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Abstract

We propose a velocity-based moving mesh method in which werti@ nodes so as to preserve
local mass fractions. Consequently, the mesh evolves ta&efihere the solution presents rapid
changes, naturally providing higher accuracy without teechto add nodes. We use an integral
approach which avoids altering the structure of the origatpations when incorporating the
velocity and allows the solution to be recovered algebtgicé/e apply our method to a range of
one-dimensional moving boundary problems: the porous nmediquation, Richards’ equation,
and the Crank-Gupta problem. We compare our results to exautions where possible, or to
results obtained from other methods, and find that our ajgproan be very accurate (1% relative
error) with as few as ten or twenty nodes.

Keywords:, Time dependent partial fierential equations, Finite flierence methods,
Velocity-based moving meshes, Mass conservation
2010 MSC;, 65M06, 92-08, 92C99

1. Introduction

Time-dependent partial ierential equations (PDES) on moving domains, with knowneffux
across the boundaries, occur regularly in physical andgichl modelling, and must often be
solved numerically. The location of the moving boundaryfisicritical and may require special
numerical resolution. In particular, the solution may éxhsingular behaviour at the boundary
that is challenging to capture numerically.

Adaptive numerical schemes modify the mesh during the ecofrsomputation in response
to changes in the dependent variable (or its approximaiimyder to achieve greater preci-
sion angor greater #iciency. Generally, an adaptive mesh scheme becomes [iefetaa
fixed mesh scheme when areas of interest represent onlytefrat the domain being inves-
tigated. Increasing the resolution in these areas may teecomputationally less expensive
than refinement of the mesh over the entire grid. The most acomiiorm of mesh adaptivity
is h-refinement adaptivity which involves repeated subdivisif the intervals of a fixed mesh.
Other strategies include-refinement, in which the solution is represented locallyhlgher or-
der polynomials, and-refinement in which the mesh points are relocated at eachgtap. The
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use ofr-refinement has been stimulated by interest in geometrégiation, in particular scale
invariance (see, e.g., [7]). For scale invariarffetiential equations, independent and dependent
variables are treated alike. Arrefinement method varies the solution and the mesh sinasltan
ously, meaning that the scheme exhibits the same scal@anearas the underlying fiierential
equation. The article by Budd, Huang and Russell [7] and trek oy Huang and Russell [14]
describe many theoretical and practical aspectsaafaptivity.

In this paper a particular-refinement adaptive scheme is described for the solutiamef
dimensional time-dependent PDEs on moving domains. Theapp relocates a constant num-
ber of nodes by moving the mesh points, keeping a node loedtedlch moving boundary. We
show that a mesh with as few as ten or twenty nodes ffianarelative error of less than 1% (see
Tables 1-4 in§4). The work we present here preserves mass (or relative asaggpropriate),
causing the mesh to naturally refine where the solution haghadgnadient. This is particularly
useful for solutions with blow-up, or (as demonstrated harénite slope. Attractive aspects of
the approach are that no interpolation of the boundary igired, only the moving domain need
be discretised, and the continuous movement of the meslhsgallows easier inclusion of time
integrators.

Underr-refinement nodes may be relocated in many ways, accorditing tchoice of moni-
tor functions, and the solution is often found from a modifigiain of the PDE. A mesh equation
is often solved simultaneously with the modified PDE so aseioegate the node positions in
tandem with the solution, as in the Moving Mesh PDE approdc¢ch 8], the Moving Finite El-
ement method of Miller [18, 19, 21], or the parabolic Mongeydere approach of Budd and
Williams [5, 6]. By contrast, in the method described in théper a single time-dependent equa-
tion is solved, that of the mesh, the solution being deteechimigebraically from a conservation
principle. The approach is a finiteftBrence version of the velocity-based moving mesh finite
element scheme described by Baines, Hubbard and Jimack, iim jizhich the mesh equation
is based upon conserving a proportion of the total integrelss) of the dependent variable in
the domain. The method in [1]@érs from methods depending on the technique of equidistribu
tion [4, 13, 5, 6] since equidistribution is not an integratpof the strategy, but is related to the
Deformation method of Liao and co-workers [16, 17] and to @@ometric Conservation Law
(GCL) method of Cao, Huang and Russell [8]. The scheme destiierein has been applied
to a specific tumour growth problem in [15]. Here we geneeali®e approach to a wider class
of problems, provide key implementation details, and shamerical results for three filerent
nonlinear dffusion problems, each example demonstrating a key featsemafsom the problem
in [15]. Moreover, we validate our results via comparisotttwkinown exact solutions and with
results from other (unrelated) approaches.

The layout of the paper is as follows. §2 we describe the conservation approach, and its
finite difference implementation. First, §2.1, we consider mass conserving problems. Then
in §2.2 these ideas are extended to non mass-conserving phking a normalisation tech-
nigue. In§3 the schemes are applied to three moving boundary problegs)ning in§3.1 with
a mass-conserving problem governed by the porous mediuatieqPME) (see, e.g., [24]), for
which we consider a symmetrical test problem, treated wish pne moving boundary. §§83.2
the method is applied to a test problem governed by Richaagisation (see [23]). This prob-
lem also conserves global mass but the test problem coesideunsymmetrical, so there are
two moving boundaries. The third problem, detaile®3, is known as the Crank-Gupta or
diffusion-absorption problem [9], for which global mass is rmmserved. We solve the Crank-
Gupta problem for two sets of boundary data, one correspgrtdithat of the original problem
(see [9]), and the other chosen so that we can easily verifyasults against a known exact
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solution. Numerical results for all our examples are prediih §4, and some conclusions are
presented ir§5.

We remark finally that our investigation is confined to ifnimundary-value problems for
which the solutioru(x, t) is one-signed in the interior of the domain, which isisient for the
validity of the method.

2. Conservation-based moving mesh methods

Let u(x, t) be a positive solution of the generic time-dependent s€¥lE

ou(x, t)

= LUk, t> % xe (a(t), b(t)), 1)

where £ is a purely spatial dierential operator. In all of our examples we have a moving
boundary ai = b(t) at which we impose the following boundary conditions

u(b(t), t) 0, (2
u(b(t),t)(;—? = 0 ©)

The initial condition is
u(x t% = u’(x), xe (a@t°,b(t%).

We introduce a time-dependent space coordir@tda) which coincides instantaneously with the
fixed coordinatex. Consider two such coordinategx;, t) andX{x., t), in (a(t), b(t)), abbreviated
to X1(t) and X5(t). The rate of change of the mass in the subinterxalt), X,(t)) is given by
Leibnitz’ Integral Rule in the form

d %a(t) %a(t) au(&t) 0
— uatds:f ( + —(u tvt)ds, 4
=3 , us o TR s v ) (4)
where
dx
vt = | 5)
X=X

is a local velocity. We denote the total mass by

ot) := f :It) u(x, t) dx. (6)

2.1. A method based on preservation of partial masses

We begin by describing a solution method for problems thaseove the total integral (global
mass) of the solution, i.e. for whid{t) remains constant for all> t°. Sincexi(t) andX(t) are
arbitrary, equation (4) demonstrates the equivalenceeof #igrangian conservation law,

d %o (t)
& f | usDds=0 @
X1
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and the Eulerian conservation law,

ou(x, t) . 0
ot ox

From (8) and the PDE (1) we have

(u(x, t)v(x, t)) = 0. (8)

Lu(x,t) + O%(u(x, tv(x, 1)) = 0, (9)

which, givenu(x, t), may be regarded as an equation for the velogixyt). For a unique solution
of (9), u(x, t)v(x, t) must be imposed at one point which may be thought of as am&hpoint.
Integrating (9) froma(t) to x,

X

Lu(s t) ds+ u(x, t)v(x, t) = u(a(t), t)v(a(t), v),
a(t)

whereu(x, t)v(x, t) is imposed at the anchor poirt= a(t). The velocityv(x, t) is then given by

u(a(t), t) va(t), t) — [ Lu(st) ds
v(x, 1) = e t)fa(t) , (10)

at all interior points, since(x,t) > 0 in the interior of the domain.
Our numerical method is based on the idea that poi(st) of the domain can be moved
with this velocity in a Lagrangian manner using

(%t + At) = K(x, 1) + At V(X, t) + O(A1)>. (11)

To recover the solutiom(X(t),t), given X (t) and Xz(t), we use the conservation law (7) in the
integrated form

%o (t)
f  UsD d5= o). %(0), (12)

wherea(t) < X3 (t) < %(t) < b(t), and

%2(t0)
(%1 (1), %a(t)) = c(%1(t0), %(t9)) = f uwo(s) ds.

%1(t%)

A one point quadrature approximation to (12) leads to

o o C(%a(t%), %(t%)
ux.b = Xo(t) — (1)

whereAX = %(t) — %,(t), for all X € (X1, X2). Boundary conditions may be imposed «(¥, t) at
this stage. Examples are describe@3nbelow.

We now define our notation. Given a time st&p> 0 and a fixed numbeX + 1 of spatial
nodes, choose discrete tim&#s= mAt, m= 0,1, ..., and discretise the interval at each discrete
time t™ using the nodal pointB(JFn =X(tM, j=0,1,...,N, forwhicha(t™) = XJ'< X" < ... <
X\ = b(t™). Also define approximationsd" ~ u(%;,t™) andV{" ~ v(X;, t™).

4

+0(AR), (13)



102 Our finite diference moving mesh algorithm for mass-conserving probisertteen as fol-
lows. Choose initial node positionﬁ’, j=0,1,...,N, with corresponding approximate solution

104 vaIuesUJQ > 0, and use them to determine the approximate masses

Cj = (XPur = X7-0) U, j=1...N-1

Then at time™ form=1,2,..., givenX™ andU" we computeX™* andU{™* as follows:

106 1. Evaluate the interior velocities {. (10))

—upvp- feo Lu(s t™ ds
Vi = T :

where the integral is discretised, for example, by a trapaziule. At the boundaries
108 extrapolate the velocity from interior values.

2. Evolve the nodal positions™, j = 1,...,N — 1, in time fromt™ to t™? by the explicit
110 Euler timestepping schemef(. (11))

XM= X+ AtV (14)

3. Recover the solutiod Jf"” at interior points asqf. (13))

C.
U?H—lz ﬁ, J = 1,...,N—1, (15)
Xj+1 - Xj—l
12 with U™ = 0 from (2) andU™! being updated either from given boundary conditions or
N 0

by extrapolation, depending on the nature of the problem§{3g

ue  2.2. A method based on preservation of relative partial regiss

For more general problems that do not conserve negggdefined by (6)) varies with time.
s Hence (7) and (8) no longer hold. We may however make use bhitzi Integral Rule applied
to thenormalisedfunctionu(x, t)/6(t), giving

d (1 %O 1 (O faust) 9 6(t)
a{@ f - usy ds}—% » ( o+ 3l DS D) - s ) ds (16)

s foralla(t) < %(t) < %(t) < b(t), wherev(x, t) is the local velocity (5) and(t) = dg/dt. Since
X1 (t) andXy(t) are arbitrary, equation (16) shows that the Lagrangiasemation equation,

1

o

1

oy

d{ 1 fiz(t) ( )d} 0 a7
— 9= u(s,t) dsy =0,
dt {6(t) Jx.o
2 IS equivalent to the generalised Eulerian conservatioatou,
duxt) o o(t)
a0 = —= . 18
ot + ax(u(x,t)v(x,t)) e(t)u(x,t) (18)

5
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We derive the velocity from this generalised form in the sananer that we used in (8). That
is, from (18) and the PDE (1) we derive

A(u(x HV(x. 1) _ o) U

LU+ === = %0

(x.1), (19)
which, givenu(x, t), can be regarded as an equationigt t) in terms ofg(t) andé(t). As before,
for a unique solutioru(x, t)v(x,t) must be imposed at the anchor point= a(t), so that the
integral of (19) froma(t) to x gives
X Q(t) X
u(x, t)v(x, t) = u(a(t), t) v(a(t), t) - Lu(s;t) ds+ — u(s,t) ds.
a(t) 6(t) Jaq

Hence the velocity is given by

u(at), ) at), ) - [, Lu(s b ds+ “ 7 U(s 1) ds
- u(x, t) (20)

V(x,t)

at all interior points, since(x,t) > 0 in the interior of the domain.
To evaluate® we integrate (19) frona(t) to b(t), assuming that(x, t) andv(x, t) are continu-
ous up to the boundary, yielding
bit) b -
Lu(s 1) ds+ [u(x v(x. )|+ = 6(0), (21)
at) a(t)

which determines explicitly (using (3)).
The pointsx(x, t) of the domain are now moved with the velocity (20) in a Lagjian man-
ner, again using (11), and we can also updaising

6(t + At) = 6(t) + At 6(t) + O(AL)%.
To recover the solution(X(t), t) we choosexs, X», such that (17) holds, in which case
%o (t)
@ % (t)

for a(t) < Xi(t) < %(t) < b(t), where

u(s, t) ds = c(Xy(t), Xx(1)), (22)

1 %1(1%)
0. %) = SEO) %D = gy [ s

and thus

c(%a(t), %o(1))
o(t) — % (t)
for all X € (X1, %2), as in (13). Again, the boundary conditions may be impoged(&, t) at this

stage.
The discretisations given §2.1 are augmented by the additional approximati®fiss 9(t™)

u(x, t) = 6(t) +0(AR) (23)

and®™ ~ §(t™), and then our finite dierence moving mesh algorithm for non mass-conserving

6



1w problems is as follows. Choose initial node positioﬁ’smith corresponding approximate solu-
tion valuesU? > 0, j =

N — 1, and use them to calculate the approximate relative masses

Cj= = (X?+1 X?—l)u?’

1w where®° is given by €f. (6))

22 01— X0 (U9 +U2,,).

j+1)>

using a trapezium rule. Then at tim@form = 1,2,..., given®™, X}“ andU}“ we compute
w @™ XJF"” andUET1+1 as follows:

1. Evaluate the rate of chan@?®" of the approximate total mag" in the form ¢f. (21))
. XN
oM = Lu(s, t™) ds+ UQVY — Ug'VE,
X

where the integral is discretised using a trapezium rule;

146
2. Evaluate the discrete velocity at interior points@s (20))

Xm .
UGV - [y Lu(s t) ds +CO" _
VJ = Um N le,...,N—l,
j

148

where the integral is discretised using, for example, aezapn rule. At the boundaries
extrapolate the velocity from interior values.

150

3. Evolve both the nodal positions”, j = 1,.

,N -1, and the total mas®™ from t™ to
time t™* by the explicit Euler time- stepplng scheme (14) @W%! = O™ + AtO™.
152

4. Recover the solutiod" at interior points asq(f. (23))

Cj

— j=1,....N-1,
X, - X,

U?’z@m

and atj = 0, j = N as in Step 3 of the algorithm ¢P.1.

s 3. Examples

In this section we apply the methods outlinedsihto some specific moving boundary prob-
1 lems in one-dimension.
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3.1. The Porous Medium Equation

The PME is the simplest nonlinearfilision problem which arises in a physically natural
way, describing processes involving fluid flow, heat tranefadiffusion. It also occurs in math-
ematical biology and other fields [24]. We assume the init&h is symmetrical about its centre
of mass, taken to be the origin, in which case the PME takefothe

ou 9 ( 0u 0
= st xe (oo,
with u(=b(t),t) = u(b(t),t) = 0 andu(xb(t), t)db/dt = 0. For this problem the total mass (6) is
conserved and the centre of mass is fixed in time [24], fronchviti follows that the solution
retains the symmetry of the initial data for all time. We #fere model only half of the region,
i.e. X(t) € [0, b(t)], with a(t) = 0 as the anchor point for all For the half problem we have
ou
= =0
ox

by symmetry. From (10) the velocity is given by

at x=0, (24)

_ 10U 1o

1 X0 nOU B B
v(x,t):—mjo‘ a—s(u(s,t) B_S) ds = -u X = n o t>1% xe[0,b(t). (25)

Given XE“ and UE“, j=01,...,N, m=0,1,2,..., the finite diference algorithm of 2.1 is
used to calculate the velocity}“ at each nodg, j = 0,1,..., N, then the new nodal positions
XE“*l, and finally the approximate solutidm?”l. A standard discretisation of the velocity (25)
at interior nodes is

VL
! n

1 [(U][Tll)n - (Ujml)”)
X, =Xy ’
which, although of second order on a uniform mesh, is onlysa dirder discretisation on a non-
uniform mesh. An approximation which is second order on aungiform mesh (i.e. exact for

quadratics) uses all three valug8 ), U" andU';, and is

1 (Auimr) 1 (A
1| x|\ Taxe AXT |\ TAXT ]
V= -2 , j=12..N-1, (26)
xm
]

I _1

ﬁ i
where
Ac()j=()jxa— () and A_()j=()j—()j

(see [21]). We note that equation (26) is an inversely weiglsum, or linear interpolation, of
the gradients\. (U Jr")”/Aime. The velocity atx = 0 is zero and at the moving boundary= X{
the velocityV\] is extrapolated by a polynomial approximation using thrdja@ent points. The
new mesh is obtained at tint&* = t™ + At by the explicit Euler time-stepping scheme (14).

The updated approximate solutimn+1 is given by (15),j = 1,...,N-1. At j = 0 the
approximate solutiohJ{)ml is calculated using (26) witK_; = —X;, approximating the boundary
condition (24). At the outer boundart;),p,1+l = 0 from (2). Results are presentedsuh.

8
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3.2. Richards’ Equation

Richards’ equation is a nonlinear PDE which models the m@&rgrof moisture in an un-
saturated porous medium [23]. In the present paper we mogattecular form of Richards’
equation, where the solution describes liquid flowing doardg through an unsaturated porous
medium, making it applicable to the tracking of a contaneddiquid. The equation is of the
form

—_— = — _ 0
ot ax\ ax) ax’ t> 17, xe (a(t). b(t)), (27)

ou 9 (u”‘Z@) N ou”
for some integen > 2, with u(a(t),t) = u(b(t),t) = 0 andu(da/at) = u(db/ot) = O at the
boundaries. The total mass is again conserved in time [23¢ VElocity is given by (10) with
Lu defined as the right-hand side of (27),

V(X, t) — _un—3@ _ un—l — _ia(un—Z) _ un—l.

[0).4 n-2 o0x (28)

In a similar way to (26) we discretise (28) as

1 [(Aujm2 1 (Amm™
. 1 |ax | Tax |t e Tax R _
v = —umy, j=1....N-1
n-2 141 i
Axm T AT

]

Again, the outer boundary velocitiag), V[’ are extrapolated from interior points, using three
adjacent nodes. The new mexp**l is obtained fromVlfn by an explicit Euler time-stepping
scheme, as in (14). The updated approximate soluuliph‘, j=1,...,N-1,is given by (15),
and at the boundari¢${™* = U™ = 0. Results for this example are showrgif

3.3. The Crank-Gupta problem

The Crank-Gupta problem was derived to model thtudion of oxygen through an absorb-
ing tissue [9], but also applies within the Black-Scholesiework of financial modelling due to
the valuation of an American option being a similar free ltany problem [11].

The diferential equation is

du  &u
E:W_l’ 0< X<b(t), (29)
with boundary conditions

ou
— =0 at x=0, fort>0 30
Ix at x=0, fort>0, (30)
ou

u=0, 6_x:0 at x=Dh(t), fort> 0. (31)

For this problem the total mag§t) decreases with time due to the negative source term in (29).
The initial condition at® = 0 is taken as

u(x,0) = %(1 - x)?
9



204

206

208

210

212

214

216

218

220

222

for x € [0,1], as in [9], giving initial total mas#(0) = 1/6. Similarly, we can determine the
normalised partial integratgx) from (22) as

c(x) = %0) fox %(1— 9)? ds = x° — 3x% + 3x. (32)

The rate of change of the total mas$ is given by substituting the PDE (29) and the boundary
conditions (30)—(31) into (21), yielding

bi(t)
ot) = fo b(t)(azu 1) dx:[@_ ] = _bt). (33)

e ox 0

The velocityv(x, t) is obtained by substituting the PDE (29) and the boundangitions (30)—
(31) into (20) and evaluating the integral, giving $o€e (0, b(t))

1 . *(d%u 1 au
V(X, t) = m (H(t)C(X) - j(; {@ - 1} dS) = m (—C(X) b(t) - 6_)( + X (34)

(substituting fom(t) from (33) and using the boundary conditionat 0).
We use the algorithm df2.2. The discrete forr@; of c(x) at interior points is¢f. (32))

Cj = X2 - 3X? +3X;, j=1....N,
while the discrete forn®@(t™) of o(t™) is (cf. (33))
0 =-XI.
Also the discrete forn‘a/jm of the velocityv(x, t) at interior points is¢f. (34))
1 A_U:m) Y
m 1 m ATXT | ATXIT ATXT |\ AKX
V= —{-CX\ - 1

j m 1
Uj X T AT

+X(0)}, j=1....N.

At the outer boundary we would normally extrapolate the tataum velocity V[ from veloc-
ities at internal points and update the position of the ontete along with the internal nodes.
However in this case extrapolation can produce a positivetiary velocity whereas the bound-
ary velocity should be negative [9]. An alternative is to lexqgthe asymptotic behaviour of the
solution at the outer boundary with

u(x, t) ~ %(x— b(t))? asx — b(t),

following from (29) and (31). Therefore, in the discreteeag make the approximation

1
Ut ~ 007 -2

Xt = Xy f2umd (35)

(taking the positive square root).
The new node position):é}“*l, j =0,...,N at timet™?! as well as the new total mags™*!
are obtained by the explicit Euler time-stepping scheme.
10
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3.4. The Crank-Gupta problem with a modified boundary cawratt

There is no known analytical solution for the Crank-Guptalglem although approximate
solutions have been given in [10]. Hence, in order to compareresults to an exact solution
we have modelled the Crank-Gupta PDE with a modified bounciamgition for which an exact
solution is known, which can then be used for comparison [lje one-dimensional Crank-
Gupta problem with a modified boundary condition

ou g _ 0
aX_e at x=0, t>t", (36)
replacing (30), and initial conditions
u(x,0) = et - x, =0, xe[0,1], (37)

has solution

el _x—t x<1-t,
u(x, t) :{ 0 > 1t (38)

(see, e.g., [1]). By applying the conservation based moriegh method to this modified prob-
lem we can investigate the accuracy of the scheme for a nos-owserving problem. The
normalised partial integralfx) (see (22)) are

1 (% elex-1)-%
C(X):TO)L <e 1—S)dS= %_—e—lz’ (39)

whereg(0) = 1/2 — e from (6) and (37). The rate of changeof the approximate total mass
0 (21), and the velocity of the interior nodes (20), are

o(t) = 1-€"t—h(). (40)

V(x,t)

: du -1
ox) (H(t)c(x) Ix +x-1+e77], (41)
from (29), (31) and (36). Equations (40)—(41) are equivaieri33)—(34), but with an additional
+(1 - €71 term from the modified boundary condition. We again apphy dlgorithm 0f§2.2
using discrete forms of (39)—(41). At the fixed boundary§, = 0. At the moving boundary,
equation (35) is again employed since the moving boundangditions are the same as for the
original problem. The new node positio§**, as well as the new total mag&™*, are obtained
from V]T“ by the explicit Euler time-stepping scheme. The solutioneisovered in the same
manner as for the original Crank-Gupta probleng&3.

4. Numerical results

In this section we present results from applying the movirggimmethod to the four prob-
lems described above: the PME, Richards’ equation, thenatigCcrank-Gupta problem, and
the Crank-Gupta problem with modified boundary conditiolmseach case the initial mesh is
equally spaced. For each problem we examine the convergértbe finite diference moving
mesh method as the number of nodiescreases and ast decreases. We solve foe [t%, T]
and compute results fod = 10x 282 N = 1,2,.... In order to compare results forftérent

11
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values ofN, we denote the points of the mesh for a particular valus b X, i=0,....N.

We then compute bothys-y; () and gy () = U(X-y (1), t) for eachi = 0,...,10; this
new notation allows comparison &f(t) andu; y(t) at eleven dierent points, determined by

j =21, i =0,...,10, for variousN. Where possible we compare the numerical outcomes
with the exact solution and boundary position. When suchatisol is not known, we compare
with numerical results determined using other methods.abthecase we denote our reference
solution byu(x, t), and our reference boundary positionxgy).

Recalling that we have used explicit Euler time-steppingyrder to balance the spatial and
temporal errors, we takét = 0(1/N2), anticipating that the pointwise errdpgt) — Xy x(t)| and
[U(Xon-1; (1), 1) — Upiny;  (D)] will decrease adl increases, for eadh= 0, .. ., 10.

As a measure of the errors, we calculate faeorm of the error in our solution, and the
relative error of our boundary position, as defined by

Eu . T 10061 g (T), T) = Uge3y (T2 . IX(T) = %y m(T)l
" S WM. TE VIR

for N =1,2,3,4,...(i.e. N = 10,20,40,80,...). We investigate the hypothesis that

1 1

u X
By~ and B\~ o (42)

for largeN, wherep andq are the estimated orders of convergence. If (42) holds theexpect
that poy andapy defined by

u

E2N E;N
Pon = —10G | =], Gen = —10G (i |- (43)
N N
will approach the constant valupsandg asN increases. Since each step of our scheme is second
order in space and first order in time, and recalling thiat 0(1/N2), we might expect to see
p,q=~ 2.

4.1. Porous Medium Equation

We solve fort € [1,5] and compute results fod = 10 x 281 N = 1,...,6. We use the
self-similar initial conditions fon = 1, 2, 3,

n=1: ux,1) = 1- %2 b(1) = V6, (44)
n=2: ux,1) = (1 - XZZ) , b(1) = 2, (45)
n=3: uix,1) = (1 - 31—);2)3 , b(1) = 1—30 (46)

see [3, 22]. The exact solution at the calculated mesh pigints

_ 1 x2 \n
U(X, t) = tl/(Tn) (1 - W) ) (47)
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282
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288

290

294

and the exact boundary position, is

X(t) = b(t) = t¥2 M
n

As stated above, to balance the spatial and temporal errersseAt = O(l/NZ), precisely

At = 0.4(4‘N . Convergence results for = 1 are shown in Table 1. We see thg} and E
decrease alN increases. This suggests that as the number of nodes iesr@asapproximations
to both the solution and the boundary position are convgrgifhe p andq values presented
strongly indicate second-order convergence of both theamiaad solution and numerical bound-
ary position.

N Ex PN EX aN
10 | 7.715x 10°° - 1451x 1073 -
20 | 1.941x10° 2.0 3066x10* 2.2
40 | 4976x10* 2.0 7138x10° 2.1
80 | 1.259%x10% 2.0 1730x10° 2.0
160 | 3.166x10°° 2.0 4262x10° 2.0
320 | 7.937x10% 2.0 1058x10°% 2.0

Table 1: Relative errorky, andEY, for the porous medium equation with= 1.

The results from the self-similar solutions foe 1, 2,3 andN = 20 are given in Figures 1-3.
In each case we see that with only twenty nodes in our meshptinedary position (Figures 1(b)—
3(b)) is computed very accurately (better than 1% relativeratt = 5 in each case). From (47)
we note that the exact solution for= 2, 3 has a steep gradient at the boundaries, as can be seen
in Figures 2(a) and 3(a). Figures 1(c)-3(c) show exactly Hmwvmesh moves. We observe a
smooth even spread of the nodes, without mesh tanglingl, fhrek cases.

4.2. Richards’ Equation

In this section we present results from applying the movimgimmethod to Richards’ equa-
tion, as described i§3.2. To test that the numerical solution from the moving mesthod
converges we compare the solution with that from a very firedfixesh. All numerical results
presented here are far= 3. In the absence of an exact reference solution we do not aa@mp
the position of the boundary. X

We solve fort € [0,0.5] and compute results fod = 10x 2V-1 N = 1,...,4. We compare
the numerical solutions with a numerical solution calcediaby solving Richards’ equation on
the fixed meskxj € [-4,4], j = 0,1,...,10000, which is given by

Ui q(t) — u;(t

= (G"*Z)p%mw + (@55 )

D) — T (8
_(T_Z)f_%(t)w - (730,

LTj_+% (t+At) - LTj_+% ®
At

whereh = 8 x 1074 is the uniform spacing between two mesh points,

@740 = 3(@5a® + @50) and @0 = (@50 + @r10).
13
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(c) The mesh trajectory.

Figure 1: The PME with self-similar initial conditions far= 1 (44),N = 20 (N = 2), At = 0.04.
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(a) The approximate solution.

(b) The boundary position (relative errortat 5 is 0.0037).
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(c) The mesh trajectory.

Figure 2: The PME with self-similar initial conditions for= 2 (45),N = 20 (N = 2), At = 0.04.
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(b) The boundary position (relative errortat 5 is 0.0064).
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(c) The mesh trajectory.

Figure 3: The PME with self-similar initial conditions far= 3 (46),N = 20 (N = 2), At = 0.04.
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We take the initial conditions to be
u(x,0) = 1 -2, x e [-1,1].

To balance the spatial and temporal errors weAtse O(1/N?), preciselyAt = 0.4(4‘”) (as
with the PME). To compare solutions, we find the closest métcky; g(t), i = O,..., 10,
from the fixed mestx; (where the points match to four decimal places), then theesponding
solution on the fixed mesi(t) is compared t@i,qy; (1)

Computed values d&y for N=1,...,4(i.e.N = 10, 20,40,80) are shown in Table 2. The
relative error is less than 5% fof = 10 and less than 1% fdd = 20. The values opy suggest
second-order convergence.

N EX Pn
10 | 447x107% -

20 | 797x10° 25
40 | 1.90x103% 2.1
80 | 475x10% 2.0

Table 2: Relative errorgy, for Richards’ equatiom = 3.

The numerical solution as computed with = 40 is plotted in Figure 4. We see from
Figure 4(b) that the mesh moves smoothly and does not tangle.

4.3. The Original Crank-Gupta problem

In this section we present results from applying the moviegimmethod to the Crank-Gupta
problem as described i$3.3. The boundary position was calculated using (35). Eidi(g)
shows the numerical solution at various times fog [0,0.19]. We note that the solution is
behaving as expected; the outer boundary is moving in, wthisinner boundary is levelling out
to satisfy the boundary condition.

There is no known analytical solution to the Crank-Guptébfm but, as a comparison, we
may use the results of Dahmardah and Mayers [10] who deriealigier Series solution (also
see [20]). By comparing their results with earlier work ir2]they concluded that their method
is very accurate. To check whether our method convergéiasreases andt decreases, we
compareal, (0.1) andxy (0.1) to the results given in [10] fdr= 0.1, which are

0(0,0.1) 0.143177
X(0.1) = 0.935018

We solve fort € [0,0.1] and compute results fod = 10 x 2“‘}, N = 1,...,6. To balance the
spatial and temporal errors we use= O(l/NZ) = 1/[1600(4")]. As a measure of the relative
pointwise errors, we calculate

0(0.0.1) - Ug(0.) . IX(0.2) ~ % (O.1)

éu - — ) E - s
N |U(0,0.1)| N IX(0.2)]

for N = 1,...,6 (i.e. N = 10, 20,40, 80, 160, 320). We investigate the same hypothesis (42) as
in the two previous sections (though note that our measueerof is slightly diferent here). We
again computgyy anday via (43), but withEy, andEY| replaced byey, andEy, respectively.
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—t=0.8
0.7 t=1
t=1.2
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—t=16
0.5 t=18
--t=2
0.4
0.3
0.2
0.1
93 -
Xj,3(t)
(a) The approximate solution.
P
1.81
1.6¢
1.4r-
1.2~
.
0.8
0.6~
0.4+
0.2
% 2 ) 0 2
Xj,3(t)
(b) The mesh trajectory.
Figure 4: Richards’ equation with= 3, N = 40 (N = 3), At = 0.01.
N | W01 EX v Xy(0.1) EX an
10 | 0.142791 296x 1073 - 0.935761 M46x 107+ -
20 | 0.142721 3185x 10 -0.2 0.935385 325x10* 1.0
40 | 0.143040 ®$69x10* 1.7 0.935120 D91x10* 1.8
80 | 0.143141 314x10* 1.9 0.935043 B74x10° 2.0
160 | 0.143168 &86x10° 2.0 0.935024 @17x10° 2.0
320| 0.143175 1.397x10° 2.2 0.935019 D69x10° 2.6

Table 3: Relative error&Y, andEY, for the original Crank-Gupta problem.

18




324

326

328

330

332

0.5

—t=0
0.45F -=--1t=0.019Y4
o 1=0.038
0.4+ -=t=0.057}4
—1t=0.76
0.35k - _ ---t=0.095}
Tee-lL ©1=0.114
= 0.3 Sl == 1t=0.133§
= R A —1=0.152
55 0.25( T S ---t=0.171}
> 1=0.19

0.2

0.18-

0.16

0.141-

0.12-

0.08

0.06

0.04

0.02-

0.6 .8 1 1.2 1.4
xj,2(8)

(b) The mesh trajectory.

Figure 5: The Crank-Gupta problem solved using relativéiglanass conservatiotN = 20 (N = 2), At = 2 x 1074,

There are some irregularities in Table 3, as we might expeceésve are comparing relative
pointwise errors. Nonetheless, it would be reasonable ggest that the non mass-conserving
moving mesh method with explicit Euler time-stepping hasosd-order convergence. The
movement of the nodes fdd = 20,t € [0,0.19], is shown in Figure 5(b). The nodes are
moving smoothly and not tangling, with the ratio betweenrtbdes remaining roughly constant.
We observe that despite the boundary moving in, the nodéslsster towards the boundary,
where higher resolution allows greater accuracy to traekbtiundary movement.

4.4. The Crank-Gupta problem with modified boundary coondgi

As mentioned before, we were unable to compare the origir@hkGupta problem to an
analytical solution. However, by imposing an alternatieeihdary condition (36) we can exam-
ine convergence &y increases andt decreases over the whole region. We solve {0, 0.1]
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and compute results fod = 10x N1 N=1,...,6.We compare the numerical outcomes with
the exact solution (38), at= 0.1,

U(x;(0.1),01) = euwO@D09_x ((01)-01L

To balance the spatial and temporal errors weAtse O (1/N2) = 0.02(4 7).
Numerical results are shown in Table 4. We see Ejatecreases a increases, and the

N EX Pn
10 | 7.581x 1073 -
20 | 2502x10° 1.6
40 | 6.796x10* 1.9
80 | 1.825x 10 1.9
160 | 4879x10° 1.9
320 | 1.235x10° 2.0

Table 4: Relative errorgy, for the Crank-Gupta problem with modified boundary condiion

values ofpy suggest second-order convergence.

Figures 6(a)—6(b) show the results from imposing the matilfieundary condition, as com-
puted withN = 20. The solution to the original problem is very small for 0.19, see Fig-
ure 5(a), whereas the modified problem decays more slowlys i§tpartly because the outer
boundary moves in at a slower rate for the modified probleni¢hvban be seen by comparing
the movement of the last node in Figures 5(b) and 6(b) (wher®bserve that the boundary
moves in linearly). Lastly, from Figure 6(b) we note that tiedes move in a fairly uniform
manner, without tangling.

5. Conclusions

Work on moving meshes has evolved considerably over reasarsy becoming a versatile
tool to accurately simulate a wide range of problems. Thedddyantage of a moving mesh is its
ability to adjust its distribution to focus on areas of imt&l; such as a moving boundary or blow-
up. In this paper we have discussed one such method, a fiffiéeeattice moving mesh method
which is well-adapted to solving one-dimensional nonlmiedial boundary value problems.
The velocity was determined by keeping the relative pairiggrals of the solution,

%j(t)
a(t)

b(t) ,
Iy o uec D dx

u(x, t) dx

constant. This strategy is related to the GCL method andnidlasi to that used by Baines,
Hubbard and Jimack for their moving mesh finite element élgor[1].

We applied these methods to a number of moving boundary gmubto investigate the ef-
fectiveness of this moving mesh approach. The problems Wwedomumerically increased in
complexity, initially problems which conserve mass: thelPkhd Richards’ equation (both of
which are fluid flow problems). Then we looked at a problem waithariable total mass: the
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Figure 6: The Crank-Gupta problem with modified boundary i, N = 20 (N = 2), At = 2x 1074,
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Crank-Gupta problem, which models oxygetffasion through tissue. We examined the accu-
racy in all cases and found that the numerical solution ag®ae with roughly second-order
accuracy. Furthermore, for the Crank-Gupta problem, waddhat preservation of mass frac-
tions can lead to higher resolution at the boundary, whictesrable.

Throughout this paper we have used an explicit Euler tirapghg scheme. Other explicit
time-stepping schemes we experimented with are the higtikar anethods built into Matlab
(ODE23, ODE45, ODE15s); see [15] for details. There walke ldifference in the results from
all the Matlab solvers, indicating that none of the probléeasl to a stf system of ODEs for the
X;(t). We found that all the time-stepping schemes producedrateand stable results, with no
mesh tangling, provided that §iciently small time-steps were taken. It has been shown in [2]
that the PME can also be solved by this moving mesh methodangémi-implicit time-stepping
scheme using larger time steps.

We conclude that this moving mesh approach with an expimitstepping scheme is accu-
rate for a range of problems. In particular, only twenty rofind in most cases only ten nodes)
were stificient to achieve better than 1% accuracy for every examglegmted here.
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