂ + x
ℓ
ij). The scaled element satisfies Assumption1.1 with

ρ = ρℓij/h
ℓ
ij ≥ κ1 and for any0 < ρ0 < ρ, due to (GM1) and the convexity ofΩℓij . The

domain of analyticity of̂u is dilated in the same way, therefore the hypothesis of Corollary
4.11are verified withδ = δ∗. Thus, there exists a harmonic polynomialQ̂p of degree at most
p such that

∣∣∣û− Q̂p

∣∣∣
Hm(Ω̂ℓ

ij)
≤ Ce−bp m = 0, 1, 2,

for some constantsC andb > 0 depending only onκ1, δ∗ (which, again, depends onMσ, σ
andu, throughdu) and‖û‖W 1,∞(N̂ (u)) (which, again, depends only onu andΩ). We scale

Q̂p back toΩℓij and define the local interpolant as

(
πT u(x)

)
|Ωℓ

ij
:= Q̂p

(
(x− x

ℓ
ij)/h

ℓ
ij

)
.
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Remark4.13guarantees that the interpolation is exact in at leastp+1 points on the boundary
of Ωℓij . From the usual scaling of Sobolev seminorms|·|Hk(Ωℓ

ij)
≤ C(hℓij)

1−k |·|Hk(Ω̂ℓ
ij)

, we

obtain
∑

1≤i≤ℓ−1, 1≤j≤Ĵ(i)

(
|η|2H1(Ωℓ

ij)
+ (hℓij)

2 |η|2H2(Ωℓ
ij)

)
≤ Cℓe−bℓ,

with C andb depending only onu, σ, Ω andMσ. Here we used the fact that the number of
elements inT ℓ

σ isO(ℓ), as proved in Lemma5.2.
The assertion is then obtained by combining the last bound with the one previously ob-

tained for the elements incident to the corners, usingℓ = O(
√
N), and noting thatπT (u)

interpolatesu at least in two points per element, thus Proposition5.3 applies, and thehp-
dGFEM error is bounded by the approximation error.

REMARK 5.6. In standard FEM convergence analysis, approximation estimates are
derived only forfew reference elements, which are then mapped to the “physical” mesh el-
ements. For Trefftz schemes this is usually not possible: spaces made of harmonic functions
(or harmonic polynomials) are not invariant under general affine mappings but only under
similarity transformations, thus estimates that areuniform for every element shapemust be
proven, up to scaling and isometry only. This is one of the reasons for deriving the approx-
imation estimates of Section4.2; however, they hold in much more generality than what we
used in thehp-dGFEM analysis (i.e., for star-shaped elements instead oftriangles and paral-
lelograms). The explicit dependence on the geometry, only throughρ andρ0, shows that these
bounds are uniform for all the elements of a shape-regular family of meshes. The obstruction
to extending the results of Theorem5.5 to more general (e.g., curvilinear) geometries is not
due to the new approximation estimates, but only to the limitations of the existing theory on
quasi-optimality of dGFEM solutions.

Acknowledgment. The authors wish to thank D.P. Hewett for inspiring discussions con-
cerning the proof in AppendixB.2.

Appendix A. Uniform cone conditions. We prove the following uniform cone condi-
tions which guarantee that a domainD satisfying Assumption1.1is Lipschitz, thanks to [16,
Theorem 1.2.2.2], and give a precise bound on the size of the corner of star-shaped polygons
(see RemarkA.2).

LEMMA A.1. LetD ⊂ C be a simply connected domain such that
i) there existsρ1 > 0 such thatBρ1  D andD is star-shaped with respect toBρ1 ;

ii) there exists0 < ρ1 < ρ2 such thatD ⊆ Bρ2 .
ThenD satisfies the following cone conditions: there existΛ, λ ∈ (0, 1] satisfying

min{Λ, λ} ≥ 2

π
arcsin

ρ1
ρ2

=: θ,

such that, for anyw ∈ ∂D,
a) ∃ cone with vertexw, openingΛπ and heightH0 := min{ρ2 − ρ1, ρ1} contained

in D,
b) ∃ infinite cone with vertexw and openingλπ contained inC \D.

Proof. We prove separately the two statements.
a) For everyw ∈ ∂D, we want to construct a coneCw(θπ,H0) with vertex inw, height

H0, and openingθπ, which is contained inD. We consider four different situations, depicted
in FigureA.1.

a1) If 2ρ1 ≤ ρ2 and2ρ1 ≤ |w| ≤ ρ2, the star-shapedness with respect toBρ1 implies
that there is a cone of vertexw and sides tangent toBρ1 which is contained inD; this cone
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has openingθwπ, with θw :=
2

π
arcsin

ρ1
|w| ≥ θ, and heightH ≥ |w| − ρ1 ≥ 2ρ1 − ρ1 = ρ1,

thus it contains a coneCw(θπ,H0).

a2) If |w| = ρ1 andρ2 < 2ρ1, thenπ3 < θπ ≤ π and there is a cone with vertexw and
openingθπ inscribed inBρ1 , with heightH equal to:

H = ρ1 − ρ1 cos(π − θπ) = ρ1(1 + cos θπ) = ρ1

(
1 + cos 2 arcsin

ρ1
ρ2

)

= ρ1

(
1 + 1− 2

ρ21
ρ22

)
=

2ρ1
ρ22

(ρ22 − ρ21) =
2ρ1
ρ22

(ρ2 + ρ1)(ρ2 − ρ1)

ρ1<ρ2<2ρ1
≥

(
1 +

ρ1
ρ2

)
(ρ2 − ρ1) ≥

3

2
(ρ2 − ρ1) > H0.

a3) If |w| = ρ1 and2ρ1 ≤ ρ2, thenθπ ≤ π
3 , so a coneCw(θπ,H0) is contained within

the equilateral triangleT ⊂ Bρ1 with vertex inw and heightH = 3
2ρ1 > H0.

a4) If ρ1 < |w| ≤ min{2ρ1, ρ2}, then there is a coneC0 of vertexw, sides tangent
to Bρ1 and heightH > 0, which is contained inD and has openingθwπ, as ina1). As in
partsa2)–a3), we can construct a coneC∗ ⊂ Bρ1 with vertexw∗ := ρ1

|w|w, openingθπ and

heightH ≥ 3
2 min{ρ1, ρ2 − ρ1}. Then, sinceθ ≤ θw, the translation of vectorw − w∗ of

the coneC∗ is a cone with vertexw, openingθπ and heightH ≥ H0, which is contained in
C0 ∪Bρ1 ⊂ D.

0

00

θπ

θπ

θπ
θπ

θwπ

θwπ

w

w

ρ1

≥ ρ1

H

T

w∗

C∗

C0

2ρ1

2ρ1

w = ρ1

w = ρ1

3
2ρ1

a1) a2)

a3) a4)

FIG. A.1. The four cases in the proof of part a) of LemmaA.1. The shaded triangles represent the cones
Cw(θπ,H), withH ≥ H0. In these examples we have chosenargw = 0.

b) The star-shapedness with respect toBρ1 implies that, for anyw ∈ ∂D, there is an

infinite cone of vertexw and angleθwπ, with θw :=
2

π
arcsin

ρ1
|w| ≥ θ, contained inC \D;
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sinceθw ≥ θ, we have the second (exterior) cone condition.
REMARK A.2. If D is a polygon with interior angles{αkπ}Nk=1 and satisfies the hy-

pothesis of LemmaA.1, then

2

π
arcsin

ρ1
ρ2

≤ αk ≤ 2− 2

π
arcsin

ρ1
ρ2

k = 1, . . . , N.

Appendix B. Proof of the upper bound (3.2) for non convex domains. We consider
first the case of polygonal domains (with straight sides) in SectionB.1, then we extend the
result to more general curvilinear domains in SectionB.2. We recall that we are assuming
0 < h ≤ 1.

B.1. Polygonal domains. Denote by{αCk π}nC

k=1 and{αNCk π}nNC

k=1 the convex and non
convex internal angles, respectively, ofD, by {wCk }nC

k=1 and{wNCk }nNC

k=1 the corresponding
vertices and set

zCk = ϕ−1(wCk ) k = 1, . . . , nC ,

zNCk = ϕ−1(wNCk ) k = 1, . . . , nNC .

The following relations hold (see FigureB.1 for the geometrical meaning of the parameters):

0 ≤ αCk ≤ 1, 0 ≤ βCk := 1− αCk ≤ 1 k = 1, . . . , nC ,

1 < αNCk ≤ 2, −1 ≤ βNCk := 1− αNCk < 0 k = 1, . . . , nNC ,
nC∑

k=1

βCk +

nNC∑

k=1

βNCk = 2.

Recalling the definition ofξ whenD is non convex:

ξ =
2

π
arcsin

ρ0
1− ρ

,

from Assumption1.1and RemarkA.2 we have

αCk ≥ ξ, βCk ≤ 1− ξ k = 1, . . . , nC ,

2− αNCk ≥ ξ, βNCk ≥ ξ − 1 k = 1, . . . , nNC .

One of the crucial ideas of this proof is the fact that the sum of the βk ’s corresponding
to an arbitrary setV of consecutivevertices of a polygonP ⊂ B1−ρ, which is star-shaped
with respect toBρ0 , satisfies the inequalitiesξ − 1 ≤ ∑

k∈V βk ≤ 1− ξ. It will be therefore
necessary to take into account the ordering of the vertices along the polygon.

As in section3.2, fix wh ∈ Lh and setzh = ϕ−1(wh) ∈ ∂B1+h; thuszh = (1 + h)eiθ,
for someθ ∈ [−π, π]. Definez = eiθ, w = ϕ(z), and denote byS the (straight) segment of
lengthh connectingz andzh. From (2.5) and (2.4) we have

|wh − w| = |ϕ(zh)− ϕ(z)| ≤
∫

S

|ϕ′(y)| dy

≤ ϕ′(∞)

∫

S

1

|y|2
nC∏

k=1

∣∣y − zCk
∣∣1−αC

k

nNC∏

k=1

∣∣y − zNCk
∣∣1−αNC

k dy

≤
∫

S

nC∏

k=1

∣∣y − zCk
∣∣βC

k

nNC∏

k=1

∣∣y − zNCk
∣∣βNC

k dy =: T,

(B.1)
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α1π

−β1π

α2π

β2π

α3π
β3π

α4π−β4π
α5π

β5π

α6π−β6π −β∗π
(1 + β∗)π

D

Dc

∂D

FIG. B.1. The geometrical meaning of the parametersαk ’s andβk ’s. Theαk ’s are all positive, while the
βk ’s are positive only on convex corners:β1, β4, β6 < 0 < β2, β3, β5. The angle between the first and the last
segment can be computed by summing over theβk ’s, i.e.,β∗ :=

∑6
k=1 βk. In this exampleβ∗ is negative since the

corresponding internal angle is non convex.

sinceϕ′(∞) < 1 and|y| ≥ 1. Finally, for anyy ∈ S,
∣∣y − zCk

∣∣ ≤ 2 + h k = 1, . . . , nC ,∣∣y − zNCk
∣∣ ≤ 2 + h k = 1, . . . , nNC .

With no loss of generality, we considerθ = 0, i.e., z = 1, zh = 1 + h andS lies in the
positive real axis.

We consider separately four situations.
i) D has only one non convex angle.In this case, the termT in (B.1) can be bounded

by

T ≤ (2 + h)
∑

k β
C
k

∫

S

∣∣y − zNC1

∣∣βNC
1 dy ≤ 27

∫

S

∣∣y − zNC1

∣∣βNC
1 dy,

sinceh ≤ 1 and
∑
k β

C
k ≤ 3, due to

∑
k β

C
k + βNC1 = 2 andβNC1 ≥ −1.

SinceβNC1 < 0 and
∣∣y − zNC1

∣∣ ≥ |y − 1| for all y ∈ S, we have

T ≤ 27

∫

S

|y − 1|β
NC
1 dy = 27

∫ h

0

sβ
NC
1 ds = 27

hβ
NC
1 +1

βNC1 + 1
≤ 27hξ

ξ
,

becauseβNC1 > −1, h ≤ 1 andβNC1 + 1 ≥ ξ.
ii) D has only two non convex angles, and these angles are non consecutive.Assume

∣∣1− zNC1

∣∣ ≤
∣∣1− zNC2

∣∣ .

The pointszNC1 andzNC2 separate the points in{zCk }nC

k=1 into two blocks,{zCj,1}
nC,1

j=1

and{zCj,2}
nC,2

j=1 . We set

nfar,1 = argmax
j=1,...nC,1

∣∣1− zCj,1
∣∣ , nfar,2 = argmax

j=1,...nC,2

∣∣1− zCj,2
∣∣ .

and assume
∣∣∣1− zCnfar,1

∣∣∣ ≤
∣∣∣1− zCnfar,2

∣∣∣ ;
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consequently, as can be inferred from FigureB.2,
∣∣∣1− zCnfar,1

∣∣∣ ≤
∣∣1− zNC2

∣∣ . (B.2)

1

zNC2

zNC1

zC3,1

. . .
. . .zCnC,1−1,1

zCnfar,1
= zCnC,1,1

zCnfar,2
= zC1,2

zC1,2

. . .

zCnC,2,2

zC1,1

zC2,1

FIG. B.2. The location of the pre-verticeszk ’s in case ii) with two non consecutive non convex corners. The

four dashed segments have lengthsmax
{

∣

∣1− zNC
1

∣

∣ ;
∣

∣

∣
1− zCnfar,1

∣

∣

∣

}

≤ min
{

∣

∣1− zNC
2

∣

∣ ;
∣

∣

∣
1− zCnfar,2

∣

∣

∣

}

.

We have

T =

∫

S

∣∣y − zNC1

∣∣βNC
1

∣∣y − zNC2

∣∣βNC
2

nC,1∏

j=1

∣∣y − zCj,1
∣∣βC

j,1

nC,2∏

j=1

∣∣y − zCj,2
∣∣βC

j,2 dy

≤
∫

S

∣∣y − zNC1

∣∣βNC
1

∣∣y − zNC2

∣∣βNC
2

∣∣∣y − zCnfar,1

∣∣∣
∑

j β
C
j,1

∣∣∣y − zCnfar,2

∣∣∣
∑

j β
C
j,2

dy

(B.2), βC
j,1≥0

≤
∫

S

∣∣y − zNC1

∣∣βNC
1

∣∣y − zNC2

∣∣βNC
2 +

∑
j β

C
j,1

∣∣∣y − zCnfar,2

∣∣∣
∑

j β
C
j,2

dy.

a) If βNC2 +
∑
j β

C
j,1 ≥ 0,

T ≤ (2 + h)2−β
NC
1

∫

S

∣∣y − zNC1

∣∣βNC
1 dy ≤ 27

hβ
NC
1 +1

βNC1 + 1
≤ 27hξ

ξ
.

b) If βNC2 +
∑
j β

C
j,1 < 0, we write

T ≤ (2 + h)
∑

j β
C
j,2

∫

S

∣∣y − zNC1

∣∣βNC
1 +βNC

2 +
∑

j β
C
j,1 dy.

If we prove that

β∗ := βNC1 + βNC2 +
∑

j

βCj,1 ≥ ξ − 1, (B.3)

then
∑
j β

C
j,2 = 2− β∗ < 3, from which

T ≤ 27

∫

S

∣∣y − zNC1

∣∣β∗

dy ≤ 27hξ

ξ
. (B.4)

23



In order to conclude, we only need to prove (B.3).
Consider the counterclockwise oriented part of∂D formed by the consecutive
(oriented) sidessi, i = 1, . . . ,m := nC,1 + 3, abuttingwNC1 , wCj,1, j =

1, . . . , nC,1, andwNC2 . Let ℓi be the oriented line containingsi, i = 1, . . . ,m.
SinceD is star-shaped with respect toBρ0 , thenBρ0 lies in the intersection of
the half planes lying on the left of theℓi’s.
LetK be the infinite cone obtained by intersecting the right half planes gener-
ated byℓ1 andℓm. Its opening is(1 + β∗)π < π, with β∗ < 0 (cf. FiguresB.1
andB.3).
DefineD′ := D \K; D′ only has one non convex angle of internal amplitude
(1 − β∗)π. The ballBρ0 lies on the left side of every edge ofD′, thus this
domain is star-shaped with respect toBρ0 andD′ ⊂ Bρ, by RemarkA.2 we
have1 + β∗ ≥ ξ (cf. FigureB.3). Therefore,

β∗ ≥ ξ − 1 > −1,

which concludes the argument.

s1

s2

s3
s4

s5

s6
wNC1

wNC2

wC1,1

wC2,1

wC3,1

wC1,2

wC2,2

wC3,2

wC4,2

ℓ1

ℓ6

D

K

−β∗π

Bρ0

FIG. B.3. An example of a domainD with two non consecutive, non convex corners (wNC
1 andwNC

1 ). In this
casenC,1 = 3, nC,2 = 4 andm = 6. The coneK is delimited by the dashed linesℓ1 andℓ6. The ballBρ0 lies on
the left of every edge when∂D is run counterclockwise. The setD′ = D \K is star-shaped with respect toBρ0 .

iii) D has only two non convex angles, and these angles are consecutive. We have

T ≤ (2 + h)
∑

j β
C
j

∫

S

∣∣y − zNC1

∣∣βNC
1 +βNC

2 dy,

assuming again
∣∣1− zNC1

∣∣ ≤
∣∣1− zNC2

∣∣. If we prove that

β∗ := βNC1 + βNC2 ≥ ξ − 1 > −1, (B.5)

then
∑
j β

C
j = 2− β∗ < 3, from which we get again (B.4).

For the proof of (B.5), consider the part of∂D formed by them = 3 consecutive
sides abuttingwNC1 andwNC2 ; the rest of the proof is identical to that of (B.3).

iv) D has more than two non convex angles.We generalise the argument of stepii) .
Assume that we haven blocks of consecutive convex angles, alternated byn blocks
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of consecutive convex angles. With a similar notation as before, we can write

T ≤
∫

S

n∏

i=1

[ nNC,i∏

j=1

∣∣y − zNCj,i
∣∣βNC

j,i

nC,i∏

j=1

∣∣y − zCj,i
∣∣βC

j,i

]
dy.

Setting, fori = 1, . . . , n,

nfar,i = argmax
j=1,...nC,i

∣∣1− zCj,i
∣∣ , nnear,i = argmin

j=1,...nNC,i

∣∣1− zNCj,i
∣∣ ,

we can boundT as

T ≤
∫

S

n∏

i=1

[ ∣∣y − zNCnear,i

∣∣
∑

j β
NC
j,i

∣∣y − zCfar,i
∣∣
∑

j β
C
j,i

]
dy =:

∫

S

P (y) dy.

We order the blocks in such a way that
∣∣1− zNCnear,i

∣∣ ≤
∣∣1− zNCnear,i+1

∣∣ i = 1, . . . , n− 1,
∣∣1− zCfar,i

∣∣ ≤
∣∣1− zCfar,i+1

∣∣ i = 1, . . . , n− 1;

consequently (see FigureB.4),
∣∣1− zCfar,i

∣∣ ≤
∣∣1− zNCnear,i+1

∣∣ i = 1, . . . , n− 1. (B.6)

Thus, we have

P (y) ≤
∣∣y − zNCnear,1

∣∣
∑

j β
NC
j,i

[ n−1∏

i=1

∣∣y − zNCnear,i+1

∣∣
∑

j β
C
j,i+

∑
j β

NC
j,i+1

]
(2 + h)

∑
j β

C
j,n .

1

zCfar,1

zCfar,2

zCfar,3

zCfar,4

zCfar,5

zCfar,6

zNCnear,1

zNCnear,2

zNCnear,3

zNCnear,4

zNCnear,5

zNCnear,6

FIG. B.4. The pre-verticesz·
k

satisfy the ordering relation(B.6). Notice thatzNC
near,1 andzC

far,n
(in the picture

n = 6) do not enter the relation. Therefore it is not relevant which one betweenzC
far,1

andzNC
near,1 is closest to1.

The number of pre-vertices lying in the upper and in the lowerhalf of the complex plane does not affect the ordering
of the distances.

We consider the term with indexn − 1 in the product and look at its exponent
(
∑
j β

C
j,n−1 +

∑
j β

NC
j,n );
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a) if it is ≥ 0, we combine the term with indexn− 1 with the following term (the
last one) and obtain

P (y) ≤
∣∣y − zNCnear,1

∣∣
∑

j β
NC
j,1

[ n−2∏

i=1

∣∣y − zNCnear,i+1

∣∣
∑

j β
C
j,i+

∑
j β

NC
j,i+1

]

· (2 + h)
∑

j β
C
j,n−1+

∑
j β

NC
j,n +

∑
j β

C
j,n ;

b) if it is < 0, we combine the term with indexn− 1 with the previous term (the
one with indexn− 2) and obtain

P (y) ≤
∣∣y − zNCnear,1

∣∣
∑

j β
NC
j,1

[ n−3∏

i=1

∣∣y − zNCnear,i+1

∣∣
∑

j β
C
j,i+

∑
j β

NC
j,i+1

]

·
∣∣y − zNCnear,n−1

∣∣
∑

j β
C
j,n−2+

∑
j β

NC
j,n−1+

∑
j β

C
j,n−1+

∑
j β

NC
j,n (2 + h)

∑
j β

C
j,n .

Then, we proceed backward, considering the term of with index i = n − 2 and,
depending on whether its exponent is≥ 0 or < 0, we combine it either with the
following term or with the previous term the way we did before, and so on, until the
term i = 1. We end up with three factors in the upper bound ofP (y): the first one

is
∣∣y − zNCnear,1

∣∣
∑

j β
NC
j,1 , the third one is(2 + h)B , with B > 0, and the second one

is
∣∣y − zNCnear,2

∣∣A. If A ≥ 0, we conclude as in stepii) , casea), while if A < 0, in
order to conclude as in stepii) , caseb), we need to prove that

β∗ :=
∑

j

βNCj,1 +A ≥ ξ − 1 > −1. (B.7)

Since the blocks of (convex an non convex) angles corresponding to theβ’s entering
the expressionβNCj,1 +A are consecutive, the proof of (B.7) can be carried out as the
proof of (B.3).

The proof in the polygonal case is complete.

B.2. Domains with non-polygonal boundaries. We begin with the following trigono-
metric lemma.

LEMMA B.1. Let 0 < R1 < R2 < +∞, and fix two distinct straight linesℓ1 and ℓ2
that are tangent toBR1

in the two pointsy1 and y2 (y1 6= y2), respectively. We denote by
x1 the intersection between the circle∂BR2

and the lineℓ1 such that, in a counterclockwise
orientation,x1, y1 and0 appear with this ordering as vertices of a triangle. Symmetrically,
we denote byx2 the intersection between the circle∂BR2

and the lineℓ2 such that, in a
clockwise orientation,x2, y2 and0 appear with this ordering. We denote byCη the infinite
convex sector with openingηπ, 0 ≤ η ≤ 1, defined by the two half lines generating at the
origin and passing throughx1 andx2, respectively (see FigureB.5).

If η < 2
π arcsin R1

R2
, thenℓ1 andℓ2 intersect at a pointw that lies in the interior ofCη.

Moreover, if|w| > R2 and if we defineε := |w − x1| = |w − x2| > 0, η is related toε,R1

andR2 by the following formula:

0 < η(ε,R1, R2) =
2

π
arccos

R2
2 + ε

√
R2

2 −R2
1

R2

√
ε2 +R2

2 + 2ε
√
R2

2 −R2
1

<
2

π
arcsin

R1

R2
. (B.8)

For ε > 0, the functionε 7→ η(ε,R1, R2) is continuous and strictly increasing. ForR2 > R1,
the functionR2 7→ η(ε,R1, R2) is continuous and strictly decreasing.
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0

R1

R2

x1

x2

y1

y2

ℓ1

ℓ2

ε

ηπ

Cη

w

FIG. B.5. The geometric configuration in LemmaB.1.

Proof. We consider the limit caseη = 2
π arcsin R1

R2
< 1. Then,R2 sin

ηπ
2 = R1 and, as

depicted in FigureB.6, the linesℓ1 andℓ2 are parallel to each other. Therefore, wheneverη
is smaller than this threshold value,ℓ1 andℓ2 will intersect on the central half line ofCη.

We apply Pythagoras’s theorem twice: to the triangle of verticesx1, y1 and0, yielding
|x1 − y1|2 = R2

2 −R2
1, and then to the triangle of verticesw, y1 and0, leading to

|w|2 = R2
1 +

(
ε+

√
R2

2 −R2
1

)2

= ε2 +R2
2 + 2ε

√
R2

2 −R2
1.

From the law of cosines applied to the triangle of verticesw, x1 and0, we obtain

2|w|R2 cos
ηπ

2
= |w|2 +R2

2 − ε2

from which the identity in the assertion follows.
The monotonicity in dependence ofε andR2 can be verified by computing the derivative

of the expression in (B.8). The last inequality in the assertion follows from

η(ε,R1, R2) < lim
ε→∞

η(ε,R1, R2) =
2

π
arccos

√
1− R2

1

R2
2

=
2

π
arcsin

R1

R2

which uses the monotonicity ofη as a function ofε, and the identitysin arccos
√
1− t2 = |t|.

We can now complete the proof of the bound (3.2) in the general case. In order to do that,
we will construct a polygonPε ⊃ D, which is star-shaped with respect toBρ0 . The maximal
distancesupw∈∂Pε

d(w, ∂D) will be made arbitrarily small, and the parameterξ (defined in
Theorem3.1) relative toPε will converge to the one relative toD. Then, invoking the result
of SectionB.1 completes the proof in the case of non-polygonal domains.

Consider a domainD satisfying Assumption1.1. Fix ε > 0. Define an integerN ∈ N
such that

ηε :=
2

N
≤ η(ε, ρ0, 1− ρ),
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0

R1

R1

R2

x1

x2

y1

y2

ℓ1

ℓ2

ηπ

Cη

FIG. B.6. The limit caseη = 2

π
arcsin R1

R2
in the proof of LemmaB.1.

whereη(·, ·, ·) was defined in formula (B.8). We select the pointswj ∈ ∂D, j = 1, . . . , N ,
that have complex argument (namely, angular polar coordinate) equal toθjπ := jηεπ for
j = 1, . . . , N . (In this proof we assume that all the indicesj are taken modulusN .)

Let ℓ+j andℓ−j be the two tangent (straight) lines toBρ0 passing throughwj and such
that, sitting inwj and looking atBρ0 , ℓ+j is on the left andℓ−j is on the right (notice that the
two lines do not coincide, sinceρ0 < ρ ≤ |wj |), see FigureB.8.

Consider the two linesℓ+j andℓ−j+1. If |wj | = |wj+1|, then they satisfy the assumptions
of LemmaB.1 (sinceR2 7→ 2

π arcsin ρ0
R2

is monotonically decreasing, the definition ofηε
made above guarantees the needed bound for any value ofρ0 ≤ R2 = |wj | ≤ 1 − ρ). Thus
they intersect at a pointvj such that|vj | ≥ |wj | = |wj+1| and whose complex argument
satisfiesθjπ ≤ arg(vj) ≤ θj+1π. Moreover,|vj − wj | = |vj − wj+1| ≤ ε, due to the
monotonicity of the mapη(ε, ρ0, |wj |) 7→ ε.

On the other hand, if|wj | < |wj+1| (the opposite case is analogous), thenvj lies closer
towj+1 than in the previous case (see FigureB.7); therefore, in all the situations, we have

d(vj , ∂D) ≤ min{|vj − wj |, |vj − wj+1|} ≤ ε. (B.9)

Notice that, given|wj+1|, ρ0 andηε, due to the star-shapedness assumption,|wj | can not be
arbitrarily small, namely it can not trespass the point denoted withz in FigureB.7.

0
z

wj

wj+1

w∗
j

vj
v∗j

ρ0

ηε

FIG. B.7. The comparison of the cases|wj | = |wj+1| and |w∗
j | < |wj+1| for a fixedwj+1. In the second

case, the constructed pointv∗j is closer towj+1 than in the first case, namely,|v∗j − wj+1| < |vj − wj+1|.

Notice that every domain which is star-shaped with respect to Bρ0 and such that its
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boundary contains the pointwj (e.g., the domainD satisfies these requests) can not cross the
segments[vj−1, wj ] and[wj , vj ].

0

ρ0

ρ

1− ρ

wj−1

wj

wj+1

wj+2

vj−1

vj

vj+1

ℓ−j

ℓ+j

ℓ−j+1

ℓ+j+1
∂Pε

D ηε

FIG. B.8. The construction of the star-shaped polygonPε enclosing the non-polygonal, non-convex domainD.

Now we define the polygonPε with 2N sides whose vertices arew1, v1, w2, . . . , wN , vN .
Every edge ofPε is part of eitherℓ+j or ℓ−j . The polygonPε satisfies the following conditions:

i) Pε is star-shaped with respect toBρ0 , since the continuation of each of its edges is
tangent toBρ0 and (in a counterclockwise orientation of∂Pε) leavesBρ0 on its left;

ii) D ⊆ Pε, since it containseverydomainD′ that is star-shaped with respect toBρ0
and that satisfies{wj}Nj=1 ⊂ ∂D′;

iii) for everyw ∈ ∂Pε, d(w, ∂D) ≤ ε; in fact, since{wj}Nj=1 ⊂ ∂D, the maximum
distance from∂D is achieved in one of the verticesvj and this is controlled by the
bound (B.9).

Then we can conclude as in the convex case. Fixwh ∈ Lh = Lh[D]. Choose0 < ε < ρ
and define the polygonPε as above (so thatPε ⊂ B1 andϕ′

Pε
(∞) ≤ 1). Then,wh ∈ Lh′ [Pε]

with h′ ≤ h, as a consequence of Lemma2.2. Let zh′ := ϕ−1
Pε

(wh) = (1+h′)eiθ, and define
z := eiθ, ξε := 2

π arcsin ρ0
1−ρ+ε < ξ. Then, from SectionB.1,

d(wh, ∂D) ≤ d
(
wh, ϕPε

(z)
)
+ d

(
ϕPε

(z), ∂D
)
= |ϕPε

(zh′)− ϕPε
(z)|+ d

(
ϕPε

(z), ∂D
)

≤ 27

ξε
hξε + ε.

Since this holds true for every0 < ε < ρ, by taking the limit forε→ 0, we getd(wh, ∂D) ≤
27
ξ h

ξ for all wh ∈ Lh.
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