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APPROXIMATION BY HARMONIC POLYNOMIALSIN STAR-SHAPED
DOMAINS AND EXPONENTIAL CONVERGENCE OF TREFFTZ H P-DGFEM*

R. HIPTMAIRT, A. MOIOLAY, I. PERUGIA!, AND CH. SCHWABT

Abstract. We study the approximation of harmonic functions by means ofmbaic polynomials in two-
dimensional, bounded, star-shaped domains. Assuming th&iribons possess analytic extensions reeigh-
bourhood of the domain, we prove exponential convergendeecdpproximation error with respect to the degree of
the approximating harmonic polynomial. All the constants apipg in the bounds are explicit and depend only on
the shape-regularity of the domain anddn

We apply the obtained estimates to show exponential cormeegeith rateO (exp(—bv/N)), N being the
number of degrees of freedom ald> 0, of ahp-dGFEM discretisation of the Laplace equation based orepiese
harmonic polynomials. This result is an improvement over thesital rateO (exp(—b</N)), and is due to the use
of harmonic polynomial spaceas opposed to complete polynomial spaces.

1. Introduction. We fix a domain that meets the following requirements, seareity 1.
ASSUMPTION1.1. The domainD C C is open and satisfiés

i) diam(D) = 1;

i) there exist9) < p < 1/2 suchthatB, C D;

iii) there exists) < py < p such thatD is star-shaped with respect ,,, i.e.,Vw € D

andvv € B,,, the straight segment with endpointsandv is contained inD.

In this article we investigate the best approximation/erof a functionf : D — C
by means of (complex variable) polynomials. We obtekponential convergende the
polynomial degree provided th#tis holomorphic in an open neighbourhood/ef Our main
approximation result from Sectieh2 reads as follows?

THEOREM 1.2. Fix 0 < § < 1/2 and define the inflated domail; = {w € C :
d(w, D) < é}. There exist, b > 0 only depending op, py andd such that, for any function
f which is holomorphic and bounded s, there is a sequence of polynomidlg, },>1 of
degree at most such that

If— QP”Loo(D) <Ce ™ ||fHLoo(D5) :

In Section4, the values ot andb will be madefully explicitin terms ofé and the geometry
of D, and we will prove similar results for the derivativesjfof

Our considerations follow the pioneering work of M. MelenK25, Chapter II] and 26],
refining and completing his arguments. The linchpin is H&gisirepresentation formula
for the error of polynomial interpolation of holomorphicnfttions in complex domains, see
Section4.2 It is applied using, as integration contours, the levetdiof the holomorphic
mappingep : C\ B; — C\ D provided by the Riemann mapping theorem. Thus we
need rather precise information about the position of thesa lines, and this information is
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1We write B, (wp) := {w € C: |w —wy| < r} andB, := B,(0).
2Here and in the following, we denote the distance betweerird poc C and a se® C C and the distance
between two set®;, D2 C C by

d(w,D) == inf |w—w'], d(D1,D2) == lwi — wa|.
w’ €D

inf
w1 €D, waED2



gleaned in Sectio by means of fairly intricate estimates. A result similar toedbrem1.2
was stated in25, Theorem 2.2.10]; the novelty of the present contributies in theexplicit
expression$or the constant§’ andb in terms of the parameteds p andp, only.

Our work was motivated by the desire to obtain convergentimates for thehp-version
of Trefftz-type discontinuous Galerkin finite element nuth (dGFEM) for second-order
scalar elliptic boundary value problems. For the Laplaagatign Au = 0, these methods
rely on harmonic polynomials for the local approximationtba cells of a mesh. Thus, with
D standing for a mesh cell (after the identification®t with C and, possibly, a similarity
transformation), estimates like that of Theoré&r become instrumental for showing expo-
nential convergence of the discretisation error in termthefdimensions of the trial spaces.
This will be outlined in Sectio, in the case of (straight) triangular and quadrilateralimees
building on the substantidlp-dGFEM convergence theory @§]. On geometrically graded
meshes, this scheme features faster exponential coneergfesn standard methods, namely
the energy norm of the error decayseap(—bv/N), N being the number of degrees of free-
dom and > 0, as opposed to standard schemes which achieve:aply-bv/N). AdGFEM
based on harmonic polynomial has already been introducg?j@3]; only the convergence
under mesh refinement was discussed there.

We intend to pursue the extension of these results to morergesecond-order ellip-
tic equations by means of the so-called Vekua the@€y34]. In particular, the extension to
Helmholtz boundary value problems is relevant, since se¢veefftz-type numerical schemes
have recently been proposed for their efficient approxiomedit medium and high wave num-
bers; see§, 13,14,19-21,27,30], the references therein, and the review28,[§1.2].

FiG. 1.1. Geometry of domai®), see Assumptioh.1

We close this introduction with some remarks on the geometrihe domainD in
our approximation results. We refer to Figukel for an illustration of the notation in the
following statements. By Assumptiohl, D is bounded, simply connectel, ¢ D and
D C B,_,. Moreover,D satisfies the followinginiform cone conditionghere exist/, > 0,
andA, X € (0, 1] satisfying

min{A, A} > 2 arcsin 1p0 , (1.1)
7T

2



such that, for anyw € 9D,
a) there exists a codavith vertexw, opening anglé\r and heightf, contained inD,
b) there exists an infinite cone with vertexand opening anglar contained inC\ D.
The proof is postponed to Lemn#al in AppendixA. The uniform cone conditions imply
that D is Lipschitz (see, e.g.1p, Theorem 1.2.2.2]).

REMARK 1.3. If D is convex, we could choogg = p. However, in order to avoid
the discussion of special cases, we will always asspme: p, obviously with no loss of
generality.

We also notice that, in the convex case, the exterior condition holds withA = 1
(the cone is a half plane through that does not intersed), while for the interior cone
condition one always has < 1.

2. Exterior conformal mappings. Let D C C be a non-empty, simply connected
“generic” domain that is either compact or open and boun8etlD¢ := (CU {oo}) \ D and
B := (CU{oco}) \ By. Owing to the Riemann mapping theorem, there exists a urigae
to-one conformal mappingp : Bf — D¢ such thatpp(co) = oo andg/, (o) is real and
positive. The proof can be found id7, Corollary 5.10c] (where “regions” are non-empty,
open, connected sets as definedlii, §3.2]) or in [24, Vol. 1lI, Theorems 1.2 and 1.3] after
using the inversion acrogs3; . If 0D is a Jordan curve, thepp can be extended to a home-
omorphism fromB§ — De, i.e., it is bijective and continuous, with continuous irs@also
on the boundary (se@], §17.20] or [L7, Theorem 5.10¢]).

For everyh > 0, we define thdevel line ofpp by

Lp[D] := ¢p(Bi4n). (2.1)

Sinceyp is a homeomorphism, the level lidg, [D] partitionsC into two connected compo-

nents and we denote it L, [D] the closure of the bounded connected component. When-
everD = D, which satisfies Assumptiah 1, we set for brevityy := ¢p andLy, := L[D].

In Section 16.5.11 of 18] (eq. (16.5-7), page 374) and i85, Sec. 4.4, p. 74] the value
©p(00) (which is real and positive by definition gfp) is identified as the classic analytic
capacityof D.

If Dy C Dy, thenyl, (o0) < ¢, (o0). Besides, Theorem 16.6j o1§] asserts that
C'r(w)(00) = Rand, thus, for the domaib,

p < ¢p(o0) <1—p. (2.2)

Let P be a boundegolygonwith counterclockwise ordered verticés, }2_, and cor-
responding internal anglggv,w}_,. Then, using conformal inversion acrass; and [L1,
Eq. 4.6], the conformal mappingp is given by the Schwartz—Christoffel formula

1/z

N C 1—ay
¢p(z) = A+ Csc 11 <1 - Zk) ¢ |z > 1, (2.3)
k=1

wherez, = o' (wy), |26 = 1. We haveZkN:1 ap=N—2 (orsz:l(l — ay) = 2); see
also 24, Vol. 11l eq. (9.10) page 331]. The constatitc C depends on translations sfand

3Following [25, Proposition 2.1.6] we call “cone” an isosceles trianglafitiite cone” the sector of the plane
delimited by two half lines with common origin, and “opening Bighe angle adjacent to the two sides with equal
length of a cone, or to the two half lines of a infinite cone.

4Notice that, in both these references, the inverse conformaﬂlnp{)1 is used.
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on the initial point in the integration; the constatit¢ is related to rotations/dilations and
from [11, p. 53] we have

|Csc| = ¢p(c0). (2.4)

The complex derivative of the Schwarz—Christoffel mappiag easily be computed as

N 1\ on | N
¢p(z) = =Csc [] (1 - ) =—Csc [IGe-z0", (2.5)
k=1

A
k=1 k

where in the last step we have usegd = 1 and}_, (1 — «;) = 2. Whenz approaches one
of thez,’s, theny's(z) tends either t® or to co, depending on the sign af— .

Next, we recall the estimates &f§, Lemma 2.1.3] applied to our domain.

LEMMA 2.1. Lety be the conformal mapping frofd{ onto D¢. Then

2 !
p h
d(Lh, Lh/) Z W m(h - h,) fOI’ O < h/ < h,
¢'(00)|7]
R e I L L

Proof. We refer to 5, Appendix A.2] for the second bound, which is based on thedar
formula” of [24, Vol. Ill, Th. 1.4], while here we report the proof of the filsbund given
in [25, Appendix A.2], taking into account our assumptionsion

Fix 0 < b’ < h; Ly, Ly, are compact, thus we can chodse |z;| = 14+ k' < |22 =
1+ h such thad(Ly, L) = |p(22) — ¢(21)]. Then,

h=h < o=zl =le7 (0(z)) — ¢ (¢(2))]

w(22)
= | el - el s )

¢(21) 14+h/ <=1 (w)|<1+h

1
= o(z2) — (2 sup
Iplz2) = o 1)|1+h’§\z\§1+h ¢'(2)
[25, p. 165] (1 + |ZD3
< e(z2) = @(21)] ¢ (00) sup s
1rw<)z<in (2] = Dlp(2)?

(2+h)3
h/p2

8(1+h)3
h’p2 ’

< d(Lp, Ly )¢’ (00) < d(Ln, Ly )¢’ (00)

which gives the result. The bound we used fr@8§, [p. 165] is a consequence of the “distor-
tion theorem”, seeZ4, Vol. lll, Theorems 1.7 and 1.9[]

The following result is a direct consequence of Schwarzisira [L7, Theorem 5.10b],
i.e., of the fact that every holomorphic functign B, — B; satisfie§ f(z)| < |z| Vz € By,
applied to the function - 1/(¢5! (¢p,(1/2))).

LEMMA 2.2.LetD; C D, be two bounded, simply connected, Lipschitz domains. Then

Int L,[Dy] C Int Ly[Ds] VA > 0.



3. Distance estimates for level lines of ¢p. We need precise quantitative information
of how far the level linesl.;, move away fromdD ash increases. It is provided by the
following key result.

THEOREM 3.1. Let L, be theh-level line of the conformal mapping @. Define
0<¢é<1las

2 arcsin 22 if D is non convex
=9 7 1—p
1 if D is convex

Then, provided thalt < h < 1, we have

Yw € D, Ywy, € Ly, |w — wy| > Crh?, (3.1)
Ywy, € Ly, 3w € 9D : lw —wp| < Cphs, (3.2)
where we have set
p 27
Cr:=+- Cp:i=—.
I 4a E 5

REMARK 3.2. In the case of a convex polygonal domdm (3.2) holds withCg = 9
instead of27 and, for more general convex domaid; can be improved up td + ¢y, with
anycq > 0; see Sectio.2 below.

REMARK 3.3. The boundg3.1) and(3.2) can be rewritten as

d(Ly,0D) > C1h?,  d(wy,dD) < Cgh®  Nuwy, € Ly,.

A result in the spirit of Theorer.1is proved in P5, Proposition 2.1.6]. There, an upper
bound ford(w, L;,) withw € 9D is given, which is different from our estimg®2). Another
difference is that the exponents/oin the boundg3.1) and (3.2), as well as the expressions
of the constant§’; andC'g, are specified under our assumptionsion

The proofs of the two bound8.() and @.2) are given in the following Sectio8.1and
3.2 respectively. On first reading these may be skipped.

3.1. Proof of thelower bound (3.1). We state the following auxiliary result.
LEMMA 3.4.LetS C C be the segmenit-p, p], p > 0, on the real axis. Then
ph?

Ao, LalS) = 5 Vh >0,

Proof. For anyp > 0, the Joukowski maplf7, §5.1, page 294]

J(z) =5 (=4 %) (3.3)

is the conformal mapping that map¥ in the exterior of the segmest, with J(9B1) = S,
J(o00) = oo andJ’(c0) = p/2. It level lines are ellipses whose foci are the endpointS.of
For everyh > 0,

d(p, Lu[S)) = min [p—J(=)

z€0B14n
4 i0 1
—=((1+h —_—
p 2<( +he +(1+h)ew>

2(14 h)e'® — (14 h)%e*? — 1 ’

= min
oe[—m,m]
1Y .

= min
2(1 + h) oe[—m,m]

P . 0
- 1 1
201 1 h) ociomn) |+ e

5
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the minimum ish? and it is achieved fof = 0; the proof is completei]

Proof of (3.1). The proof proceeds along the lines @b[ Proposition 2.1.6]. Sinc®
is star-shaped with respect to the origin asgl C D, then for anyw € 0D, there exists a
(closed) straight segment, with one endpoint atv and length2p such thatS,, ¢ D. By
Lemma3.4and Lemm&2.2, we have

ph?
2(1+4h)

= d(w, Lp[Sw]) < d(w, Ly) Yw € 0D,

which implies 8.1) with C; = p/4, sinceh < 1.0

REMARK 3.5. In Proposition 2.1.6 of 25 a bound similar to(3.1) was established
with a better power of, i.e.,2 — A instead of2. This was proved by comparing the level
lines of D with those of a triangle, instead of comparing with those segment. We were
not able to prove this result with a fully explicit constatit. On the other hand, exponent
2 is sufficient to establish exponential convergence for fiygr@imations of holomorphic
functions by complex polynomials.

3.2. Proof of the upper bound (3.2) for convex domains. In this section we consider
the case of convek, which already reveals the key ideas with moderate techoaraplex-
ity. For the much more intricate case of genefaivith non convex boundary, we refer to
AppendixB.

Proof of (3.2) for convex domaindNe consider first the case whéhis a convex polygon
(with straight sides) with verticegu, }_, and corresponding internal anglgs, 7}, ; set
2z =@ Ywg) € 0By, k=1,...,N.

Fix w, € Ly and setz, = ¢ '(wy,) € 0Byyp; thusz, = (1 + h)e’, for some
0 € [~n,7]. Definez = ¢, w = ¢(z), and denote by the straight segment of length
connecting: andz;,. From @.5) and @.4) we have

|wh—w| \@(Zh |</\<p |dy_ /| ‘ H|y —_ 1 ag dy.

For anyy € S, we have|y — Zx| < 2 + h and, due to the convexity dP, 1 — ay > 0,
k=1,...,N. Then, recalling thak_,_, (1 — azx) = 2, we arrive at

N
[Tl ==l < @+ m=mt=ow) = 2 4-n)2
k=1

Notice that this bound is independent of the numieof the vertices ofP. Using|y| > 1
and @.2), sinceh < 1, we obtain

lwy, —w| < (1fp)(2+h)2/1dy§ (2 + h)?h < 9h.
S

If a convexD has more general shape, we exploit the fact that, for any fixed), we
can find a convex polygoR. containingD such that, for alkv € dP., d(w,dD) < ¢, [36,
Theorem 3.1.6]; foe small enoughpP. C By, thusy’, (o0) < 1.

Fix w, € L, = Ly[D]. Let P. be an approximating polygon as before, with<
%d(wh,aD). Then,w, € Lj/[P.] with h’ < h, as a consequence of Lemr2&®2 Let
2 = p!(wy) = (1+ 1')e’, and define: = . Then,

d(wp,0D) < d(wh; SDPE(Z)) + d(GDPE (2), 3D) = |ep. (2n) — @p.(2)] + d(<PPE (2), 3D)
6



<(@24+NW)H +e<(2+h)h+ %d(wh, aD),
which implies

d(wp,dD) < 2(2+ h)*h < 18h.

4. Interpolation estimates. In this section, we prove error estimates for the approx-
imation of holomorphic functions by means of polynomialse ¥st state some auxiliary
results.

4.1. Auxiliary results. We define the “polar parametrisatio’: C — C such that
U(By) =D, U(re?) = i (9)re'?, U [—mm) = [p,1— p].

LEMMA 4.1.The functionp : [—m,7) — [p, 1 — p] is Lipschitz continuous with constant
L, satisfying

Proof. Assumptionl.1 guarantees thab is a Lipschitz domain, therefore by Radema-
cher’s theorem (sed.p, §3.1.2]),v is differentiable almost everywhere and, for almost every
point of 9D, there exists a tangent line. Because of the star-shapedegsirement, no
tangent line taD can intersect the open bab,, .

Therefore the steepest (in polar coordinates) possibtgetarine at a point)(6) is tan-
gent todB,,. Since the angular derivative of a straight line is largerdoints with larger
moduli, we can bound’(#) with the angular derivative & = 0 of one of the two straight
lines throughl — p that are tangent té,, .

FIG. 4.1. The extremal case in the proof of Lemta and the angl&*.

This line has polar representatio(®) = po/ cos(6* — 0), wheref* = arccos f%ﬁ (i.e.,
0* is the angle ab of the rectangular triangle of vertices0;- p and the tangent point of the
line to 0B, ; see Figuret.1). Its “polar slope” ing = 0 is given by

, _ [ polsin(60* —0)] _ po|sin 0|
Ir'(®)lo=o = [ cos?(0* —0) |,_,  cos?6*
(1-p)?

Po

po ’§<1—p>2_

sin arccos
1 Po



Then|y’(0)| < (1;75)2 and the proof is completél
The inverse ofl is given by ! (re’’) = 5re or, in Cartesian coordinates (after
the identification ofC with R?),

U (rcosf,rsinf) = (1/}(2)) cos 0, ﬁ sin¢9> =: (F1, Fy). (4.1)

Of course, U ! is Lipschitz continuous as well, and an estimate for its thj constant is
given in the next Lemma.
LEMMA 4.2. The function?—! : C — C is Lipschitz continuous with constanht, 1

satisfying

w — 0| 2(2p + Ly)
Lg-1:= sup < ;
v w,weC, w#v |\I/(’LU> - \I/(’U>| p2

with L, as in Lemmat. 1
Proof. Let DU ! be the Jacobian of ~!. Considering the representatiohl) of 1,
we have

OFy _ xcosf y —sinby(6) + cos 6y’ (6)
dxr  r ) r (0 (0))? ;
OF, _xsinf y cosfy(0) + sin 6y’ (0)
or Y@ v @OP
@ y cos x —sinby

_y +7 (0) + cos 6y’ (0)
dy (o) (¥(0))? ’
@ y sinf + x cos 01 (0) + sin ¢’ (0)
oy T Y(0) (1(0))?

Since|z|,|y| < rand0 < p < [¢(0)] < 1, we can bouncHD\I/—lHLoo(C) (in the matrix
oo-norm) as

1 Lw) 2020+ Ly)

[0y <2 (5 5+ ) = 2225

SinceLy-1 = || DY} ||LOO(C) the proof is complete]
LEMMA 4.3. For every positive:, the following bound holds:

. 2\ 2
e — (1 +n)" > () (0% +h%) = CE(0*+h%) VO e[-m 7
e
Proof. Using1 — cos§ > 262 for anyé € [, 7], we have

‘ 4
[ = (L4 B)[* = (14 h—cos0)? + (sin6)” = ? +2(1 = cosO)(h + 1) = — (6% + h?).

Now, we provide a refined version &%, Lemma 2.1.8].
LEMMA 4.4.1f 0 < h < Cyissuchthatl, C Bi1, andwy € Ly, then

1
/ ——— dw < Cp |logh|,
ap [w — wo
8



where
Cp = 47V2Ly Ly -1,

with Ly, and Ly -1 as in Lemmat.1and Lemmat.2, respectively.

Proof. Fix wg € Ly, and assume, with no loss of generality, thgtis on the positive
real axis. Definel := wy — v(0) and notice thatl(wg, D) < d < 1.

Settingw(0) := ¥(e?’) = (0)e’® € dD, using Lemmat.2, Lemmad.3andy(0) < 1
we obtain, for alb € [—, 7],

[w(0) — wol® > Ly, [T~ (w(B)) — U (wo)|* = Ly, €' — wo/v(0)[? (4.2)

(-]l (i)

_ 4
>Lwac%[ﬁ—%um——wmnﬂ::%Engmﬁ—kf)::L%w2+d%.

> L% C}

Then,

1 T 1 Lem.4.1 T 1
/ ——dw = / 7|w’(0)|d9 < L¢/ 7d0
oD |w—w0| - |w( )—wo\ —r |w( )—w0|

“2
< Lyl d6 < 2V2Ly L5, LY
v V2L, J[ 0+d

|
< 2V2Ly, Ly} (log(m + d) — logd).

Since

—_
—

h<Cr=

NI
IN
IN

| =
3
+
—_
3
+
S

we havelog(m + d) < |log h| and

1
/ —dw < 2V2L L5 (| log h| + |log d])
ap |w — wo

d>d(wo,0D)
2v2Ly L' (|log b + |log d(wo, dD)|)

wo€Ln, (3.1
e 2v2Ly L' (| log Cr| + 3| log h)
h<Cr<1
<7 8V2LyLyY logh| = 4mv2Ly Ly |loghl,
—_———

=:Cp

where we can use3(1), becausé < C; < 1.0
REMARK 4.5.Using Lemmat.2 Lemmad.landp, < p < 1/2, we have the bound

— )2 _ )2
Op = 4mv2Ly Ly < 4mv/aL, 22T 10) g gL =PV (2pro + (1= p)')
p

P0?
8mv/2 2002 _ 2 8mv/2 2 2 M
< %p[( —p) (20" +(1—p)7)] < %ﬂ[ﬂ p) (14 p7)] < o

since(l — p)2(1+ p?) =1—2p+2p% — 2p° + p* < 1.
9



Define the sequence of complex polynomigls, },cn with

p—1

wp(w) := [T (w = p(™*/7)),

k=0

whereyp is the exterior conformal mapping @1.
LEMMA 4.6.[25 Lemma 2.2.9] Under the same hypothesishas in Lemmat.4 we
find

hP 1 (00)[P(1+ )P < Jwy(w)| < h™P|¢!(00)P(1+h)P  Vw € Ly, ¥p €N,

whereC'p is the constant in Lemm&4.
Proof. We refer to the proof ofd5, Lemma 2.2.9]. The constant at the exponents isf
equal toC'p and the threshold oh is the one needed by Lemmad. O

4.2. Main interpolation estimates. As in Theoreml.2 for § > 0, define the inflated
domain

Ds:={weC: d(w,D) < d}. (4.3)

Assumel > 0; then Theoren3.1guarantees that

1 5 1/¢
0<h<€<C’E> = Ly, C Ds.

Our main approximation results is a refinement28,[Theorem 2.2.10].
THEOREM4.7.Fix 0 < 6 < 1/2. Provided that

1/¢
0 < h<h*() ::min{; (C(‘SE) , Z}, (4.4)

there exisC,pp: > 0 anda > 0 depending only o) throughp and po, such that, for any
holomorphic inDs, there is a sequence of polynomidlg, },,>1 of degree at most such that

If - Qp”Loo(IntLh) < Capprh™ (14 h)7P Hf”Loo(Int Lsn)

where
201 —p)2 7 16v2r 72
Cappr < 3,2 < =, <3+ —755-< 5.
4 P PoP PoP

REMARK 4.8. Compared to 25, Theorem 2.2.10], this estimate features fully explicit
bounds in terms of shape parameterdf Moreover, no complete proof of Theorem 2.2.10
was given in 5], cf. Remark3.3.

Proof of Theoren#.7. We choosey, as the polynomial of degrgewhich interpolates
f at thep + 1 points (e2™/(P+1)) 'k = 0,...,p. SinceLs, C Ds, using the Hermite
interpolation error formula (se@¥, p. 17] or B, Theorem 3.6.1]), we have

1 wp(w) f (1)
_ . = su — — o~ dt
Hf quL (Il'lt Lp) wEIIlPLh, 211 /Lsh, wp(t) (t - U))

length(Lsn) Supyermt 1, |wp(w) Hf”Loo(Int Lsn)

- 2 inftelnt Lan |wp(t)\ d(Lh7 Lgh)
10




Sincey is a curve parametrisation: 9B .3, — L3,

length(Lsy) < 2m(1+3h) sup |¢'(2)];
|z|=1+3h

this, together with the lower bound df L, Ls;,) and the upper bound ¢’ (z)| given in
Lemmaz2.1, and the bounds in Lemnka6, gives

8(1+3h)%¢' (x)? . 5 _c 1+h\’
1f = apll poe tne £y < 612 (3097 (7757 ) It 2wy

4¢'(00)% 3 90y, (1+R Y 5
Smh b 1—|—73h (1+3h) ||fHL°C(IHtL3h)

20(1—p)? 3 5c L
< Th b m ||f||L°°(IntL3h) ’

where in the last step we have used“> > 3, |¢/(c0)| < 1 —p, {55 < 5, and
(1+ 3h)5 < 5, sinceh < p/4 = h < 1/8. The use of Lemm4.6 (and thus of Lemm4.4)
is legitimate due to the hypothesis imposed/oandd. The result of the theorem follows
from the bound of”'p derived in Remarkd.5. 0

Obviously, Theoreni.2 from the Introduction is an immediate consequence of Theo-
rem4.7: given0 < h < h*, just defineC’ := Cappe (R*(6)) ™ andb := log(1 + h*(9)).

The polynomialsy, defined in the proof of Theored7 as the complex interpolants of
f in special pointssimultaneoushapproximate the firsp derivatives off (denotedf (),
j=1,...,p), as established by the following corollary.

COROLLARY 4.9. Under the assumptions of Theorel?, for any’ j € N, j < p, we
have

H FO) q[()j)

! W B
’LOO(D) = Capprmh (1+n)~" Hf||L°°(IntL3h) .

Proof. We use Cauchy'’s inequalitie4, Vol. |, Theorem 14.7] for the interpolation error
fU) — qéj) to obtain a sharp bound on the complex derivatives of holpimorfunctions:

, , 4!
Hf(]) _ qi('J)HLoo(D) < W If— qPHLoo(Int Lp)?

the assertion of the corollary follows from the bou3dl and from Theorerd.7. O

As a consequence of the previous results, we can gauge thexapption of real-valued
harmonic functions by harmonic polynomials. To this pumaetting: = =+ iy we identify
S C Cand{(z,y) € R?| z = x + iy € S} and now regard : Ds — C as areal analytic
function of two real variableg = f(z,y). We also adopt this perspective for the polynomials
gp, Which have been defined in the proof of Theorémas the complex interpolants gfin
special points.

The statement of the following results makes use of the dstaf) /7> (.S)-seminorms,
j € N, and of the weighted Sobolé¥ !> (S)-norm, for sufficiently smooth functions, and
S C Ds:

ey = DPu|, o,
[ulyyice () ﬁeNSg"l‘%l:jH “HL (9)

SWe use the following standard notatidi:= {1,2,...},No = {0,1,2,...}.
11



llully 1,00 sy 5= lull oo (5 + diam(Ds) [Vl oo gy -

THEOREM4.10.Fix 0 < § < 1/2, and leth satisfy(4.4). For any real, harmonic func-
tion u in the inflated domais defined in(4.3), there is a sequence of harmonic polynomials
{Qp}p>1 of degree at mogt such that

[Ju — Qp”];oo(D) < Capprh™ (14 h)7" HuHWLoo(Int Lsn)

2j \  _ _
|U_Qp|wj,oo(D) < Cappr (C]hz) h=*(1+h) pHUHWLoo(IntLgh)’

||u - Qp||L2(D) < v |D| Capprh_a(l + h)_p Hu”vvlyoo(mt Lsp)
: 27\, _a _
lu— QP|HJ‘(D) < VID[( +1) Cappr (C[h2> h=*(1+h)™" ||u||W1'°°(IntL3h)

forall j € N, j < p, where|D| < 1 is the Lebesgue measuredf and the constant§',,,
and« are the same as in Theorefy.

Proof. For any real, harmonic functiom on a simply-connected domaid > (o, yo),
there exists a unique holomorphic functipoen D, with f(z¢+iyo) € R, such that(z,y) =
Re f(z + iy) [24, Vol. Il, Theorem 5.2]. More preciselyi(z) = u(z,y) + iv(z,y), with
z = x + iy andv a real, harmonic function satisfying the Cauchy—Riemanraggns

ou Ov ou ov

0a =0y oy 0w
andv(zo, yo) = 0. If D is star-shaped with respect (0o, yo), and|[ul| . py, [ Vull < p)
are bounded, it holds

£l Lo (py < lull Lo (py + diam(D) [Vl oo () -

Moreover, if f is a holomorphic function, thea(Re z,Im z) = Re f(z) is harmonic; thus,
the real part of any complex polynomial is a harmonic pon'rajnObvioust,||uHLOO(D) <
[/l o (p) holds true.

With these considerations, definigy, := Re g, with ¢, as in Theorerd.7, the desired
bound inL>*-norm is direct consequence of Theordn?. Notice that||u|| e 1, 1., ) and
[Vull oo (tnt 1.4,) re bounded (and thuselly e gne z,,) < +00) because, by4.4), the
(closed) seint L3, is contained inDjs, the (open) domain of analyticity af.

For the bounds if¥7:>-norms, the inclusioD C Lj, the interior estimates for the
derivatives of harmonic functions id’, Theorem 2.10], and the boun8.{) give

|U_QP|W.%°°(D) = sSup _||Dﬁ(u_Qp)HLoo(D)
BENG, 1B=j

2j Y’ 2j Y’
< (d(Lh,Q)> Ju— QPHLOO(IntLh) < (CIhQ) [lu— QPHLOQ(IntLh);

again, Theorerd.7 allows to conclude.
Finally, the bounds in integral norms follow from

2 .
u= Qb= X [ 1D7(u@) - Q)| do < IDIG + 1) [u = Qulise o)
peng P
|B|=3
12



and the previous inequalitie.

From Theorent.2, with the same considerations as in the proof of Theofehi, we
obtain the following result.

COROLLARY 4.11. Fix 0 < 6 < 1/2andj € Ny. There exisC > 0 andb > 0,
depending only om, po, d andj, such that, for any real-valued, harmonic functienvhich
is bounded along with its first-order derivatives in the itgh domainD;s defined in(4.3),
there is a sequence of harmonic polynomigls, },, of degree at mosi such that

lu— Qp|Wa,oe(D) <Ce ™ Hu”vvl,oc(pé) )

lu— Qp|Hj(D) <Ce ™ HUHWLoo(D[;) .

REMARK 4.12.The constant§’ andb in Theoreml.2 and Corollary4.11depend ord
only throughh*(§) defined in(4.4).

The boundedness ¢f v and Vu in Theoreml.2 and Corollary4.11is assumed only
in order to write estimates witl,°°-norms in the whole); on the right-had side. Actually,
the estimates hold true also WitlY || ; « 1, 7.5,) @A [[wlyy1.00 (104 1.4, FESPECtiVELY, ON the
right-hand side, for any) < h < h*, with no need of assuming boundednes$,af and Vu
in Ds.

REMARK 4.13. The interpolating polynomialg, (and(),) in Theoreml1.2, Theorem
4.7 and Corollary 4.9 (Theorem4.10 and Corollary4.11, respectively) interpolate exactly
the functionf (u, respectively) in at leagt+ 1 points lying on the boundary d@b. The exact
location of the points depend on the conformal map This fact follows from the definition
of ¢, given in the proof of Theores7 and the relations: = Re f and@,, = Reg,.

5. Application: exponential convergence of Trefftz hp-dGFEM. In this section, we
outline how to apply the estimates of Corollatyl1and prove exponential convergence of
a Trefftzhp-dGFEMfor the mixed Laplace boundary value problem (BVP), i.e. &Rkith
discontinuous, piecewise harmonic, polynomial basis tions on a geometrically graded
mesh. We establish exponential convergence with €itesp(—byv/N)), for someb > 0,
in terms of the overall numbeW of degrees of freedom. This result is an improvement
over the classical rat€(exp(—bv/N)) shown for inhomogeneous problems B 4]; this
improvement is due to the use of harmonic polynomials, atst#f complete polynomials, in
the trial spaces.

Since we rely on thép-dGFEM theory from 87], we restrict ourselves to the case of
(straight) polygonal domains and meshes comprising {gitpiriangles or parallelograms.
The extension to curvilinear domains and mesh elementsdvegjuire to develop, for such
elements, several tools as polynomial-inverse estimates, scaling estimates of Sobolev
seminorms, and approximation estimates for linear anddali polynomials near corners.
This goes beyond the scope of this paper.

5.1. ThelLaplaceBVP. Without further explanation, we use the notation for theghéi
ed Sobolev spaceﬂg"’l(Q)) and the countably normed spac% ©) andCé(Q)) from [2,
§2], along with the analyticity and analytic continuatiosués given in p-5].

Let O c R? be a bounded, Lipschitz polygon with corness 1 < v < n,, whose
boundary is partitioned into a Dirichlet and a Neumann beum %! andT'[!), respectively,

such that the interiors dfl®) andT'!! do not overlap an@ UT'! = 9Q. Moreover, we
assume thaf' has positive 1-dimensional measure. Consider the follgvjirell-posed)
boundary value problem: givej¥l, i = 0,1, findu € H'(Q) such that
Au=0 in €, (5.1a)
13



,YOU‘F[O] = g[O] onTl, '71“’p[1] = g[l] onI. (5.1b)

Here,~, andy; denote trace and normal derivative operators, respegtivel

There exists a weight vectgr € (0, 1) such that, ifgl" € Bé_i(l“m), i=0,1, prob-
lem (5.1) admits a unique solution which belongs taﬁg(ﬂ), [2, Theorem 3.5]. Moreover,
as in P, page 841], it can be proved that there exist two const@pts- 0 andd,, > 1 such
that

dy
®(x0)

k
|(D“u)(x0)| < C’u< ) Kl ¥xo€Q, aeNZ |al=k>1, (5.2)

where®(xo) := [])%, min{1, |xo — ¢, |}, thusu admits a real analytic continuation to the
set

N(u) := U {X ER?: |x — x| < (I)(XO)} C R2 (5.3)

_ 2d,,
Xo0 GQ\USll Cv

5.2. Trefftz hp-dGFEM. We now formulate théyp-dGFEM discretisation of the BVP
(5.2 on geometric mesh familie®t, = {7;@};';1 in Q, with increasing numbef of layers
and geometric grading factor< o < 1.

5.2.1. Geometric meshes. Given/ € N, the mesh7! is a partition of the domaifi
into open triangles or parallelograrfiy; (such that? = J, ; §f7 and; N Qf,;, = 0 if
(i,7) # (i',5")). The elements are groupedlayers denoted b)ﬁﬁ)i, 1 <4 < /4, such that

l
=Ll ={0h1<i<ei<i<in),
=1

whereJ (i) > 1is the number of the elementsith layer£. ;. Given an elemertb}; € 77,

the indexi denotes the Iayeﬂfj belongs to, and identifies it among thef(i) elements
belonging to the-th layer. We say thaf? is a geometric mesh if it belongs to a family
M, = {TL}5°, that satisfies the assumptions (GM1)—(GM4) listed below.

For every elemert2;;, we define the following parameters;; := diam(Q;); pf; and
x{; the radius and the centre, respectively, of the largestibsdribed inQ{;; andr{; :=
ming <, <n, d(c,, ij) its distance from the nearest cornerbf

ASSUMPTIONS.1. The familydt, = {7/}52, satisfies the following conditions.
(GM1) The elements araniformly shape-regulatriangles/parallelograms:3 0 < x; <

1/2, independent of, ¢, i and j, such that, for allT € M, andQ}; € T/,

pfj > K1 hfj > 0.

(GM2) The distancefj between an elememfj and the nearest corner ¢f depends geo-
metrically on its layer index: 30 < ko < Koy < 00, independent of, /¢, i and
j» such that for allT! € M, andQf; € T, with1 < i < ¢,

Ko_ o' < rfj < Koq 0.

The/-th layer is the set of the elements abutting at domain cmﬁm.,rfj =0«
1=1).
14



(GM3) The size of an elemeﬂlfj depends geometrically on its layer indexd 0 < k3 <
K34 < oo, independent of, ¢, i andj, such that for allT! € M, andQf; € T,

R3_— O'i < hfj < K3+ O'i.

(GM4) For ¢ > 2, T* is obtained from7/~! by only refining the elements in the layer
Ef,’}{l adjacent to the domain corners, forming two new layéfs, , and £ ,.

Equivalently, the elements ﬁf;’i are uniquely defined for all > ¢ + 1:

Z/
ch,=ch, vie{l2, . min(¢)-1}; b=k, wW>i>1
=L

(5.4)
Note that (GM2) and (GM3) imply that the diameter of an elenmf%} is proportional to
its distance from the domain corners:

KR3— R3 . . >
;rfjshfjsm—*rfj 1<i<t,1<j< 0. (5.5)
+ 2—

. . 0 4
, ItIJsmg (GM1) and (GM3), we can control the aﬁéﬁﬂ of each element: for afl;; € 7,
6 )

)| =m0i;)? = m(rhiy)? > m(kiks-)?o™.

> 106> |3, )

Moreover, (GM2) and (GM3) imply

=l

Na

i) ng
Qij U <B max (rfj—o—hfj)(cu)) c U (B(ng++n3+)o’i(cu)) 1 < 1 < 67

1 v—1 1<G<T(0) v—1

)

N

J

from which Ujjg ij < nam(kay + K3y )?0?t. Therefore, the number of elements per
layer is uniformly bounded inx

A U9 el
J(i) < ’ S
) 12

min

2
< ("2 i S M,) 1<i<i LeN. (56)
| K1K3—

1<G< T

5.2.2. hp-subspaceson 9. For a positive integey, letP, (D) be the space of bivariate
real polynomials of degree at mgston a domainD C R2. Define the spaceS?(7}) of
discontinuouspiecewise polynomial functions of total degree at mosh 7./

SP(TY) == {ve L*(Q): v\% € P,(Q;) forevery Qf; € T}, (5.7)
and its subspace of discontinuous, piecewise harmonimpoijals (i.e., the Trefftz sub-
space):

)

SPA(TE) = {v e SP(TY) : A(vlgs ) =0 forevery QL e Tl (5.8)

For the sake of simplicity, we confine ourselves to the casraithe same polynomial degree
is used in every element of the mesh; the results below cartbrded to more sophisticated
degree distributions. For example, in the elements adjaoetihe domain corners, the use
of linear polynomials on triangles and bilinear polynorsiah parallelograms preserves the
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exponential convergence. Thus, if quadrilateral elemargsused near the domain corners,
we will choosep > 2 in order to include bilinear functions in the trial space.lyipomial
degrees linearly decreasing with the layer index will als@ ghe same convergence.

LEMMA 5.2. If the family9)t,, satisfies Assumptidhl, for all p, ¢ > 1, we have

(p+ 1);p+2)€ — 00),

dim (SP2(TY)) < J*(M,) (2p + 1) = O(pl),

dim(SP(77)) < J*(M,)

whereJ* (901, ) is defined in(5.6) and is independent @fand p.
Proof. The meshT} has at most/*(M,) elements in each layet! ;, 1 < i < /,

therefore at most.J*(9t,) elements in total. Thus],im(]P’p(ij)) =(p+1)(p+2)/2and
dim(P,(Qf;) N {v : Av = 0}) = 2p 4 1 imply the assertiori]

5.2.3. hp-dGFEM. We consider both theymmetric interior penaltySIP) and thenon
symmetric interior penaltyNIP) methods introduced, respectively, 0], [6], and in [7],
[32] (see L] for a survey of interior penalty and other dGFEM for ellipgiroblems).

For a given mesif € M, on , letV,(TY) be either of the subspaces definedsrv)
and 6.8). For simplicity, we denote here by a generic element 6f, instead of using the
more detailed notatioﬁfj. Let &, be the set the interior edges’b'f, i.e., the intersections
between two elements Gf¢ that have positive 1-dimensional measure; moreoveg, jebe
the set of the edges Gf’ lying on rll and setin p := Eny U Ep. FOr a piecewise smooth
functionv, we define jumps and averages across the edges;,. p:

+ vk S
{{U}\ezzw, [v]|c := v|xnk +v|gmg e KNEK, KK €T

fodle : =[v]le :=v]. ecT,

whereny is the outgoing unit normal o0 K. We sethy := diam(K) and define the
meshwidth functiorh : & p — R ash(x) := min{hx : x € K € T}}.
Forf € {1,—1} andv,w € V,(T}), define the two bilinear forms and linear functionals

B (v, w) := Z /KVU~deX

KeT!

£ 3 [ (A7 Ll + 00l (w0 2] o)

EEEimYD
LeT(w) :=/ gMwds + 0/ g% Ay ds +/ agl%wds.
ri rlo] rlo]

Here,a is the discontinuity stabilisation function given byx) := a p?/h(x), wherea > 0
is a parameter independent/oéindp.
Fixing 0 € {1, -1}, thehp-dGFEM reads: find.), € V,(T) such that

Bg—(uz, vp) = LQF(UP) Vo, € Vp(ﬁ)- (5.9)

The method defined irb(9) is SIP, ford = —1, and NIP, for§ = 1.
We recall the following result from37], where the mesh-dependent nofim |3, is
defined by

lwllfic = > IVolig+ > IValulliy, — we V(T
KeTt e€E&int, D
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PrROPOSITIONS.3. [37, Theorem 2.3.7, Corollary 2.4.2] Le¢te (0,1)" be such that
the analytical solution: to (5.1) belongs tocg(Q). If either = 1 and « is positive, or
6 = —1 and« is sufficiently large, then thiep-dGFEM (5.9) admits a unique solution.

Moreover, letr : H§’2(Q) — V,(T£) be an arbitrary operator such that, for every

elementk € T/, there exist at least two zeros of= u — 77w in K. For § = +1 (with
sufficiently largen, if 6 = —1), it holds

e — w3 (5.10)
2 2 2(1=Bx)) |12
< CPQ{ Z |77|H1(K) + Z h%{ |77‘H2(K) + Z hy e |77|H§v2(1() }
KeT? KeTA\KL Kek? -

whereC' > 0 is independent of, ¢ andp. Here, K} := L , C T designates the set of
elements abutting at domain corners and, for dny K¢, Bk :=sup{B, : ¢, € OK}.

5.3. Exponential convergence of hp-dGFEM. We apply the approximation estimates
proved in Sectior.2 to establish exponential convergence of thedGFEM scheme. We
begin with the following lemma, which puts in relation thenalin of analyticity ofu and the
geometric mesh, .

LEMMA 5.4. Let 9, be a family of geometric mesh@g on Q satisfying Assump-
tion 5.1, and letu be the solution of the BV{5.1) on ). Then, there exist&. > 0 depending

onw (only throughd,, in (5.2), o andt,, such that is analytic ianj + B e ={x €
R?: d(x, ;) < 0,.hi;} forall Qf; € T\ KL, T € M,
Proof. We define the domain parameter

. . C, — Cy/
FEq:=minq 1, min M ,
1<v#v'<ng 2

which depends only on the position of the corner€lofand consider an arbitrary element
Qf e TA\KS.

First, we consider the cas¥; C B, (c,/) for somev’ € {1,...,n,}. Fixx € Qf;
by the triangular inequalityx — ¢,| > |c, — ¢c,/| — |x — ¢,/| > Eq, forallv # v/. The
definition of ® and the boundd.5) give

N
o(x) = [ [ max{1,[x—c, |} > [x—c, | E5 ™ > rf EG ! > hij

v=1

Ro_— _
——E& ! ¥x e Q).
K3+

This, together with the definition of the domain of analysich (u) in (5.3) and of the pa-
rameterd,, in (5.2), implies that

d(QZ 8]\/(u)) inferfj q)(X) Ko Esa—l

i

ht = 2d,, h! — 2dy ks
ij u 34

u i

=: (51.

Now consider the case whelf; ¢ Bg,,(c,) foranyv € {1,...,n,}. Fixx € Q; such
that|x — c,| > Eq foreveryv € {1,...,n,}. Thus, by (GM2) and (GM3),

Eq < inf |X—c|<re+h€<(/{ +h3y)ot = i< % s
? = 1<, vi= Ty g = AR TR = log o o
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ie., ij belongs to one of the firgt layers. The elements in firgt layers are uniquely
defined in all the meshes with at least- 1 layers, seef.4). Thus we can define

4
5= omm A ON@)
ijeN hfj
i<, i<, 1<5<T(4)
which is strictly positive since it is the minimum of a finiteimber of positive values, al-
though? can take any value iN.

Therefore, ifé, := min{éy, 6}, for any elemenf); € 71\ K., for any 7! € M,, the
solutionw is analytic ianj + B, e - Note thatd,, depends om through the parametef;,,
on o throughi*, but is independentj of j ande. O

THEOREM 5.5. Consider the solutiom € C%(Q) of the Laplace mixed BV[.1) and
its approximationu) € V,,(T}) := S»2(T}) computed with the Trefftizp-dGFEM (5.9)
(with a > 0, if & = 1, or « sufficiently large, iff = —1) on a family9t, of geometric
mesheg ! satisfying AssumptioB.1 Assume uniform polynomial degrge= ¢ and define
N := dim(V,,(TY)). Then,ug converges exponentially ta there exist), C' > 0 (depending
onu, €2, o andM,, but independent gf = ¢) such that

lu — ufl|ac < Cexp(—bVN).

Proof. SinceN = O(p¢) by Lemma5.2andp = ¢, we have to proveju — u||, <
Ce~?. Thanks to PropositioB.3, we only need to define an operatof : HE’Q(Q) —

V,(T¥) with suitable approximation and interpolation propertiéfe treat separately the
elements); adjacent to a domain corne®f; € k() and the remaining one€f; with
1<i<t-1).

In the elements)j; € K., we definer(u) as the (piecewise) linear or bilinear in-
terpolant ofu at the vertices oﬂfj, if Qﬁj is a triangle or a parallelogram, respectively.
Then, w7 (u) is obviously harmonic. Using3B, Lemma 4.16, Lemma 4.25] (see alS8y,[
Lemma 2.5.2]), and taking into account (GM3) with= ¢, the contribution of the elements
Qﬁj € K to the right-hand side 06(10 has exponential order of convergenceis ¢ (for
someb > (1 — max, 5,)(—logo)).

Consider now the elementy; € 7.\ KY. ForanyQ!; € 7\ K, due to Lemmd.4,
the solutionu is analytic ianj + Bé*hfj, for somed,. independent of, j and/. Define the
corresponding scaled elemet:= ﬁfj = {X:= (x —x{;)/hf; € R? : x € Q;} and the
scaled solutioni(X) := u(h{;X + x{;). The scaled element satisfies Assumptiobwith
p = pi;/hi; > k1 and for anyd < py < p, due to (GM1) and the convexity 6t;;. The
domain of analyticity ofi is dilated in the same way, therefore the hypothesis of Gaosol

4.11are verified withy = d,.. Thus, there exists a harmonic polynonmig) of degree at most
p such that

o~

u—Qp < Cetp m=0,1,2,

’ ~

H™(Qf))
for some constant§' andb > 0 depending only om, J, (which, again, depends dait,, o
andw, throughd,,) andHaHWl,mW(u)) (which, again, depends only anand{?). We scale
@p back to€2{; and define the local interpolant as

(WTU(X)) |ij = @p((x - ij)/hfj)'
18



Remark4.13guarantees that the interpolation is exact in at Igast points on the boundary
of O2f,. From the usual scaling of Sobolev seminoﬂnhgkmfj) < C(hf;)k |-|Hk(§fj), we
obtain

2 2 _
Z <|77|H1(Qf.~j) + (h;)? |77\H2(Q§j)> < Cle™™,
1<i<e-1,1<5<J (i)

with C' andb depending only on, o, Q anddt,. Here we used the fact that the number of
elements ir7} is O(¢), as proved in Lemm&.2

The assertion is then obtained by combining the last bouttd thé one previously ob-
tained for the elements incident to the corners, ugirg O(+/N), and noting thatrs(u)
interpolatesu at least in two points per element, thus Proposifc®applies, and thép-
dGFEM error is bounded by the approximation ertbr.

REMARK 5.6. In standard FEM convergence analysis, approximation e are
derived only forfew reference elementahich are then mapped to the “physical” mesh el-
ements. For Trefftz schemes this is usually not possiblEcespmade of harmonic functions
(or harmonic polynomials) are not invariant under generéfirie mappings but only under
similarity transformations, thus estimates that amgform for every element shapeust be
proven, up to scaling and isometry only. This is one of theaea for deriving the approx-
imation estimates of Sectigh2, however, they hold in much more generality than what we
used in theip-dGFEM analysis (i.e., for star-shaped elements insteadafgles and paral-
lelograms). The explicit dependence on the geometry, broyghp and py, shows that these
bounds are uniform for all the elements of a shape-regulanifipof meshes. The obstruction
to extending the results of Theorén®b to more general (e.g., curvilinear) geometries is not
due to the new approximation estimates, but only to thedtmits of the existing theory on
guasi-optimality of dGFEM solutions.

Acknowledgment. The authors wish to thank D.P. Hewett for inspiring discoissicon-
cerning the proof in Appendi8.2.

Appendix A. Uniform cone conditions. We prove the following uniform cone condi-
tions which guarantee that a domdinsatisfying Assumptiod.lis Lipschitz, thanks tol6,
Theorem 1.2.2.2], and give a precise bound on the size ofathreec of star-shaped polygons
(see Remarld.2).

LEMMA A.1l. LetD C C be a simply connected domain such that

i) there existg; > 0 such thatB,, ¢& D andD is star-shaped with respect 18, ;

i) there exist®) < p; < pp suchthatD C B,,,.
ThenD satisfies the following cone conditions: there eXish € (0, 1] satisfying

min{A, \} > 2 arcsin 22 = 0,
m P2

such that, for anyw € 9D,

a) 3 cone with vertexw, openingAr and heightH, := min{ps — p1, p1} contained

in D,

b) Jinfinite cone with vertexo and opening\r contained inC \ D.

Proof. We prove separately the two statements.

a) Foreveryw € 9D, we want to construct a cortk, (0w, Hy) with vertex inw, height
Hy, and openingr, which is contained irD. We consider four different situations, depicted
in FigureA.1.

al) If 2p; < po and2p; < |w| < po, the star-shapedness with respecBig implies
that there is a cone of vertex and sides tangent t8,,, which is contained irD; this cone
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. ) 2 .
has opening,,m, with 6,, := — arcsin 12N >0, and heightd > |w| —p1 > 2p1 — p1 = p1,
™

|w]
thus it contains a cong, (6, Hy).

a2) If jw| = p; andpz < 2p;, theng < Om < m and there is a cone with vertexand
openingdr inscribed inB,,, , with height equal to:

H = py — prcos(m — 0m) = p1(1 + cosOm) = py (1 + cos 2 arcsin &)
P2
2
P 2p1 2p1
= p1<1 +1- 2%) = =5 (p3 — 1) = =5 (p2 + p1)(p2 — p1)
P2 P2 P2
p1<p2<2p1 3
> (1+%>(P2—P1) > 5(02—/)1) > Hy.
2

a3) If jw| = p; and2p; < po, thenfr < %, so a con&,, (67, Hy) is contained within
the equilateral trianglé&’ C B,,, with vertex inw and heightd = %m > H,.

ad) If p; < |w| < min{2py, p2}, then there is a cong, of vertexw, sides tangent
to B,, and heightZ > 0, which is contained irD and has opening,,m, as inal). As in
partsa2)-a3), we can construct a corte C B,, with vertexw, := ‘%‘w, openingfr and
height H > %min{pl,pg — p1}. Then, since < 6, the translation of vectow — w,. of
the coneC, is a cone with vertexv, openingfr and heightd > H,, which is contained in

Co UBp1 c D.

a2)
O On
0 P/
a3) ad)
w = P

Fic. A.1. The four cases in the proof of part a) of Lemma. The shaded triangles represent the cones
Cw (07, H), with H > Hp. In these examples we have chosegw = 0.

b) The star-shapedness with respecilg implies that, for anyw € 0D, there is an
o . 2 . .
infinite cone of vertexv and anglé,, 7, with 6., := — arcsin 14% > 6, contained inC \ D;
s

|w]
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sinced,, > 6, we have the second (exterior) cone condition.
REMARK A.2. If D is a polygon with interior anglegay,7}4_, and satisfies the hy-
pothesis of LemmaA.1, then

2 2
farcsmp—<ak 2—farcsmp—1 k=1,...,N.

™ P2 ™ P2

Appendix B. Proof of the upper bound (3.2) for non convex domains. We consider
first the case of polygonal domains (with straight sides)eot®nB.1, then we extend the
result to more general curvilinear domains in Sec#2. We recall that we are assuming
0<h<l1.

B.1. Polygonal domains. Denote by{a{'n}}<, and{a w}}j”f the convex and non
convex internal angles, respectively, Bf by {w{ }7<, and {w“};Y¢ the corresponding
vertices and set

z = M (wy) k=1,...,nc,
NC = 1(w]1€\/c) k=1,....,nnc.

The following relations hold (see FiguB:1 for the geometrical meaning of the parameters):

0<af <1, 0<p=1-af <1 k=1,...,nc,
l<al9<2 —1<BN9=1-aY°<0 k=1,....,nn0,
nnNc

Zﬁk +Zﬁ

Recalling the definition of whenD is non convex:

2
& = —arcsin Po ,
™ 1—p

from Assumptionl.1and RemarlA.2 we have

af > ¢, BC <1-¢ k=1,...,nc,
2_042[0257 B;JCVCZf—l k=1,....,nyc.

One of the crucial ideas of this proof is the fact that the sdinhe 3,’s corresponding
to an arbitrary set’ of consecutiverertices of a polygor? C B;_,, which is star-shaped
with respect taB,,,, satisfies the inequalities— 1 < >, ., Br < 1 — &. It will be therefore
necessary to take into account the ordering of the verticegydhe polygon.

As in section3.2, fix wy, € Lj, and set;, = o~ (wy) € OB14x; thusz, = (1 + h)e'?,
for somef € [, 7]. Definez = e, w = ¢(z), and denote by the (straight) segment of
lengthh connecting: andz;,. From @.5) and @.4) we have

fwn —w] = |p(zn) — 0(2)] < / ¥ ()] dy

c \NC

_c1—af _ 1—ay, NC
/| = 1] Hly | H ly—=z¢ dy (@1
nc NC
s/SHw—zkrﬁk Tl - =
k=1
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FiG. B.1. The geometrical meaning of the parametasss and 8;'s. Theay’s are all positive, while the
Bi's are positive only on convex cornergi, 84, 8 < 0 < B2, 33, B5. The angle between the first and the last
segment can be computed by summing oveBih® i.e., 5. := 22:1 B In this examples.. is negative since the
corresponding internal angle is non convex.

sincey’(c0) < 1 and|y| > 1. Finally, for anyy € S,

ly—zg|<2+h  k=1,...,nc,
|yf§£’c|§2+h k=1,....nnc-
With no loss of generality, we considér= 0, i.e.,z = 1, z;, = 1 4+ h and§ lies in the
positive real axis.

We consider separately four situations.
i) D has only one non convex angle.this case, the terri in (B.1) can be bounded

by
NC NC
T§(2+h)z’cﬁ’?/|y*?{vc|ﬁl dy§27/\y*?{vc|ﬁl dy,
S S

sinceh < 1and)_, B¢ < 3,duetod_, BY + BNC =2andBlN > —1.
Sincep’¢ < 0and|y —z“| > |y — 1| forall y € S, we have

7hﬁ{\’c+1 - 27hE
BNC+1 - &

BNC h NC
TgQ?/\y—ul dy:27/ sP T ds =2
S 0

becausggN¢ > —1,h < 1andpN® +1 > €.
i) D has only two non convex angles, and these angles are nonadngeAssume

|1 -z < |1—2¢.

nc,1

The pointsz;’“ andz)'“ separate the points i } ., into two blocks {z§; }'<;

and{z§,}7°. We set

—C —C
Ngar,1 = argmax |1 — zjyl‘ , Nfar,2 = argmax |1 - Zj,2‘ :
Jj=1,..nc1 Jj=1,..nc2
and assume
=C =C .
’]‘ - anar,l S ‘1 - anar,2 )
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consequently, as can be inferred from FigBr2,

<|1-zy°|. (B.2)

~
.....

~—ls
AT

2ve

c

ngc,2,2

z,

FIG. B.2. The location of the pre-vertices,’s in case ii) with two non consecutive non convex corner® Th
four dashed segments have lengtisx {|1 -z, ‘1 -z5. } < min {|1 e ‘1 —-z¢ }

Nfar,2

We have

nc,2

nc,1
TZ/ |y—E£VC|BfVC ’y_géVC’ﬂéVC H ‘y—521 ﬁjc,l H |y_252 Bfg dy
s i 1

c c
_NoBNC _NCBYC o |Xifin o |XZifie
= / |y — A | ' |y — %2 ’ ’ y— anar,l Y~ Zngora dy
S
(B.2), 85,>0 NC NC c . B¢
' _NC|B _NC B2 T2 B, _C 3 Piz2
< / ly—z0C" |y =2 Ty =2 dy.

a) If BY° + 32, 851 = 0,

NC
_gNC _No B¢ RPCTHL 27RE
T < (24 h)* " /|y—z{VC|1 dy < 27— <
S 1 +1 f

b) If B¢ + 32, 85, <0, we write
NC NC C
T<(2+h)% ﬁfz/ |y — ZVO IR A g
S
If we prove that

B =Y+ B+ BL = €1, (B.3)
J

then)", 35, = 2 — #* < 3, from which

* 27hE

T< 27/ ly -z dy < 2ht (B.4)
s §
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In order to conclude, we only need to pro&yJ).

Consider the counterclockwise oriented pardéf formed by the consecutive
(oriented) sidess;, i = 1,...,m = nc1 + 3, abuttingw'®, w¥), j =
1,....nc1, andwl'©. Let/; be the oriented line containing, i = 1,...,m.
SinceD is star-shaped with respectf),,, then3,,, lies in the intersection of
the half planes lying on the left of thg’s.

Let K be the infinite cone obtained by intersecting the right hieihps gener-
ated by¢; and/,,. Its opening i1 + 8*)m < 7, with 5* < 0 (cf. FiguresB.1
andB.3).

DefineD’ := D\ K; D’ only has one non convex angle of internal amplitude
(1 — p*)m. The ballB,, lies on the left side of every edge &f, thus this
domain is star-shaped with respect®g, andD’ C B,, by RemarkA.2 we
havel + * > ¢ (cf. FigureB.3). Therefore,

Br>€6—1>—1,

which concludes the argument.

c
Wa 2

FiG. B.3. An example of a domaiP with two non consecutive, non convex cornes$'C andw{N ©). In this
casenc,1 = 3,nc,2 = 4andm = 6. The cone is delimited by the dashed linés and/s. The ballB,, lies on

the left of every edge whetD is run counterclockwise. The sBY = D \ K is star-shaped with respect ), .

iii) D has only two non convex angles, and these angles are consedife have
NC NC
T < (2+h)21ﬂf/ ’y_zi\’clﬂl +83 dy,
s

assuming agaifl — z}'“| < |1 —z)“|. If we prove that
Br= B+ 5 261> 1, (B.5)

thenzj ﬂjc =2 — * < 3, from which we get agairg.4).
For the proof of B.5), consider the part o®D formed by them = 3 consecutive
sides abuttingu} ¢ andw’’“; the rest of the proof is identical to that d&.Q).

iv) D has more than two non convex anglé&e generalise the argument of stép
Assume that we have blocks of consecutive convex angles, alternated bjocks
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of consecutive convex angles. With a similar notation asteefve can write

nN01
T</H[ ’y—z it H‘y—z” J’}dy

Setting, fori =1,....n

— =C o . _NC
Nfar,; = argmax |1 — zM’ , Mnear,i = argmin ’1 —Zji |»
Jj=1,..nc j=1,..nnc,:

we can bound” as
NC
T§~/SH [‘y_zr]:{sgr,i‘zjﬁ]'l |y_2’/farz|Z ﬁj, :|dy :/SP(y>dy

We order the blocks in such a way that

[1—205 ] < [1—=2h i=1,...,n—1,

near,i+1 ‘

-z | <P -Zhia| i=1...n—1;
consequently (see FiguBe4),
1—zh < 1-208m]  i=1...n—-1 (B.6)
Thus, we have
P(y) <
=2 [P [T G P 525 ] )52
i=1

C
Zfar,4

FiG. B.4.The pre-vertices;, satisfy the ordering relatio(B.6). Notice that:\.<\ | andz{]_  (inthe picture

n = 6) do not enter the relation. Therefore it is not relevant whime between(, , and zrﬁg‘r 1 is closest tal.
The number of pre-vertices lying in the upper and in the loladf of the complex plane does not affect the ordering
of the distances.

We consider the term With index — 1 in the product and look at its exponent

Q2 1*25 ;
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a) ifitis > 0, we combine the term with index— 1 with the following term (the
last one) and obtain

- >, By ;B B
P <|y rjlvcgrl s |:H ‘y ncgr z+1| ” ” +1:|
. (2 + h)zg /Bjc:n—l—"_Zj BJII\,,’V?J'_Z‘]' ﬂjcn’

b) ifitis < 0, we combine the term with index — 1 with the previous term (the
one with indexn — 2) and obtain

n—3
P < ’y 7nNe§rl‘E 511 |:H |y Znear z-‘rl’z ﬂj 1+Z ﬂJ 1+1:|

7NC ‘E] B]’,n—2+2j B]]'\,[n71+2j ﬁjc,‘nflJij B]NE (

‘y near n—1

24 ) %i O,

Then, we proceed backward, considering the term of withxnde- n — 2 and,

depending on whether its exponentis0 or < 0, we combine it either with the
following term or with the previous term the way we did befaaad so on, until the
termi = 1. We end up with three factors in the upper bounddf)): the first one

is |y — Z05, 1]2 %% the third one i2 + h)Z, with B > 0, and the second one

is |y — Zhee, 2\ If A > 0, we conclude as in stej), casea), while if A < 0, in
order to conclude as in stéip, caseb), we need to prove that

Bri=) BNC+A>E—1> -1 (B.7)

J

Since the blocks of (convex an non convex) angles correspgial thes’s entering
the expressio jff’lc + A are consecutive, the proof @ (7) can be carried out as the
proof of (B.3).

The proof in the polygonal case is complete.

B.2. Domains with non-polygonal boundaries. We begin with the following trigono-
metric lemma.

LEMMA B.1. Let0 < Ry < Ry < 400, and fix two distinct straight lineé, and /¢,
that are tangent taB, in the two pointsy; andys (y1 # y2), respectively. We denote by
z; the intersection between the ciraddr, and the linef; such that, in a counterclockwise
orientation,z1, y; and0 appear with this ordering as vertices of a triangle. Syminatty,
we denote byr, the intersection between the circi83, and the line/; such that, in a
clockwise orientationzz, y» and0 appear with this ordering. We denote by, the infinite
convex sector with openingr, 0 < n < 1, defined by the two half lines generating at the
origin and passing througIm andzs, respectively (see Figuig.5).

Ifn< = arcsm R L, then/; and/, intersect at a pointv that lies in the interior ofC;,.
Moreover, |f|w| > Ry and if we define := |w — x1| = |w — z2| > 0, n is related toe, R1
and R, by the following formula:

2 R4 /-T2 2
0 < (e, Ry, Ra) 2tevis - M n (g

— — arccos < —arcsin —.
™

RoyJ+ R3+2e/RI-F " 2

For e > 0, the functiore — 7)(e, Ry, Ry) is continuous and strictly increasing. Fé; > R,
the functionR, — n(e, R1, R2) is continuous and strictly decreasing.
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FIG. B.5. The geometric configuration in LemrBal

Proof. We consider the limit case = = 2 arcsin Rl < 1. Then,Ry sin 0F = R; and, as
depicted in Figurd.6, the lines?; and/, are parallel to each other. Therefore, wheneyer
is smaller than this threshold valug,and/, will intersect on the central half line «f,,.

We apply Pythagoras’s theorem twice: to the triangle ofivestr,, y; ando, yielding

lz1 —v1]?> = R3 — R2, and then to the triangle of vertices y; and0, leading to

2
lw|? = R2+(5+\/R2 R%) =¢e>+ R3 +2¢\/R3 — R}.

From the law of cosines applied to the triangle of vertizes; and0, we obtain
2|w| Ry cos %T = |w|? + R3 — £?

from which the identity in the assertion follows.
The monotonicity in dependence©énd R, can be verified by computing the derivative
of the expression ing.8). The last inequality in the assertion follows from

2 2 2
n(e, R1, Re) < Elgglo n(e, R1, Ra) = - arccos 4 /1 — % ~ arcsin %

which uses the monotonicity gfas a function of, and the identityin arccos v/1 — t2 = |¢|.
0

We can now complete the proof of the bouBd in the general case. In order to do that,
we will construct a polygo®. O D, which is star-shaped with respectiy,. The maximal
distancesup,, ¢ 5 p. d(w, D) will be made arbitrarily small, and the paramege(defined in
Theorem3.1) relative toP. will converge to the one relative tB. Then, invoking the result
of SectionB.1 completes the proof in the case of non-polygonal domains.

Consider a domai satisfying Assumptioi.1 Fix ¢ > 0. Define an intege’V € N
such that

2
Te \= N < 77(5a/007 1- p))
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Ly

FiG. B.6. The limit case; = %arcsin % in the proof of Lemm&.1

wheren(-, -, -) was defined in formulaR.8). We select the pointe; € 0D, j =1,..., N,
that have complex argument (namely, angular polar cootejjrequal tod; = := jn.m for
j=1,...,N. (Inthis proof we assume that all the indiceare taken modulug/.)

Let fj and/; be the two tangent (straight) lines 1§),, passing throughw; and such
that, sitting inw; and looking atB,,, éj is on the left and’;" is on the right (notice that the
two lines do not coincide, sing® < p < |w;|), see Figurds.8.

Consider the two IineéJr andé; ;. If [w;| = |w;41], then they satisfy the assumptions
of LemmaB.1 (sinceR, — 2 arcsin I’;" is monotonically decreasing, the definition mf
made above guarantees the needed bound for any vajue<ofR; = |w;| <1 — p). Thus
they intersect at a point; such thafv;| > |w;| = |w;4+1| and whose complex argument
satisfiesd;m < arg(v;) < 0417 Moreover,|v; — w;| = |v; — wj1] < €, due to the
monotonicity of the mag(e, po, |w;|) — «.

On the other hand, ifw;| < |w;41]| (the opposite case is analogous), theties closer
to w;41 than in the previous case (see FigBr&); therefore, in all the situations, we have

d(vj,0D) < min{|v; — wjl, |v; — w1} <e. (B.9)

po andr., due to the star-shapedness assumptiofi,can not be
arbitrarily small, namely it can not trespass the point dedaevith z in FigureB.7.

Fic. B.7. The comparison of the cas@s;| = |w;+1] and|w}| < |w;1] for a fixedw; 1. In the second
case, the constructed poin is closer tow; 1 than in the first case, namely — wj11| < |v; — wj41].

Notice that every domain which is star-shaped with respedsj, and such that its
28



boundary contains the point; (e.g., the domaiD satisfies these requests) can not cross the
segments$v,_1, w;] andw,, v;].

FiIG. B.8. The construction of the star-shaped polyg@nenclosing the non-polygonal, non-convex donmain

Now we define the polygoR. with 2N sides whose vertices atg , v1, wo, . .. , Wy, UN.
Every edge ofP. is part of eithetﬁj or /5. The polygonP. satisfies the following conditions:

i) P- is star-shaped with respect I8),,, since the continuation of each of its edges is
tangent ta33,,, and (in a counterclockwise orientation@p.) leaves,,, on its left;

i) D C P, since it containg@verydomainD’ that is star-shaped with respect/i,
and that satisfiegw, } ., C 0D';

iii) for everyw € dP., d(w,dD) < e; in fact, since{w;})_; C 9D, the maximum

distance fromo D is achieved in one of the vertices and this is controlled by the
bound B.9).

Then we can conclude as in the convex caseakixc L;, = Lj,[D]. Choosé) < ¢ < p
and define the polygoR. as above (so thd?. C B; andc,o’PE(oo) < 1). Thenwy, € Ly [Pz]
with »’ < h, as a consequence of Lem22. Let z, := w;gl(wh) = (1+1)e?, and define

2

z:=e", ¢ = 2 arcsin 2z < & Then, from SectioiB.1,

d(wn,dD) < d(wn, ¢p,(2)) + d(pp.(2),0D) = |pp. (z1r) — ¢p.(2)| + d(¢p.(2), D)

27
< hée te.
3

€

Since this holds true for evefy< ¢ < p, by taking the limit for= — 0, we getd(wy,, D) <
Fhtforallwy, € Ly.
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