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Abstract

To improve the quantity and impact of observations used in data assimilation it is
necessary to take into account the full, potentially correlated, observation error statis-
tics. A number of methods for estimating correlated observation errors exist, but a
popular method is a diagnostic that makes use of statistical averages of background
and analysis innovations. The accuracy of the results it yields is unknown as the
diagnostic is sensitive to the difference between the exact background and exact ob-
servation error covariances and those that are chosen for use within the assimilation.
It has often been stated in the literature that the results using this diagnostic are only
valid when the background and observation error correlation length scales are well
separated. Here we develop new theory for the multivariate case that demonstrates
that it is still possible to obtain useful results when the background and observation
error length scales are similar. We are able to the show the effect of changes in
the assumed error statistics used in the assimilation on the estimated observation
error covariance matrix. We also provide bounds for the estimated observation error
variance and eigenvalues of the estimated observation error correlation matrix. In
general, results suggest that when correlated observation errors are treated as uncor-
related in the assimilation, the diagnostic will underestimate the correlation length
scale. We support our theoretical results with simple illustrative examples. These
results have potential use for interpreting the derived covariances estimated using an
operational system.
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1 Introduction

Data assimilation techniques combine model states, known as forecasts or backgrounds,
with observations, weighted by their respective errors, to provide a best estimate of the
state, known as the analysis. The accurate representation of these error statistics is essential
for obtaining an accurate estimate of the state. Until recently, research has predominately
concentrated on how to estimate and represent the background error covariance matrix e.g.
Bannister [2008]. Observation errors have been assumed uncorrelated and often the data is
thinned or ‘superobbed’ in an attempt to satisfy this assumption. However, with the desire
and need to make better use of the observations, especially for high resolution forecasting,
the understanding and accurate representation of these statistics must be addressed.

The errors associated with the observations can be attributed to a number of different
sources, some of which may be state dependent and dependent on the model resolution
[Janjic and Cohn, 2006, Waller, 2013, Waller et al., 2014a,b]. A number of methods exist
for estimating the observation error covariances, but none are without fault. Previously,
estimates of the observation error covariance matrix have been calculated using methods
such as those proposed by Hollingsworth and Lönnberg [1986], Dee and Da Silva [1999] and
Desroziers and Ivanov [2001]. At present, a popular method is the diagnostic proposed in
Desroziers et al. [2005] (see Section 2 for a detailed discussion of this diagnostic). Initially
proposed as a consistency check, the diagnostic uses the statistical average of background
and analysis innovations to provide an estimate of the observation error covariance matrix.
The diagnostic provides an exact estimate of the observation error covariance matrix if
the assumed background and assumed observation error statistics that are used in the
assimilation are correct. In practice the statistics used in the assimilation will not be
exact, but Desroziers et al. [2005] show that in this case the diagnostic may still be used
to gain an estimate of the observation error variances and correlations. It is also shown
that the result may be improved if successive iterations of the diagnostic are applied.
As well as providing a diagnostic for estimating the observation error covariance matrix,
Desroziers et al. [2005] provide a diagnostic for estimating the background error covariance
matrix projected into observation space. They also provide one diagnostic that does not
rely on the background and observation error statistics that are used in the assimilation;
this diagnostic calculates the statistical expectation of the background innovation and
provides a result equal to the sum of the observation error statistics and the background
errors projected into observation space. This relation, first suggested by Hollingsworth and
Lönnberg [1986], has been used previously to diagnose both background and observation
errors e.g. Bormann and Bauer [2010], Bormann et al. [2002]. However, when estimating
correlated errors, determining how to split the estimated quantity into observation and
background errors is non-trivial.

Despite the limitations of the method proposed in Desroziers et al. [2005] it has been
successfully used to estimate observation error variances and correlations. It has been used
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in simple model experiments in both variational [Stewart, 2010] and ensemble [Li et al.,
2009, Miyoshi et al., 2013, Waller et al., 2014a] data assimilation systems and to estimate
time varying observation errors [Waller et al., 2014a]. The diagnostic has also been applied
to operational NWP observation types such as ATOVS, AIRS and IASI to calculate inter-
channel error covariances [Stewart et al., 2009, 2014, Bormann and Bauer, 2010, Bormann
et al., 2010, Weston et al., 2014]. When the correlated errors calculated using the diagnostic
have been accounted for in the assimilation, it has been shown to lead to a more accurate
analysis [Stewart et al., 2013, Stewart, 2010, Healy and White, 2005], the inclusion of more
observation information content [Stewart et al., 2008] and improvements in the forecast
skill score [Weston et al., 2014]. Indeed, Stewart et al. [2013] and Healy and White [2005]
show that even the use of a crude approximation to the observation error covariance matrix
may provide significant benefit.

As the popularity of this diagnostic grows, it is important to have a better understanding
of the results it produces. In an operational setting the iteration of the diagnostic is
not feasible as the use of correlated errors in assimilation systems is in its infancy. In
many cases iterating the diagnostic will be costly and time consuming and may produce
disappointing results due to the many assumptions that are already required to permit
operational assimilation. In some cases the computational framework for including these
correlated errors in the assimilation is not yet developed and this in itself is a necessary
challenge to overcome if the errors are to be used and the diagnostic is to be iterated.

Theoretical results relating to the diagnostic under some simplifying assumptions have
been previously published, both in the original manuscript of Desroziers et al. [2005] and
in workshop proceedings [Mènard et al., 2009, Desroziers et al., 2009]. These results relate
to scalar cases or consider the estimation of variances or the convergence of the method
under iteration. We discuss these results in further detail in Section 4. In this work
we develop new theoretical results relating to the diagnostic in the multivariate case and
provide insight into how well the observation error covariance may be estimated using just
one application of the diagnostic. We support these theoretical results with illustrative
examples using some simple correlation matrices. We provide results that show what effect
changes in the error statistics used in the assimilation have on the estimated observation
error covariance matrix. From the results discussed in Section 5, we show that:

• Estimated observation error variance decreases as assumed background error variance
increases.

• Estimated observation error variance increases as assumed observation error variance
increases.

• The power in the largest length scales of the estimated observation error correlation
matrix decreases as assumed background error variance increases.

• The power in the largest length scales of the estimated observation error correlation
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matrix variance increases as assumed observation error variance increases.

The power in the largest length scales can be obtained by considering the eigenstructure
of the estimated matrix and provides some insight into the behaviour of the estimated
correlation length scale. These results provide an understanding of the diagnostic that can
aid the interpretation of results when the diagnostic is used to estimate spatial correlations
in an operational setting e.g. Waller et al. [2014c]. We note that in the cases presented
here, the statistical nature of the estimation is not considered since results are calculated
directly and not from samples of the analysis and background innovations. When estimates
are calculated in this way it is inevitable that further noise will be introduced.

We begin in Section 2 by describing in detail the diagnostics of Desroziers et al. [2005].
We present the diagnostic in spectral form in Section 3. In Section 4 we prove some new
theoretical results and we illustrate and expand these results in Section 5. We conclude in
Section 6.

2 The diagnostic of Desroziers et al. (2005)

2.1 Notation

Data assimilation techniques combine observations, yt ∈ R
p, available at time t, with a

model prediction of the state, the background, xb
t ∈ R

n, which is often determined by a
previous forecast. Here p and n denote the dimensions of the observation and model state
vectors respectively. In the assimilation, the observations and background are weighted
by their respective errors, using the background and observation error covariance matrices
B ∈ R

n×n and R ∈ R
p×p, to provide a best estimate of the state xa

t ∈ R
n, known as the

analysis. The calculation of the analysis requires a comparison of the background with the
observations. To achieve this the background is projected into the observation space using
the, possibly non-linear, observation operator H : R

n → R
p. After an assimilation step the

analysis is then evolved forward in time using xb
t+1 = Mt(x

a
t ), where Mt is the (possibly

non-linear) model, to provide a background at the next assimilation time.

2.2 The diagnostic

The diagnostic described in Desroziers et al. [2005] makes use of the background and
analysis innovations to provide an estimate of the observation error covariance matrix.
The background innovation,

do
b = y −H(xb), (1)
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is the difference between the observation y and the mapping of the forecast vector, xb, into
observation space by the observation operator H. The analysis innovations,

do
a = y −H(xa), (2)

are similar to the background innovations, but with the forecast vector replaced by the
analysis vector xa. Desroziers et al. [2005] assume that the analysis is determined us-
ing,

xa = xb + B̃HT (HB̃HT + R̃)−1do
b, (3)

where H is the observation operator linearised about the current state and R̃ and B̃ are the
assumed observation and background error statistics used to weight the observations and
background in the assimilation. Taking the statistical expectation of the outer product of
the analysis and background innovations and assuming that the forecast and observation
errors are uncorrelated results in

E[do
ad

o
b
T ] = R̃(HB̃HT + R̃)

−1
(HBHT + R) = Re, (4)

where Re is the estimated observation error covariance matrix and B and R are the exact
background and observation covariance matrices. If the observation and forecast errors
used in the assimilation are exact, R̃ = R and B̃ = B, then

E[do
ad

o
b
T ] = R. (5)

Desroziers et al. [2005] provide further diagnostics. One makes use of background in-
novation and the difference between the mapping of the background and analysis into
observation space da

b = Hxa −Hxb. This allows the estimation of HBeHT ,

E[da
bd

o
b
T ] = HB̃H

T
(HB̃HT + R̃)

−1
(HBHT + R) = HBeHT . (6)

Again HBeHT = HBHT when the matrices B̃ and R̃ used in the analysis update equation
(3) are exact.

It has been shown by Desroziers et al. [2005] that using equation (4) it is possible to

obtain a reasonable estimate of Re even if the matrices R̃ and B̃ used in the assimilation
are not correctly specified, and successive applications of the diagnostic may be applied
to converge to a solution. Mènard et al. [2009] prove, in the case of scalar observation
and background error variances, that if the observation error variance is unknown and the
background error variance is known then successive applications of equation (4) will lead
to the convergence of the observation error variance to the exact value. Similarly if the
observation error variance is known, then an unknown background error variance may be
obtained by iterating equation (6). However, in the case where both the observation and
background error variances are unknown, it is shown that the iteration of either equation
(4) or (6) will converge to a solution, but one that does not match the exact statistics.
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Mènard et al. [2009] also show, again in the scalar case, that if both variances are iterated
concurrently then the diagnostics converge in one iteration to a solution, possibly incorrect,
that depends on the assumed error variances. The results may or may not be close to the
true values, but the estimate cannot be improved. Mènard et al. [2009] then extend these
results to a system with periodic 1D domain; however, we note that the results shown
in Mènard et al. [2009] do not hold in the multi-dimensional case as an application of
the diagnostic changes both the variance and correlation length scale of the observation
error covariance matrix, a process which is overlooked in equation (46) of Mènard et al.
[2009].

Desroziers et al. [2005] show for the multi-dimensional case that the method may be used
to estimate error variances and correlations, but state that it ‘appears that the adjustment
of background and observation error variances is only relevant if those errors have different
structures’. As a result it is often stated that the method will not yield an accurate result
if the scales in the background and observation error statistics are similar [Bormann and
Bauer, 2010, Bormann et al., 2010, Stewart et al., 2014, Weston et al., 2014]. However, it is
actually the convergence of the iterations that may be slow or even fail if the scales in the
true observation and background or assumed observation and background error covariance
matrices are proportional. Although this scale separation causes problems for the iteration
procedure, it may not result in the failure of the diagnostic. If one is fortunate with
the underlying statistics or the choice of assumed statistics, then it is possible that the
diagnostic will give a reasonable estimate of the observation error covariance matrix after
one iteration and the failure of the convergence will not be an issue (see section 4 for an
example).

In operational systems many of the assumptions made for using the diagnostics are violated.
The B̃ and R̃ used in the assimilation are not exact and the linearisation of the observation
operator will introduce further error. To attempt to understand the impact of the incorrect
B̃ and R̃ used in the assimilation we will consider the performance of the diagnostic in an
idealised framework that allows the spectral form of the diagnostics to be used.

3 The diagnostic in spectral space

Desroziers et al. [2005], Mènard et al. [2009] and Desroziers et al. [2009] show that by
making some simplifying assumptions the diagnostics may be written in spectral space. We
now assume that observations have uniform density over a 1D periodic domain and that the
observation operator is the identity. We also require the true and assumed observation and
background errors to be homogeneous with R = ρCr, R̃ = ρ̃C̃r, B = βCb and B̃ = β̃C̃b

where Cr, C̃r, Cb and C̃b are the circulant exact and assumed observation and background
error correlation matrices and ρ, ρ̃, β and β̃ are the exact and assumed observation and
background error variances. Our approach also applies if we instead assume a non-identity
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observation operator so long as HBHT and HB̃H
T

are circulant (in this case the matrices
in equations (7) to (10) would be of size p × p), although here we choose the identity
operator as it allows us to consider directly how changes in the assumed background error
statistics alter the performance of the diagnostic. Under these assumptions the matrices
share common eigenvectors and it is possible to write,

B = ρFΓFT (7)

R = βFΛFT , (8)

B̃ = ρ̃FΓ̃FT (9)

R̃ = β̃FΛ̃FT , (10)

where F is a n×n orthogonal matrix of common eigenvectors and Γ, Λ, Γ̃ and Λ̃ are n×n
diagonal matrices that contain the eigenvalues, γk, λk, γ̃k and λ̃k, of Cb, Cr, C̃b and C̃r

respectively. Since the correlation matrices are positive definite and circulant, the eigenval-
ues are positive and can be found using a discrete Fourier transform with the eigenvectors
being the discrete Fourier basis [Gray, 2006]. These eigenvalues are ordered according to
wave number. In this case the order of the eigenvalues has a relation to the length scales in
the correlation matrix, with the first eigenvalue relating to the eigenvector with the largest
length scales. This ordering is not linked to the magnitude of the eigenvalues.

Substituting equations (7), (8),(9) and (10) into equation (4) results in an equation for the
estimated variance, ρe , and eigenvalue matrix, Λe, containing eigenvalues, λe

k,

ρeΛe = ρ̃Λ̃(ρ̃Λ̃ + β̃Γ̃)−1(ρΛ + βΓ). (11)

Similarly a relationship for Be may be written as,

βeΓe = β̃Γ̃(ρ̃Λ̃ + β̃Γ̃)−1(ρΛ + βΓ), (12)

where βe is the estimated variance and Γe is the matrix containing eigenvalues, γe
k. Hence

for each wave number, k = 0, . . . , n − 1, we have the following relations,

ρeλe
k = ρ̃λ̃k

ρλk + βγk

ρ̃λ̃k + β̃γ̃k

, (13)

βeγe
k = β̃γ̃k

ρλk + βγk

ρ̃λ̃k + β̃γ̃k

. (14)

When considering the result obtained from equation (11) or (12) the eigenvalues will be
positive as the products, sums and inverses of positive definite matrices are also positive
definite. The estimated covariance matrix will also be symmetric as circulant matrices
are commutative and the product of commutative symmetric matrices is symmetric [Gray,
2006].
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When the incorrect matrices, R̃ and B̃, are used in the assimilation, the diagnostics may
contain errors in both the estimation of the variances and in the length scales of the
correlations. Considering the diagnostics in spectral space allows the misspecification of
the power in the wave numbers, and hence error in the correlation length scales to be
assessed.

As discussed in Section 2, using equations (13) and (14) it is possible to show that even
when the structure of the background and observation errors are similar the diagnostic
may still produce a useful result. Let us assume that the underlying exact background
and observation error statistics are identical and the assumed background and observation
error statistics are identical, that is ρλk = βγk and ρ̃λ̃k = β̃γ̃k; it is not necessary that
ρλk = ρ̃λ̃k. In this case just one application of equation (13) and (14) results in,

ρeλe
k = ρλk, βeγe

k = βγk, (15)

with the observation and background errors being estimated exactly. This will occur for
any choice of exact and assumed observation and background error statistics that satisfy
the assumptions allowing the diagnostic to be written in spectral space, provided that
R = B and R̃ = B̃. This application of the diagnostic highlights two things; firstly that
the diagnostic can produce good results when the observation and background error length
scales are equal and secondly, if there is any knowledge that the underlying statistics are
equal, then to obtain the best performance from the diagnostic, the assumed observation
and assumed background error statistics should be chosen to be identical.

4 The assumption of uncorrelated observation errors

In most operational cases it is assumed that the observation error correlation matrix is
diagonal, R̃ = ρ̃I where I is the identity matrix. As we are attempting to provide informa-
tion on how the diagnostic may perform in operational cases we now make the assumption
that the assumed observation error variance matrix is diagonal. With this additional as-
sumption, equation (13) simplifies to

ρeλe
k =

ρλk + βγk

1 + (β̃/ρ̃)γ̃k

. (16)

To prove some further results using this equation we make use of the eigenvalue relationship
that states that the sum of the eigenvalues αk of a matrix A is equal to the trace of that
matrix [Golub and Van Loan, 2013], that is,

n−1∑

k=0

αk = Tr(A). (17)
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In our case we are considering the eigenvalues of n × n correlation matrices with ones on
the diagonal, and therefore the trace of such a matrix and hence the sum of the eigenvalues
will be n. This allows the estimated error variance to be written as,

ρe =
1

n

∑

k

ρλk + βγk

1 + (β̃/ρ̃)γ̃k

. (18)

We see from equation (18) that as the assumed observation error variance, ρ̃ increases,
the estimated observation error variance, ρe, increases. We also see that as the assumed
background error variance, β̃ increases, the estimated observation error decreases. It is
also possible to obtain a similar result in the case where the assumed observation errors
are correlated by applying the trace rule to equation (13).

We now show how to obtain bounds for the estimated observation error variance, which
provide further information on how the diagnostic behaves. To calculate the upper bound,
we note that since β̃, ρ̃, γ̃k > 0, the denominator in equation (18) is bounded below by 1.
To calculate the lower bound we consider the maximum value of the denominator. This
occurs when γ̃k = γ̃max, the maximum eigenvalue. A further application of equation (17)
gives an inequality for the estimated error variance,

ρ + β

1 + (β̃/ρ̃)γ̃max

≤ ρe ≤ ρ + β. (19)

We see that the upper bound is constant and equal to the sum of the true background
and observation error variances. From equation (19) we see that the lower bound will
behave differently depending on the behaviour of the assumed background and observation
error variances; the lower bound increases as ρ̃ increases and decreases as β̃ increases. We
illustrate this with examples in Sections 5.3.2 and 5.3.3. In the limit of very large ρ̃ the
estimated error variance will tend to the sum of the true background and observation error
variances.

The eigenvalues of the estimated observation correlation matrix are given by dividing equa-
tion (16) by the estimated observation error variance equation (18). The behaviour of the
eigenvalues of the estimated correlation matrix will depend on the spectra for the assumed
and exact matrices. If there is some knowledge of these it may be possible to say something
further about the behaviour of the eigenvalues (see Sections 5.3.2 and 5.3.3 for some exam-
ples). It is possible to put bounds on the eigenvalues using the bounds on the estimated
observation error variance, equation (19),

ρλk + βγk

(ρ + β)(1 + (β̃/ρ̃)γ̃k)
≤ λe

k ≤
(1 + (β̃/ρ̃)γ̃max)(ρλk + βγk)

(ρ + β)(1 + (β̃/ρ̃)γ̃k)
. (20)

Now assuming that B and R are fixed this becomes,

sk

1 + (β̃/ρ̃)γ̃k

≤ λe
k ≤ sk

1 + (β̃/ρ̃)γ̃max

1 + (β̃/ρ̃)γ̃k

(21)
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where sk = ρλk+βγk

ρ+β
. In general by considering the upper and lower bounds we gain some

understanding of how the estimated eigenvalues change when the assumed background and
observation error statistics are altered. From equation (21) we see that the lower bound
increases as ρ̃ increases and decreases as β̃ increases. By considering the gradient we find
that the upper bound is a decreasing function of ρ̃ and an increasing function of β̃. From
this we see that the upper bound decreases as ρ̃ increases and increases as β̃ increases.

These theoretical results allow us to understand some behaviour of the diagnostic under
the given assumptions. We now consider the performance of the diagnostic using simple
examples.

5 Results in an idealised framework

5.1 The observation and background error covariance matrices

Using equation (4), under the assumptions used to write the diagnostics in spectral space,
it is possible to test the diagnostic in an idealised framework. The assumptions restrict
us to working in a 1D periodic domain. Here we choose the periodic domain of length
l = 32π and assume that we are calculating statistics for 16 equally spaced points on this
domain.

To define the correlated error matrices we use the second order autoregressive function
(SOAR) error correlation function on the finite domain,

c(i, j) = (1 +
|2a sin(

θi,j

2
)|

L
) exp(

−|2a sin(
θi,j

2
)|

L
), (22)

where c is the correlation between two points i and j on the finite domain, with the distance
between the two points i and j denoted by ∆i,j , the angle θi,j = l

∆i,j
, a = l

2π
and the length

scale of the correlation function is defined by L. We choose the SOAR function because at
large correlation length scales it resembles the observation error covariance structure found
in Bormann et al. [2002]. The SOAR correlation function has also been used to model the
background error correlations in operational systems e.g. Ingleby [2001], Simonin et al.
[2014]. When defining the observation and background correlation matrices we use either
an identity matrix or the function in equation (22). In Figure 1 we plot the SOAR function
for different values of L along with the corresponding eigenspectrum (note only half the
correlation and eigenspectrum are plotted due to their symmetric nature).

From Figure 1 we see that all eigenvalues are positive and the eigenvalues for a particular
correlation function decrease as the wave number increases; this is a property of circulant
matrices that have been constructed using positive coefficients [Gray, 2006]. As we noted
in Section 3, the eigenvalues are ordered such that the first eigenvalue is associated with the
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Figure 1: The SOAR function and its eigenspectrum. L = 2 (solid line squares), L = 3
(solid line circles), L = 4 (solid line triangles), L = 5 (dashed line squares), L = 6 (dashed
line circles), L = 7 (dashed line triangles).

longest length scale. We see from the figure that as the correlation length scale increases,
the magnitude of the first eigenvalue increases. Given the result in equation (17) the sum
of the eigenvalues must be conserved so that an increase in one, or some eigenvalues, must
result in a decrease in other eigenvalues.

When considering the result of equation (4), there is no guarantee that the coefficients of
the estimated circulant matrix will be positive and the eigenvalues may not be decreasing
as a function of wave number.

5.2 Exact observation errors uncorrelated

We begin by considering if misspecifying a length scale in B̃ can introduce correlations in
the estimated observation error matrix even when both R and R̃ are diagonal. We set the
exact background error length scale to be L = 5 and the assumed background length scale
to be L = 7. All assumed and exact variances are set to be ρ = β = ρ̃ = ρ̃ = 1. In this
case equation (13) reduces to,

ρeλe
k =

1 + γk

1 + γ̃k
, (23)

and the eigenvalues may be estimated using,

λe
k =

1

ρe

(
1 + γk

1 + γ̃k

)
. (24)
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We see that,

if γk < γ̃k then λe
k <

1

ρe
,

if γk > γ̃k then λe
k >

1

ρe
,

and if γk = γ̃k then λe
k =

1

ρe
. (25)

In a practical situation we would not know the eigenvalues corresponding to the true
background error correlations; however we are able to calculate the estimated observation
error variance, ρe, and the eigenvalues, λe

k, of the estimated observation error correlation
matrix. Therefore, if we believe we are in the situation where the observation errors are
uncorrelated but we are unsure of the background error structure, then the above equations
may give some insight on where the eigenvalues corresponding to the assumed background
error correlation matrix are too small or too large.

We plot the exact and estimated correlation functions and corresponding eigenvalues for
our SOAR example in Figure 2. We find that:
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Figure 2: Correlation functions (left) and eigenvalues of the corresponding covariance ma-
trices (right). Estimated observation error correlations (gray dashed line squares) when

R = R̃ = I (solid line squares) and the length scale in the assumed background error co-
variance (black dashed line circles) is L = 7 compared to the actual background covariance
function (solid line circles) where L = 5. On the right panel the thin horizontal line shows
the 1

ρe = 0.93 value and the vertical line divides the plot into regions where λe
k < 1

ρe (left

of line) and λe
k > 1

ρe (right of line).

• Despite the correct matrix being used in the assimilation, the estimated observation
error variance in this case is slightly larger than the actual variance (ρe = 1.07).

12



• The misspecified length scale in B̃ results in correlations in the estimated observation
error variance matrix, even though the matrix R̃ used in the assimilation is correct.

From equation (25) and Figure 2 we see that the value of 1
ρe and the eigenvalues of the

estimated observation error correlation matrix provide information on where the assumed
background error correlation eigenvalues are larger or smaller that the true background
error eigenvalues. In particular at low wave numbers, λe

k < 1
ρe = 0.93, indicating that the

assumed background eigenvalues are too large. Hence in the estimated eigenvalues, we
have less power in the longer length scales. For the high wave numbers, λe

k > 1
ρe = 0.93,

indicating that the assumed background eigenvalues are too small so in the estimated
eigenvalues we expect to find increased power in the shorter length scales.

5.3 Exact observation errors correlated but assumed uncorre-
lated in the assimilation

In all the following cases we set the assumed observation error covariance to be diagonal,
R̃ = ρ̃I with error variance ρ̃. Correlations for the exact observation and exact and
assumed background errors are defined using the SOAR function, equation (22); for the
exact observation error covariance we set L = 2 and for the exact background error matrix
we set L = 5. Both the error variances are chosen to be β = ρ = 1. The length scales
are chosen with the background error correlation length scale longer than that of the
observation error correlation length scale as in an operational system it is expected the
background correlation length scale would be larger than those of the observations. We
consider how well the diagnostic estimates Re both in terms of variance and length scale.
Details of the assumed background error variance, β̃, assumed observation error variance,
ρ̃ and length scale for B̃ chosen for use in the assimilation for each experiment are detailed
in Table 1 along with the estimated observation error variance.

5.3.1 Control experiment

We first consider the estimation of the observation error covariance matrix when the exact
background error covariance matrix is used in the assimilation, B̃ = B, but the observation
error covariance matrix is assumed diagonal. In this case the only misspecified quantity
is the length scale in the observation error covariance matrix. This provides a reference
solution that helps us understand how assuming uncorrelated observation errors affects the
diagnostic. We plot a row of the exact, assumed and estimated correlation matrices and
corresponding eigenvalues in Figure 3 and give the estimated observation error variance in
Table 1, Experiment labelled Control.

We see that although the correct background error is used, the assumption that the obser-
vation error covariance matrix is diagonal results in:
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Table 1: Estimated observation error variances when length scales (defined using the SOAR

function in equation (22)) and variances in R̃ and B̃ used in the assimilation are incorrect.
The exact observation and background error variances are set to ρ = β = 1 and length
scales to L = 2 and L = 5 respectively. The matrix R̃ used in the assimilation is always
diagonal.

Exp. ρ̃ β̃ B̃ ρe

Label Length scale (L)
Control 1 1 5 0.94

ρ0.5 0.5 1 5 0.68
ρ1.1 1.1 1 5 0.98
ρ2 2 1 5 1.22
ρ10 10 1 5 1.73
β0.5 1 0.5 5 1.22
β0.75 1 0.75 5 1.06
β0.99 1 0.99 5 0.94
β1.5 1 1.5 5 0.78
β2 1 2 5 0.68
L3 1 1 3 0.91
L4 1 1 4 0.92
L6 1 1 6 0.97
L7 1 1 7 1.00

β1.5L6 1 1.5 6 0.82
β2L6 1 2 6 0.73

β1.5L7 1 1.5 7 0.87
β2L7 1 2 7 0.77

ρ2β1.5L6 2 1.5 6 1.08
ρ2β2L6 2 2 6 0.97

ρ2β1.5L7 2 1.5 7 1.10
ρ2β2L7 2 2 7 1.00
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Figure 3: Correlation functions (left) and corresponding eigenvalues (right) for the Control

Experiment. Estimated observation error (gray dashed line squares), when B̃ = B (solid

line circles), with L = 2 for R (solid line squares) and R̃ = I (black dashed line squares).

• An underestimated variance.

• An underestimated correlation length scale.

However, the estimated observation error covariance matrix is a better approximation
of the exact observation error correlation compared to the diagonal assumed observation
error covariance matrix. From the eigenvalues in Figure 3 it is clear that the estimated
eigenvalues of the observation error correlation matrix are under (over) estimated when the
assumed observation error eigenvalues are too small (large). The first eigenvalue is related
to the eigenvector with the longest length scales and hence an under (over) estimation of
this eigenvalue will result in an under (over) estimation of the power in the largest length
scales.

We now examine in more detail the effect on the estimated observation error matrix of
misrepresenting the observation and background error statistics in the assimilation.

5.3.2 Impact of misspecifying the observation error variance

We begin by considering how changing the variance of the assumed diagonal matrix R̃
affects the estimates of the observation error covariance matrix. Table 1 Experiments ρ0.5,
ρ2 and ρ10 show the estimated error variance when the assumed background error matrix
is correct, B̃ = B and the assumed observation error covariance matrix is diagonal with
an incorrect variance. We also plot in Figure 4 the change in estimated observation error
variance with increasing assumed observation error variance and the values of the upper
and lower bounds of the variance calculated using equation (19) when B̃ = B and R̃ = ρ̃I.
The results in the figure and table verify equation (18), that is, as the assumed observation
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Figure 4: Estimated observation error variance and bounds when B̃ = B and R̃ = ρ̃I.
Change in estimated observation error variance with increasing assumed observation error
variance (solid line). Upper and lower bounds given in equation (19) are also shown (dashed
lines).

error variance increases the estimated observation error variance increases. We also note
that the theoretical bounds are respected in the experimental case.

Mènard et al. [2009] show for the case of scalar background and observation error variances
that when the assumed observation error variance is too small (large) then the estimated
observation error variance is underestimated (overestimated). Experiments ρ0.5, ρ2 and
ρ10 support this conclusion for the multi-dimensional case. However, experiment ρ1.1
shows that this conclusion is not general as, for example, a choice of ρ̃ = 1.1 results in
ρe = 0.98. The underestimation of the error variance is a result of the observation error
correlations being neglected.

Next we consider the effect on the estimated length scales. We consider the first eigen-
value,

λe
0 =

1
1
n

∑
k

ρλk+βγk

1+(β̃/ρ̃)γ̃k

(
ρλ0 + βγ0

1 + (β̃/ρ̃)γ̃0

)
. (26)

This provides useful information as the first eigenvalue is related to the power in the largest
length scales and therefore can tell us something about the estimated correlation length
scale.

In Section 4 we provided bounds for the estimated eigenvalues but not any results relating
to the specific behaviour of the eigenvalues. Since here we are considering observation and
background error covariance matrices that are diagonal or defined by the SOAR function,
the assumed and exact correlation matrices have only non-negative coefficients. For any
correlation matrix with non-negative coefficients the eigenvalues decrease as the wave num-
ber increases. Using this additional information we are able to determine what happens
to the first eigenvalue. As γ̃0 ≥ γ̃k, the derivative of equation (26) with respect to ρ̃ is
positive and hence equation (26) is an increasing function with ρ̃. Therefore, we expect the

16



estimated first eigenvalue, and hence the power in the lowest wave numbers, to increase as
a function of ρ̃.

We plot the estimated correlation function and corresponding eigenvalues in Figure 5. From
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Figure 5: Estimated observation error correlations and corresponding eigenvalues for Ex-
periments ρ0.5 (ρ̃ = 0.5, dashed line crosses), Control (ρ̃ = 1, dashed line triangles), ρ2
(ρ̃ = 2, dashed line squares) and ρ10 (ρ̃ = 10 , dashed line circles) when observation errors
are assumed uncorrelated and the variance misspecified in the assimilation. The exact
observation error correlation function Cr (solid line) is plotted for comparison.

this we verify our theoretical result, that the power in the lowest wave numbers (largest
scales) also increases as the assumed observation error variance increases. We find that
error covariance length scales are underestimated when the assumed variance is too small
or correct and overestimated when the assumed variance is too large. From the eigenvalues
we see that an assumed observation error variance that is too small results in the power in
the large scales being underestimated and small scales overestimated.

In summary, in the case of misspecified observation error variances we are able to show
that:

• As the assumed observation error variance increases the estimated observation error
variance increases.

• As the assumed observation error variance increases the estimated power in the largest
scales increases.

• In the multi-dimensional case, where observation errors are neglected, it does not
hold that an assumed observation error variance that is too small (large) will result
in an estimated observation error variance that is underestimated (overestimated).
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5.3.3 Impact of misspecifying the background error variance

In Experiments β0.5, β0.75, β1.5 and β2 we consider how the estimate of Re alters when the
assumed background error variance β̃ is misspecified, but the length scale in the assumed
background correlation matrix is correct. We provide the assumed background variances
and estimated observation error variances in Table 1. We also plot in Figure 6 the change
in estimated observation error variance with increasing assumed background error variance
and the values of the upper and lower bounds of the variance from equation (19). Again

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

ρ̃

ρ
e

Figure 6: Change in estimated observation error variance with increasing assumed back-
ground error variance (solid line). Upper and lower bounds are also shown (dashed lines).

Here R̃ = ρI and B̃ = β̃Cb.

the results in the figure and table verify what is shown in equation (18), that as the
assumed background error variance is increased the estimated observation error variance
decreases. We also note that the theoretical bounds are respected in the experimental
case. Experiments β0.5, β0.75, β1.5 and β2 support the conclusion from Mènard et al.
[2009] that for the case of scalar background and observation error variances that when
the assumed background error variance is too small (large) then the estimated observation
error variance is overestimated (underestimated). However, the assumption of uncorrelated
errors means that this conclusion is not valid in the multidimensional case: for example
Experiment β̃0.99 shows that using an assumed background error variance that is too small,
β̃ = 0.99, can result in an underestimate of the observation error variance ρe = 0.94.

We next consider what happens to the estimated length scale as the assumed background
error variance increases. We again consider the first eigenvalue in the theoretical case. In
this instance we find that, as γ̃0 ≥ γ̃k, the derivative of equation (26) with respect to β̃ is
negative. Therefore, we expect the estimated first eigenvalue and the estimated correlation
length scale to decrease as a function of β̃.

We plot the estimated correlation length scales for Experiments β0.5, β7.5, β1.5, β2 and
Control, along with the corresponding eigenvalues in Figure 7. From the figure we see that
the observation error correlation function is shortest, and most underestimated when the
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Figure 7: Estimated observation error correlations and corresponding eigenvalues for Ex-
periments β0.5 (β̃ = 0.5, dashed line circles), β0.75 (β̃ = 0.75 , dashed line squares),
Control (β̃ = 1.0, dashed line triangles), β1.5 (β̃ = 1.5, dashed line crosses) and β2
(β̃ = 2.0, dashed line diamonds) when the variance in the background error covariance
matrix is misspecified in the assimilation. The exact observation correlation function Cr

(solid line) is plotted for comparison.

background error variance is largest. The observation error correlation length scale remains
underestimated as the background error variance decreases. The observation error corre-
lation length scale is only overestimated when the assumed background error variance is
half the value of the actual background error variance or less. Considering the eigenvalues
of Re we see that unless the assumed background error variance is much smaller than the
true background error variance, the power in the low wave numbers (large scales) will be
underestimated and the power in the high wave numbers (small scales) will be overesti-
mated. This is consistent with the theoretical result that the first eigenvalue decreases as
β̃ increases.

In summary, in the case of misspecified background error variances we are able to show
that:

• As the assumed background error variance increases the estimated observation error
variance decreases.

• As the assumed background error variance increases the estimated power in the
largest scales decreases.

• In the multi-dimensional case, where observation errors are neglected, it does not
hold that an assumed observation error variance that is too small (large) will result
in an estimated observation error variance that is overestimated (underestimated).
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5.3.4 Impact of misspecifying the background error correlation length scale

We now consider what happens when the background error variance is correctly speci-
fied but the correlation length scale is misspecified. We give the assumed background
correlation function length scales and estimated observation error variances in Table 1,
Experiments L3, L4, L6 and L7 and we plot the estimated observation error correlation
functions and corresponding eigenvalues in Figure 8. Again we plot the result from the
control experiment for comparison.

From the table and figure we see that:

• As the assumed background error length scale increases the estimated observation
error variance increases.

• as the assumed background error length scale increases the estimated correlation
length scale and leading eigenvalues decrease.

However, in all but the case of the largest length scale the observation error variances are
underestimated. We see that when the assumed background correlation length scale is too
large the estimated observation error length scale is underestimated.
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Figure 8: Estimated observation error correlations and corresponding eigenvalues for Ex-
periments L3 (assumed background correlation length scale L = 3, dashed line circles), L4
(L = 4, dashed line squares), Control (L = 5, dashed line triangles), L6 (L = 6, dashed line
crosses) and L7 (L = 7, dashed line diamonds) when the length scale in the background
error covariance matrix is misspecified in the assimilation. The exact observation error
correlation function Cr (solid line) is plotted for comparison.
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5.3.5 Impact of misspecifying the observation and background error vari-
ance

We now consider what happens when both the background and observation error variance
are misspecified. The observation errors are still assumed uncorrelated, but the assumed
background error correlation is chosen to be exact. Theoretically it is complex to prove
results when multiple variables are changing. Here we consider the general trends for the
estimated observation error variance and length scales for a variety of values for β̃ and
ρ̃.

In Sections 4 and 5.3.3 we showed that as the assumed background error variance increases,
the estimated observation error variance decreases. in Sections 4 and 5.3.2 we showed that
as the assumed observation error variance increases, the estimated observation error vari-
ance increases. So for a combination of too small (large) background variances and too
large (small) observation error variances we expect an overestimated (underestimated) ρe.
This is shown in Figure 9(a) where we plot the change in estimated observation error vari-
ance for different values of assumed background and observation error variance. However,
it is also clear from the figure that when the effects of changes in B̃ and R̃ conflict with
each other, the over or under estimation of ρe will be dominated by whichever assumed
variance has the larger error. From Figure 9(b) we see that in this experimental situa-
tion the first eigenvalue is almost always underestimated and it is only in the case of low
assumed background error variances or large assumed observation error variance that the
leading eigenvalue is overestimated. This suggests that in most cases the length scale of
the estimated correlation matrix will be too short. This is likely to be a result of assuming
uncorrelated observation errors (diagonal R̃).

In summary when both the assumed observation and background variance are misspecified
we find that:

• Knowledge of the impact of individual errors on the estimated quantities may be
combined to provide information about the impact on the estimated quantities when
multiple errors are present.

• A combination of too small (large) background error variances and too large (small)
observation error variances will result in an overestimated (underestimated) observa-
tion error variance.

• When observation errors are assumed uncorrelated it is likely that the diagnostic
will produce an estimated observation error correlation where the length scale is
underestimated.
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(a) Estimated observation error variance, ρe, as a function of assumed background and
observation error variance. Red shows an overestimate, white an accurate estimate and
blue an underestimate.
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assumed background and observation error variance. Red shows an overestimate, white
an accurate estimate and blue an underestimate.

Figure 9: Change in estimated variance and first eigenvalue as a function of assumed
background and observation error variance. The thick black lines show the true values of
the background and observation error variance.
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5.3.6 Impact of misspecifying the background error variance and correlation
length scale

We now consider what happens when both the length scale and variance of the assumed
background error matrix are misspecified. The observation errors are still assumed uncor-
related, but the assumed observation error variance is chosen to be exact, ρ̃ = ρ. Again we
consider the general trends for the estimated observation error variance and length scales
for a variety of values for β̃ and the length scale in B̃, before considering some specific
cases.

In Figures 10(a) and 10(b) we show how the estimated variance and leading eigenvalue vary
when different values are used for the assumed background error statistics. From equation
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(a) Estimated observation error variance, ρe, as a function of assumed background error
variance and correlation length scale. Red shows an overestimate, white an accurate
estimate and blue an underestimate.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
2

3

4

5

6

7

8  

Assumed background error variance

 

A
ss

um
ed

 b
ac

kg
ro

un
d 

er
ro

r 
le

ng
th

 s
ca

le

0

0.5

1

1.5

2

2.5

(b) First eigenvalue, γe
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, of the estimated observation error correlation as a function

of assumed background error variance and correlation length scale. Red shows an
overestimate, white an accurate estimate and blue an underestimate.

Figure 10: Change in estimated variance and first eigenvalue as a function of assumed
background error variance and correlation length scale. The thick black lines show the
true values of the background error variance and length scale.
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(18) we proved that as the assumed background error variance was increased the estimated
observation error variance decreased and this can be seen by comparing any given row of
Figure 10(a). However, it is more complex to say whether the variance will be over or under
estimated in any given circumstance. It is clear in this case that it is the assumed variance
that has the largest impact on the estimated error variance as the horizontal gradient is
much larger than the vertical gradient.

It is clear from Figure 10(b) that the estimated leading eigenvalue decreases as assumed
background error variance and length scale increases. Hence it is likely that the correlation
length scale will decrease as assumed background error variances and length scales are
increased. When estimating the leading eigenvalue it appears that the largest change is
caused by the change in assumed background error length scale rather than background
error variance.

We now consider some cases that we hypothesize may reflect cases that will arise in op-
erational assimilation. We investigate what happens to the estimate of the observation
error variance and correlation length scale when both the background error variance and
correlation length scale are overestimated. We show results in Table 1 Experiments β1.5L6,
β2L6, β1.5L7 and β2L7 and Figure 11.

We see in all cases that the observation error variances and correlation length scales are
underestimated. As with the previous cases we find that as the background error variances
increase, the observation error variance decreases and the length scale decreases. As the
background error length scale increases the observation error variance increases.
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Figure 11: Rows of the exact (solid) and estimated covariance matrices (left panel) for
Experiments β1.5L6, (dashed black line squares), β2L6 (dashed black line circles), β1.5L7
(dash gray line squares) and β2L7 (dash gray line circles). The corresponding eigenvectors
are also plotted (right panel).

In summary when both the assumed background variance and length scale are misspecified
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we find that:

• Errors in the assumed background error variance have the largest impact on the
estimated observation error variance.

• Errors in the assumed background error length scale have the largest impact on the
estimated observation error eigenvalues.

• A combination of too small (large) assumed background error variances and too small
(large) assumed background length scale will result in an overestimation (underesti-
mation) of the power in the largest estimated observation error length scales.

5.3.7 Impact of misspecifying the observation error variance and background
correlation length scale

We next consider how the diagnostic behaves when the assumed observation error variance
and assumed background error length scales are misspecified. In Figures 12(a) and 12(b)
we show how the estimated variance and leading eigenvalue vary when different values are
used for the assumed background error length scale and assumed observation error variance.
We see that the observation error variance is always underestimated when the assumed
observation error variance is too small; it is overestimated when the assumed observation
error variance is much too large. The first eigenvalue is over (under) estimated when both
the assumed observation error variance is too large (small) and assumed background error
length scale too small (large). When both the assumed observation error variance and
background error length scale are too large (small) the eigenvalue may be over or under
estimated. Again we see that the change in assumed observation error variance appears
to be the dominating factor in the change in estimated observation error variance, with
the variance underestimated when the assumed variance is underestimated. The dominant
factor in the change of the first eigenvalue appears to be the change in length scale of the
assumed background error correlation.

In summary when the assumed observation error variance and assumed background length
scale are misspecified we find that:

• Errors in the assumed background error variance have the largest impact on the
estimated observation error variance.

• Errors in the assumed background error length scale have the largest impact on the
estimated observation error eigenvalues.

• A combination of too small (large) assumed observation error variances and too large
(small) assumed background length scale will result in an underestimation (overesti-
mation) of the power in the largest estimated observation error length scales.
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(a) Estimated observation error variance, ρe, as a function of assumed observation error
variance and background correlation length scale. Red shows an overestimate, white
an accurate estimate and blue an underestimate.
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(b) First eigenvalue, γe

0
, of the estimated observation error correlation matrix as a

function of assumed observation error variance and background correlation length scale.
Red shows an overestimate, white an accurate estimate and blue an underestimate.

Figure 12: Change in estimated variance and first eigenvalue as a function of assumed
observation error variance and background correlation length scale. The thick black lines
show the true values of the observation error variance and background correlation length
scale.
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5.3.8 Impact of misspecifying all assumed error variances and length scales

In an operational setting it is likely that none of the assumed error statistics are exact. In
the previous three sections we have seen that it may be possible to combine our knowledge
of the results from sections 5.3.2, 5.3.3 and 5.3.4 to give an understanding of what may
happen to the estimated quantities when two of the assumed quantities are in error. We
now consider if it is possible to make any similar conclusions when all assumed error
variances and length scales are misspecified.

Here again we restrict ourselves to consider only cases that are relevant to operational
assimilation. Experiments ρ2β1.5L6, ρ2β2L6, ρ2β1.5L7 and ρ2β2L7 detail how the diag-
nostic performs when the observation error variance is too large and the length scales and
error variances in B̃ are too large.
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Figure 13: Rows of the exact (solid) and estimated observation error covariance matrices
(left panel) for Experiments ρ2β1.5L6 (dashed black line squares), ρ2β2L6 (dashed black
line circles), ρ2β1.5L7 (dash gray line squares) and ρ2β2L7 (dash gray line circles). The
corresponding eigenvalues are also plotted (right panel).

From Table 1 and Figure 13 we see that for each of the Experiments ρ2β1.5L6, ρ2β2L6,
ρ2β1.5L7 and ρ2β2L7 the observation error correlation length scale is underestimated and
for experiments ρ2β1.5L6 and ρ2β1.5L7 we find that the observation error variance is
overestimated.

This case, where all assumed quantities are misspecified, is a nonlinear problem, so it is not
clear that combining individual results will give a clear prediction of what happens when
all parameters are varied together. The exact performance of the diagnostic will always
be complex to predict without detailed knowledge of the assumed and exact correlation
structures. However in some circumstances, where there is some expert opinion on the
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assumed structures and their relation to the true statistics, it may be possible to make a
valid prediction on the behaviour of the diagnostic.

6 Conclusions

To make better use of observations in data assimilation it is necessary to understand
and correctly represent in the assimilation their associated error statistics. One popular
method for estimating observation error statistics, which makes use of information in the
background and analysis innovations, is the method of Desroziers et al. [2005]. Although
this method has been used both in simple experiments and operational systems to provide
estimates of the observation error statistics, the behaviour of the diagnostic is not well
understood. In this work we have developed a theoretical understanding of this diagnostic
and illustrated this with simple examples. We note that in these cases the statistical
nature of the diagnostic is not considered, as the values are calculated directly and not
from samples of the analysis and background innovations. When estimates are calculated
in this way it is inevitable that further noise will be introduced.

To prove theoretical results relating to the diagnostic it is necessary to introduce some
simplifying assumptions. We assume that the observation and background errors are ho-
mogeneous and that the observations have uniform density over a periodic domain and
that the observation operator is the identity. The approach used here would also apply if
we instead assume a non-identity observation operator so long as HBHT is circulant.

We begin by showing that the diagnostic can provide a satisfactory solution when the
structures of the background and observation errors are similar. We highlight that the
documented failure of the method in this case is a failure on the iteration of the method.
Therefore if the first estimates produced from the diagnostic are close to the truth then,
although no closer approximation can be obtained, the estimate may well be good enough
to provide information on the error statistics. We are also able to show that the results
relating to under or overestimation of variance in the scalar case do not always hold in the
multidimensional case.

We then restricted the theoretical work to consider only cases where the observations were
assumed uncorrelated and only a single application of the diagnostic is performed. This
case is of particular interest as in many operational systems the observations are assumed
uncorrelated and it is not feasible to iterate the diagnostic. In general we find that an
error in just one of the assumed variances or length scales will have an impact on both the
estimated observation error variance and length scales. In Section 4 we provided bounds
for the estimated observation error variance and eigenvalues of the estimated correlation
matrix. From these we are able to show that the estimated observation error variance can
never be larger than the sum of the true background and observation error variances. We

28



are also able to prove that:

• Estimated observation error variance increases as assumed observation error variance
increases.

• Estimated observation error variance decreases as assumed background error variance
increases.

We are able to verify this through our simple experiments and show that the bounds on
the variance are respected in the experimental cases. Under the additional assumption of
the exact and assumed correlation matrices having non-negative coefficients, we are also
able to prove results relating to the first eigenvalue, which provide some information about
the estimated correlation length scale. We prove that:

• The power in the large scales of the estimated observation error correlation matrix
increases as assumed observation error variance increases.

• The power in the large scales of the estimated observation error correlation matrix
decreases as assumed background error variance increases.

This provides some insight into the behaviour of the estimated correlation length scale.
In general we are able to show that if observation error correlations are neglected in the
assumed observation error covariance matrix, then it is likely that the diagnostic will
underestimate the strength of the correlations, though the result from the diagnostic will
be better a estimate of R than one that is assumed diagonal.

The theoretical results are more complex when the background error length scales are
mispecified, so to aid our understanding we considered the results of some simple exper-
iments. A more detailed knowledge of the exact and assumed spectra are required to
predict whether the variance will increase or decrease as the assumed background error
length scales are increased. It does appear, however, in the case of the SOAR function
that an increase in the assumed background error length scales causes a reduction in the
estimated observation error length scales.

In operational systems it is likely that there are errors in more than one of the background
or observation error variances and length scales. Using illustrative examples we are able
to show that in the case of multiple misspecification in the assimilation:

• Errors in the assumed variances will have larger impacts on the estimated observation
error variances.

• Errors in the assumed length scales will have a larger impact on the estimated ob-
servation error length scales.

So with this knowledge and knowledge of the impact of the individual variables it is possible
to hypothesize what may happen to the estimated quantities.
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Another important conclusion drawn from the illustrative examples is that if the observa-
tion error covariance matrix is assumed diagonal in the assimilation, then the observation
error correlation matrix calculated by the diagnostic is likely to have underestimated cor-
relation length scales unless the observation error variance is greatly overestimated. This is
an important conclusion to bear in mind when considering operational results as in many
cases the observations are assumed uncorrelated, and although the observation error vari-
ance may have been inflated it is unlikely that it is large enough for the correlations to be
estimated accurately using the method of Desroziers et al. [2005].
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