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Abstract

We study properties of the classical fractional Sobolev spaces (or Bessel potential spaces) on
non-Lipschitz subsets ofRn. We investigate the extent to which the properties of these spaces, and
the relations between them, that hold in the well-studied case of a Lipschitz open set, generalise
to non-Lipschitz cases. Our motivation is to develop the functional analytic framework in which
to formulate and analyse integral equations on non-Lipschitz sets. In particular we consider
an application to boundary integral equations for wave scattering by planar screens that are
non-Lipschitz, including cases where the screen is fractal or has fractal boundary.

1 Introduction

In this paper we present a self-contained study of Hilbert–Sobolev spaces defined on arbitrary open
and closed sets of Rn, aimed at applied and numerical analysts interested in linear elliptic problems
on rough domains, in particular in boundary integral equation (BIE) reformulations. Our focus
is on the Sobolev spaces Hs(Ω), Hs

0(Ω), H̃
s(Ω),

◦
Hs(Ω), and Hs

F , all described below, where Ω
(respectively F ) is an arbitrary open (respectively closed) subset of Rn. Our goal is to investigate
properties of these spaces (in particular, to provide natural unitary realisations for their dual spaces),
and to clarify the nature of the relationships between them.

Our motivation for writing this paper is recent and current work by two of the authors [8,10–12]
on problems of acoustic scattering by planar screens with rough (e.g. fractal) boundaries. The
practical importance of such scattering problems has been highlighted by the recent emergence of
“fractal antennas” in electrical engineering applications, which have attracted attention due to their
miniaturisation and multi-band properties; see the reviews [22,58] and [20, §18.4]. The acoustic case
considered in [8, 10–12] and the results of the current paper may be viewed as first steps towards
developing a mathematical analysis of problems for such structures.

In the course of our investigations of BIEs on more general sets it appeared to us that the
literature on the relevant classical Sobolev spaces, while undeniably vast, is not as complete or as
clear as desirable in the case when the domain of the functions is an arbitrary open or closed subset
of Euclidean space, as opposed to the very well-studied case of a Lipschitz open set. By “classical
Sobolev spaces” we mean the simplest of Sobolev spaces, Hilbert spaces based on the L2 norm,
which are sufficient for a very large part of the study of linear elliptic BVPs and BIEs, and are for
this reason the focus of attention for example in the classic monographs [31] and [14] and in the
more recent book by McLean [36] that has become the standard reference for the theory of BIE
formulations of BVPs for strongly elliptic systems. However, even in this restricted setting there
are many different ways to define Sobolev spaces on subsets of Rn (via e.g. weak derivatives, Fourier
transforms and Bessel potentials, completions of spaces of smooth functions, duality, interpolation,
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traces, quotients, restriction of functions defined on a larger subset, . . . ). On Lipschitz open sets
(defined e.g. as in [23, 1.2.1.1]), many of these different definitions lead to the same Sobolev spaces
and to equivalent norms. But, as we shall see, the situation is more complicated for spaces defined
on more general subsets of Rn.

Of course there already exists a substantial literature relating to function spaces on rough subsets
of Rn (see e.g. [1,7,29,34,35,52,54,55]). However, many of the results presented here, despite being
relatively elementary, do appear to be new and of interest and relevance for applications. That
we are able to achieve some novelty may be due in part to the fact that we restrict our attention
to the Hilbert–Sobolev framework, which means that many of the results we are interested in can
be proved using Hilbert space techniques and geometrical properties of the domains, without the
need for more general and intricate theories such as those of Besov and Triebel–Lizorkin spaces and
atomic decompositions [1, 34, 54] which are usually employed to describe function spaces on rough
sets. This paper is by no means an exhaustive study, but we hope that the results we provide, along
with the open questions that we pose, will stimulate further research in this area.

Many of our results involve the question of whether or not a given subset of Euclidean space can
support a Sobolev distribution of a given regularity (the question of “s-nullity”, see §3.3 below).
A number of results pertaining to this question have been derived recently in [25] using standard
results from potential theory in [1, 34], and those we shall make use of are summarised in §3.3.
We will also make reference to a number of the concrete examples and counterexamples provided
in [25], in order to demonstrate the sharpness (or otherwise) of our theoretical results. Since our
motivation for this work relates to the question of determining the correct function space setting
in which to analyse integral equations posed on rough domains, we include towards the end of the
paper an application to BIEs on fractal screens; further applications in this direction can be found
in [8, 10,11].

We point out that one standard way of defining Sobolev spaces not considered in detail in this
paper is interpolation (e.g. defining spaces of fractional order by interpolation between spaces of

integer order, as for the famous Lions–Magenes space H
1/2
00 (Ω)). In our separate paper [13] we prove

that while the spaces Hs(Ω) and H̃s(Ω) form interpolation scales for Lipschitz Ω, if this regularity
assumption is dropped the interpolation property does not hold in general (this finding contradicts an
incorrect claim to the contrary in [36]). This makes interpolation a somewhat unstable operation on
non-Lipschitz open sets, and for this reason we do not pursue interpolation in the current paper as a
means of defining Sobolev spaces on such sets. However, for completeness we collect in Remark 3.32
some basic facts concerning the space Hs

00(Ω) on Lipschitz open sets, derived from the results
presented in the current paper and in [13].

1.1 Notation and basic definitions

In light of the considerable variation in notation within the Sobolev space literature, we begin by
clarifying the notation and the basic definitions we use. For any subset E ⊂ Rn we denote the
complement of E by Ec := Rn \ E, the closure of E by E, and the interior of E by int(E). We
denote by dimH(E) the Hausdorff dimension of E (cf. e.g. [1, §5.1]), and by m(E) the n-dimensional
Lebesgue measure of E (for measurable E). Throughout the paper, Ω will denote a non-empty
open subset of Rn, and F a non-empty closed subset of Rn. We say that Ω is C0 (respectively
C0,α, 0 < α < 1, respectively Lipschitz) if its boundary ∂Ω can be locally represented as the graph
(suitably rotated) of a C0 (respectively C0,α, respectively Lipschitz) function from Rn−1 to R, with
Ω lying only on one side of ∂Ω. For a more detailed definition see, e.g., [23, Definition 1.2.1.1]. We
note that for n = 1 there is no distinction between these definitions: we interpret them all to mean
that Ω is a countable union of open intervals whose closures are disjoint.

Note that in the literature several alternative definitions of Lipschitz open sets can be found
(see e.g. the discussion in [21]). The following definitions are stronger than that given above:
Stein’s “minimally smooth domains” in [49, §VI.3.3], which require all the local parametrisations
of the boundary to have the same Lipschitz constant and satisfy a certain finite overlap condition;
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Adams’ “strong local Lipschitz property” in [2, 4.5]; Nečas’ Lipschitz boundaries [37, §1.1.3]; and
Definition 3.28 in [36], which is the most restrictive of this list as it considers only sets with bounded
boundaries for which sets it is equivalent to the “uniform cone condition” [23, Theorem 1.2.2.2]).
On the other hand, Definition 1.2.1.2 in [23] (“Lipschitz manifold with boundary”) is weaker than
ours; see [23, Theorem 1.2.1.5].

1.1.1 Slobodeckij–Gagliardo vs Bessel–Fourier

For s ∈ R, the fundamental Hilbert–Sobolev spaces on an open set Ω ⊂ Rn are usually defined either

(i) intrinsically, using volume integrals over Ω of squared weak (distributional) derivatives for
s ∈ N0, Slobodeckij–Gagliardo integral norms for 0 < s /∈ N, and by duality for s < 0
(cf. [36, pp. 73–75]); or

(ii) extrinsically, as the set of restrictions to Ω (in the sense of distributions) of elements of the
global space Hs(Rn), which is defined for all s ∈ R using the Fourier transform and Bessel
potentials (cf. [36, pp. 75–77]).

Following McLean [36], we denote by W s
2 (Ω) the former class of spaces and by Hs(Ω) the latter.

Clearly Hs(Ω) ⊂ W s
2 (Ω) for s ≥ 0; in fact the two classes of spaces coincide and their norms

are equivalent whenever there exists a continuous extension operator W s
2 (Ω) → Hs(Rn) [36, Theo-

rem 3.18]; this exists (at least for s ≥ 0) for Lipschitz Ω with bounded boundary [36, Theorem A.4],
and more generally for “minimally smooth domains” [49, §VI, Theorem 5] and “(ε, δ) locally uniform
domains” [41, Definition 5 and Theorem 8]. But it is easy to find examples where the two spaces are
different: if Ω is Lipschitz and bounded, and Ω′ := Ω \ Π, where Π is a hyperplane that divides Ω
into two components, then Hs(Ω′) = Hs(Ω) for n/2 < s ∈ N as their elements require a continuous
extension to Rn, while the elements of W s

2 (Ω
′) can jump across Π, so Hs(Ω′) $W s

2 (Ω
′).

In the present paper we will only investigate the spaces Hs(Ω) and certain closed subspaces of
Hs(Rn) related to Ω, i.e. we choose option (ii) above. We cite two main reasons motivating this
choice (see also [54, §3.1]).

Firstly, while the intrinsic spaces W s
2 (Ω) described in option (i) are the standard setting for

BVPs posed in an open set Ω and their finite element-type discretisations, the extrinsic spaces
Hs(Ω) and certain closed subspaces of Hs(Rn) arise naturally in BIE formulations. An example
(for details see §4 and [10, 11]) is the scattering of an acoustic wave propagating in Rn+1 (n = 1
or 2) by a thin screen, assumed to occupy a bounded relatively open subset of the hyperplane
{x ∈ Rn+1, xn+1 = 0}. Identifying this hyperplane with Rn and the screen with an open subset
Γ ⊂ Rn in the obvious way, one can impose either Dirichlet or Neumann boundary conditions on the
screen by first taking a (trivial) Dirichlet or Neumann trace onto the hyperplane Rn, then prescribing
the value of the restriction of this trace to Γ, as an element of H1/2(Γ) or H−1/2(Γ) respectively.
The solution to the associated BIE is respectively either the jump in the normal derivative of the
acoustic field or the jump in the field itself across the hyperplane, these jumps naturally lying in the

closed subspaces H
−1/2

Γ
⊂ H−1/2(Rn) and H1/2

Γ
⊂ H1/2(Rn) respectively (see below for definitions).

Secondly, on non-Lipschitz open sets Ω the intrinsic spaces W s
2 (Ω) present a number of unde-

sirable properties. For example, for 0 < s < 1 the embedding W 1
2 (Ω) ⊂ W s

2 (Ω) may fail and the
embedding W s

2 (Ω) ⊂ W 0
2 (Ω) = L2(Ω) may be non-compact (see [19, § 9]). Other pathological be-

haviours are described in §1.1.4 of [34]: for 2 ≤ ℓ ∈ N, the three spaces defined by the (squared)
norms ‖u‖2

Lℓ
2
(Ω)

:=
∫
Ω

∑
α∈Nn,|α|=ℓ |Dαu|2dx, ‖u‖2

L0
2
(Ω)

+ ‖u‖2
Lℓ
2
(Ω)

and
∑ℓ

j=0 ‖u‖2Lj
2
(Ω)

may be all

different from each other.

1.1.2 “Zero trace” spaces

In PDE applications, one often wants to work with Sobolev spaces on an open set Ω which have
“zero trace” on the boundary of Ω. There are many different ways to define such spaces; in this
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paper we consider the following definitions, which are equivalent only under certain conditions on
Ω and s (as will be discussed in §3.5):

• Hs
0(Ω), the closure in Hs(Ω) of the space of smooth, compactly supported functions on Ω.

• H̃s(Ω), the closure in Hs(Rn) of the space of smooth, compactly supported functions on Ω.

• Hs
Ω
, the set of those distributions in Hs(Rn) whose support lies in the closure Ω.

• ◦
Hs(Ω), defined for s ≥ 0 as the set of those distributions in Hs(Rn) that are equal to zero
almost everywhere in the complement of Ω.

Hs
0(Ω), being a closed subspace of Hs(Ω), is a space of distributions on Ω, while H̃s(Ω), Hs

Ω
and

◦
Hs(Ω), all being closed subspaces of Hs(Rn), are spaces of distributions on Rn (which can sometimes
be embedded in Hs(Ω) or Hs

0(Ω), as we will see). All the notation above is borrowed from [36] (see

also [14,28,50]), except the notation
◦
Hs(Ω) which we introduce here (essentially the same space is

denoted W̃ s
2 (Ω) in [23]).

We remark that for Lipschitz or smoother open sets Ω, the above spaces are classically char-
acterised as kernels of suitable trace operators (e.g. [36, Theorem 3.40], [23, Theorem 1.5.1.5], [31,
Chapter 1, Theorem 11.5]). Trace spaces on closed sets F ⊂ Rn with empty interior (e.g. finite
unions of submanifolds of Rn, or fractals such as Cantor sets) are sometimes defined as quotient

spaces, e.g. [15, Definition 6.1] considers H1/2([F ]) := W 1
2 (R

n)/D(Rn \ F )W
1
2 (R

n\F )
; other similar

trace spaces areHs(Rn)/H̃s(Rn\F ) and Hs(Rn\F )/Hs
0 (R

n\F ). While we do not discuss such trace
operators or trace spaces in this paper, we point out that our results in §3.4 and §3.6, respectively,
describe precisely when the latter two trace spaces are or are not trivial.

1.2 Overview of main results

We now outline the structure of the paper and summarise our main results.

Preliminary Hilbert space results. In §2 we recall some basic facts regarding (complex) Hilbert
spaces that we use later to construct unitary isomorphisms between Sobolev spaces and their duals.
The key result in §2.1 (stated as Lemma 2.2) is that given a unitary realisation H of the dual
of a Hilbert space H and a closed subspace V ⊂ H, the dual of V can be realised unitarily in
a natural way as the orthogonal complement of the annihilator of V in H. In §2.2 we consider
sequences of continuous and coercive variational equations posed in nested (either increasing or
decreasing) Hilbert spaces, and prove the convergence of their solutions under suitable assumptions,
using arguments based on Céa’s lemma. These results are used in §4 to study the limiting behaviour
of solutions of BIEs on sequences of Lipschitz open sets Γj, including cases where Γj converges as
j → ∞ to a closed fractal set, or to an open set with a fractal boundary.

Sobolev space definitions. In §3.1 we recall the precise definitions and basic properties of the
function spaces Hs(Rn), Hs(Ω), Hs

0(Ω), H̃
s(Ω),

◦
Hs(Ω), and Hs

F ⊂ Hs(Rn) introduced above. Our
presentation closely follows that of [36, Chapter 3].

Duality. In §3.2 we describe natural unitary realisations of the duals of the Sobolev spaces in-
troduced in §3.1. By “natural” we mean that the duality pairing extends the L2 inner product,
and/or the action of a distribution on a test function. For example, the dual space of Hs(Ω) can be
naturally and unitarily identified with the space H̃−s(Ω), and vice versa. This is very well known
for Ω sufficiently regular (e.g. Lipschitz with bounded boundary, e.g., [36, Theorem 3.30]) but our
proof based on the abstract Hilbert space results in §2 makes clear that the geometry of Ω is quite
irrelevant; the result holds for any Ω (see Theorem 3.3). We also provide what appear to be new
realisations of the dual spaces of Hs

F and Hs
0(Ω).
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s-nullity. In §3.3 we introduce the concept of s-nullity, a measure of the negligibility of a set in
terms of Sobolev regularity. This concept will play a prominent role throughout the paper, and
many of our key results relating different Sobolev spaces will be stated in terms of the s-nullity
(or otherwise) of the set on which a Sobolev space is defined, of its boundary, or of the symmetric
difference between two sets. For s ∈ R we say a set E ⊂ Rn is s-null if there are no non-zero elements
of Hs(Rn) supported in E. (Some other authors [27,32–34] refer to such sets as “(−s, 2)-polar sets”,
or [1,34] as sets of uniqueness for Hs(Rn); for a more detailed discussion of terminology see Remark
3.9.) In Lemma 3.10 we collect a number of results concerning s-nullity and its relationship to
analytical and geometrical properties of sets (for example Hausdorff dimension) that have recently
been derived in [25] using potential theoretic results on set capacities taken from [1,34].

Spaces defined on different subsets of Rn. Given two different Lipschitz open sets Ω1,Ω2 ⊂
Rn, the symmetric difference (Ω1 ∪ Ω2) \ (Ω1 ∩ Ω2) has non-empty interior, and hence the Sobolev
spaces related to Ω1 and Ω2 are different, in particular H̃s(Ω1) 6= H̃s(Ω2). If the Lipschitz assump-
tion is lifted the situation is different: for example, from a Lipschitz open set Ω one can subtract
any closed set with empty interior (e.g. a point, a convergent sequence of points together with its
limit, a closed line segment, curve or other higher dimensional manifold, or a more exotic fractal
set) and what is left will be again an open set Ω′. In which cases is H̃s(Ω) = H̃s(Ω′)? When is
Hs

Ωc = Hs
Ω′c? And how is Hs(Ω) related to Hs(Ω′)? In §3.4 we answer these questions precisely in

terms of s-nullity.

Comparison between the “zero-trace” subspaces of Hs(Rn). The spaces H̃s(Ω), Hs
Ω

and
◦
Hs(Ω) are all closed subspaces of Hs(Rn). For arbitrary Ω they satisfy the inclusions

H̃s(Ω) ⊂ ◦
Hs(Ω) ⊂ Hs

Ω

(with
◦
Hs(Ω) present only for s ≥ 0). In §3.5 we describe conditions under which the above inclusions

are or are not equalities. For example, it is well known (e.g. [36, Theorem 3.29]) that when Ω is C0 the
three spaces coincide. A main novelty in this section is the construction of explicit counterexamples
which demonstrate that this is not the case for general Ω. A second is the proof, relevant to the
diversity of configurations illustrated in Figure 4, that H̃s(Ω) = Hs

Ω
for |s| ≤ 1 for the class of open

sets whose boundaries, roughly speaking, fail to be C0 at a finite number of points.

When is Hs
0(Ω) = Hs(Ω)? In §3.6 we investigate the question of when Hs

0(Ω) is or is not equal to
Hs(Ω). One classical result (see [23, Theorem 1.4.2.4] or [36, Theorem 3.40]) is that if Ω is Lipschitz
and bounded then Hs

0(Ω) = Hs(Ω) for 0 ≤ s ≤ 1/2. Using the dual space realisations derived in
§3.2 we show that, for arbitrary Ω, equality of Hs

0(Ω) and H
s(Ω) is equivalent to a certain subspace

of H−s(Rn) being trivial. From this we deduce a number of necessary and sufficient conditions for
equality, many of which appear to be new; in particular our results linking the equality of Hs

0(Ω)
and Hs(Ω) to the fractal dimension of ∂Ω improve related results presented in [7].

The restriction operator. One feature of this paper is that we take care to distinguish be-
tween spaces of distributions defined on Rn (including Hs(Rn), H̃s(Ω),

◦
Hs(Ω),Hs

Ω
) and spaces of

distributions defined on Ω (including Hs
0(Ω),H

s(Ω)). The link between the two is provided by the
restriction operator |Ω : Hs(Rn) → Hs(Ω). In §3.7 we collect results from [26] on its mapping prop-
erties (injectivity, surjectivity, unitarity). In Remark 3.32 we briefly mention the relationship of
H̃s(Ω) and Hs

0(Ω) with the classical Lions–Magenes space Hs
00(Ω) (defined by interpolation), using

results recently derived in [13].

Sequences of subsets. Many of the best-known fractals (for example Cantor sets, Cantor dusts,
the Koch snowflake, the Sierpinski carpet, and the Menger sponge) are defined by taking the union
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or intersection of an infinite sequence of simpler, nested “prefractal” sets. In §3.8 we determine
which of the Sobolev spaces defined on the limiting set naturally emerges as the limit of the spaces
defined on the approximating sets. This question is relevant when the different spaces on the limit
set do not coincide, e.g. when H̃s(Ω) $ Hs

Ω
. In this case the correct function space setting depends

on whether the limiting set is to be approximated from “inside” (as a union of nested open sets), or
from the “outside” (as an intersection of nested closed sets).

Boundary integral equations on fractal screens. §4 contains the major application of the
paper, namely the BIE formulation of acoustic (scalar) wave scattering by fractal screens. We show
how the Sobolev spaces Hs(Ω), H̃s(Ω),Hs

F all arise naturally in such problems, pulling together
many of the diverse results proved in the other sections of the paper. In particular, we study the
limiting behaviour as j → ∞ of the solution in the fractional Sobolev space H̃±1/2(Γj) of the BIE
on the sequence of regular screens Γj, focussing particularly on cases where Γj is a sequence of
prefractal approximations to a limiting screen Γ that is fractal or has fractal boundary.

2 Preliminary Hilbert space results

In this section we summarise the elementary Hilbert space theory which underpins our later discus-
sions.

We say that a mapping ι : H1 → H2 between topological vector spacesH1 andH2 is an embedding
if it is linear, continuous, and injective, and indicate this by writing H1 →֒ι H2, abbreviated as
H1 →֒ H2 when the embedding ι is clear from the context. We say that a mapping ι : H1 → H2

is an isomorphism if ι is linear and a homeomorphism. If H1 and H2 are Banach spaces and,
additionally, the mapping is isometric (preserves the norm) then we say that ι is an isometric
isomorphism. If H1 and H2 are Hilbert spaces and, furthermore, ι preserves the inner product, then
we say that ι is a unitary isomorphism (the terms H-isomorphism and Hilbert space isomorphism
are also commonly used), and we write H1

∼=ι H2. We recall that an isomorphism between Hilbert
spaces is unitary if and only if it is isometric [16, Proposition 5.2].

From now on let H denote a complex Hilbert space with inner product (·, ·)H , and H∗ its dual
space (all our results hold for real spaces as well, with the obvious adjustments). Following, e.g.,
Kato [30] we take H∗ to be the space of anti-linear continuous functionals on H (sometimes called
the anti-dual), this choice simplifying some of the notation and statement of results. The space
H∗ is itself a Banach space with the usual induced operator norm. Further, it is an elementary
result that the so-called Riesz isomorphism, the mapping R : H → H∗ which maps φ ∈ H to the
anti-linear functional ℓφ ∈ H∗, given by ℓφ(ψ) = (φ,ψ)H , for ψ ∈ H, is an isometric isomorphism.
This provides a natural identification of the Banach space H∗ with H itself. Moreover, this mapping
allows us to define an inner product (·, ·)H∗ on H∗, by the requirement that (φ,ψ)H = (ℓφ, ℓψ)H∗ ,
φ,ψ ∈ H, and this inner product is compatible with the norm on H∗. With this canonical inner
product H∗ is itself a Hilbert space and the Riesz isomorphism is a unitary isomorphism1.

2.1 Realisations of dual spaces

It is frequently convenient, e.g. when working with Sobolev spaces, to identify the dual space H∗

not with H itself but with another Hilbert space H. If I : H → H∗ is a unitary isomorphism then

1As for Kato [30], a large part of our preference for our dual space convention (that our functionals are anti-
linear rather than linear) is that the Riesz mapping is an isomorphism. If one prefers to work with linear functionals
one can construct an isomorphism between the spaces of continuous linear and anti-linear functionals; indeed, in
many important cases there is a canonical choice for this isomorphism. Precisely, if ψ 7→ ψ∗ is any anti-linear
isometric involution on H (sometimes called a conjugate map, and easily constructed using an orthogonal basis for
H , e.g., [44, Conclusion 2.1.18]) the map φ∗ 7→ φ, from the Hilbert space of continuous anti-linear functionals to the
space of continuous linear functionals, defined by φ(ψ) = φ∗(ψ∗), ψ ∈ H , is a unitary isomorphism. In general there
is no natural choice for this conjugate map, but when, as in §3 onwards, H is a space of complex-valued functions the
canonical choice is ψ∗ = ψ. When H is real all this is moot; linear and anti-linear coincide.
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we say that (H,I) is a unitary realisation of H∗, and

〈ψ, φ〉 := Iψ(φ), φ ∈ H,ψ ∈ H, (1)

defines a bounded sesquilinear form on H×H, called the duality pairing.
The following lemma shows that, given a unitary realisation (H,I) of H∗, there is a natural

unitary isomorphism I∗ : H → H∗, so that (H,I∗) is a realisation of H∗. The operator I∗ is the
adjoint operator of I after the canonical identification of H with its bidual H∗∗.

Lemma 2.1. If H and H are Hilbert spaces and I : H → H∗ is a unitary isomorphism, then
I∗ : H → H∗, given by I∗φ(ψ) = Iψ(φ), for φ ∈ H and ψ ∈ H, is a unitary isomorphism, and the
corresponding duality pairing 〈·, ·〉 on H ×H is

〈φ,ψ〉 := I∗φ(ψ) = 〈ψ, φ〉, φ ∈ H,ψ ∈ H,

where the duality pairing on the right hand side is that on H×H, as defined in (1).

Proof. For φ ∈ H and ψ ∈ H, where R : H → H∗ and R : H → H∗ are the Riesz isomorphisms,

I∗φ(ψ) = Iψ(φ) = (R−1Iψ, φ)H = (φ,R−1Iψ)H = (I−1Rφ,ψ)H = RI−1Rφ(ψ),

so that I∗ = RI−1R is a composition of unitary isomorphisms, and hence a unitary isomorphism.

Similarly, there is associated to (H,I) a natural unitary isomorphism j : H → H defined by
j = I−1R, where R : H → H∗ is the Riesz isomorphism.

For a subset V ⊂ H, we denote by V ⊥ the subset ofH orthogonal to V , a closed linear subspace of
H. When V is itself a closed linear subspace, in which case V ⊥ is termed the orthogonal complement
of V , we can define P : H → V (orthogonal projection onto V ) by Pφ = ψ, where ψ is the best
approximation to φ from V . This mapping is linear and bounded with ‖P‖ = 1 and P = P 2 = P ∗,
where P ∗ : H → H is the Hilbert-space adjoint operator of P . P has range P (H) = V and kernel
ker(P ) = V ⊥; moreover H = V ⊕V ⊥, and V ⊥⊥ = V . Furthermore, if (H,I) is a unitary realisation
of H∗ and 〈·, ·〉 is the associated duality pairing (as in (1)), we define, for any subset V ⊂ H,

V a,H := {ψ ∈ H : 〈ψ, φ〉 = 0, for all φ ∈ V } ⊂ H, (2)

this the annihilator of V in H. For φ,ψ ∈ H, 〈jψ, φ〉 = Rψ(φ) = (ψ, φ)H , so that V a,H = j(V ⊥).
When V is a closed linear subspace of H, since j preserves orthogonality and V ⊥⊥ = V , we have

(V ⊥)a,H = j(V ) =
(
V a,H

)⊥
, and

(
V a,H

)a,H
= j−1

(
(V a,H)⊥

)
= V. (3)

Given a linear subspace V ⊂ H we can form the quotient space H/V := {φ+ V : φ ∈ H}. If V
is closed then H/V is a Banach space, with norm

‖φ+ V ‖H/V := inf
ψ∈V

‖φ+ ψ‖H = ‖Qφ‖H , (4)

where Q : H → V ⊥ is orthogonal projection. The mapping Q/ : H/V → V ⊥, defined by Q/(φ+V ) =
Qφ, is clearly surjective and so an isometric isomorphism. Defining an inner product compatible
with the norm on H/V by (φ+ V, ψ + V )H/V = (Qφ,Qψ)H , H/V becomes a Hilbert space and Q/
a unitary isomorphism, i.e.

H/V ∼=Q/
V ⊥.

A situation which arises frequently in Sobolev space theory is where we have identified a par-
ticular unitary realisation (H,I) of a dual space H∗ and we seek a unitary realisation of V ∗, where
V is a closed linear subspace of H. The following result shows that an associated natural unitary

realisation of V ∗ is (V,IV ), where V =
(
V a,H

)⊥ ⊂ H and IV is the restriction of I to V. This is
actually a special case of a more general Banach space result, e.g. [42, Theorem 4.9], but since it
plays such a key role in later results, for ease of reference we restate it here restricted to our Hilbert
space context, and provide the short proof.
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Lemma 2.2. Suppose that H and H are Hilbert spaces, I : H → H∗ is a unitary isomorphism,

and V ⊂ H is a closed linear subspace. Set V :=
(
V a,H

)⊥ ⊂ H, and define IV : V → V ∗ by
IVψ(φ) = Iψ(φ), for φ ∈ V, ψ ∈ V. Then (V,IV ) is a unitary realisation of V ∗, with duality pairing

〈ψ, φ〉V := IV ψ(φ) = 〈ψ, φ〉, φ ∈ V, ψ ∈ V,

where 〈·, ·〉 is the duality pairing on H×H given by (1).

Proof. As above, let R : H → H∗ be the Riesz isomorphism and j := I−1R : H → H, both unitary
isomorphisms. (V,RV ) is a unitary realisation of V ∗, where RV : V → V ∗ is the Riesz isomorphism.
Thus, since V = j(V ) by (3), another unitary realisation is (V, RV j−1|V). Further, for φ ∈ V , ψ ∈ V,

RV j
−1ψ(φ) = (j−1ψ, φ)V = (j−1ψ, φ)H = Rj−1ψ(φ) = Iψ(φ) = 〈ψ, φ〉 = IV ψ(φ),

so that IV = RV j
−1|V .

Remark 2.3. Lemma 2.2 gives a natural unitary realisation of the dual space of a closed subspace
V of a Hilbert space H. This lemma applies in particular to the closed subspace V ⊥. In view of
(3) and Lemma 2.2 we have that (V⊥,IV ⊥) is a unitary realisation of (V ⊥)∗, with V⊥ = V a,H and
IV ⊥ψ(φ) = 〈ψ, φ〉, φ ∈ V ⊥, ψ ∈ V⊥.

Figure 1 illustrates as connected commutative diagrams the spaces in this section and key ele-
ments of the proofs of the above lemmas.

V ⊥ ⊕ V = H H∗

(V ⊥)∗ V ∗ H∗ H =
(
V = (V a,H)⊥

)
⊕

(
V⊥ = V a,H

)

I∗

I

j
R RRVRV ⊥

IV IV⊥

jV

jV ⊥

P P

Figure 1: A representation of the Hilbert spaces and the mappings defined in §2; here jV and jV ⊥

are the restrictions of j to V and V ⊥, respectively. Every arrow represents a unitary isomorphism,
except for the two orthogonal projections P : H → V and P : H → V. If one deletes these orthogonal
projections, the remaining picture consists of three commutative diagrams.

2.2 Approximation of variational equations in nested subspaces

Let H be a Hilbert space, with its dual H∗ realised unitarily as some Hilbert space H and associated
duality pairing 〈·, ·〉, as in §2.1. Fix f ∈ H, and suppose that a(·, ·) : H ×H → C is a sesquilinear
form that is continuous and coercive, i.e.,

∃C, c > 0 such that |a(u, v)| ≤ C‖u‖H‖v‖H , |a(v, v)| ≥ c‖v‖2H ∀u, v ∈ H. (5)

For any closed subspace V ⊂ H the restriction of a(·, ·) to V × V is also continuous and coercive.
Thus by the Lax–Milgram lemma there exists a unique solution uV ∈ V to the variational equation

a(uV , v) = 〈f, v〉 ∀v ∈ V, (6)
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and the solution is bounded independently of the choice of V , by ‖uV ‖H ≤ c−1‖f‖H. Furthermore,
given closed, nested subspaces V1 ⊂ V2 ⊂ H, Céa’s lemma gives the following standard bound:

‖uV1 − uV2‖H ≤ C

c
inf
v1∈V1

‖v1 − uV2‖H . (7)

Consider increasing and decreasing sequences of closed, nested subspaces indexed by j ∈ N,

V1 ⊂ · · · ⊂ Vj ⊂ Vj+1 ⊂ · · · ⊂ H and H ⊃W1 ⊃ · · · ⊃Wj ⊃Wj+1 ⊃ · · · ,
and define the limit spaces V :=

⋃
j∈N Vj and W :=

⋂
j∈NWj. Céa’s lemma (7) immediately gives

convergence of the corresponding solutions of (6) in the increasing case:

‖uVj − uV ‖H ≤ C

c
inf
vj∈Vj

‖vj − uV ‖H j→∞−−−→ 0. (8)

In the decreasing case the following analogous result applies.

Lemma 2.4. With {Wj}∞j=1 and W defined as above, it holds that ‖uWj − uW‖H → 0 as j → ∞.

Proof. The Lax–Milgram lemma gives that ‖uWj‖H ≤ c−1‖f‖H, so that (uWj )
∞
j=1 is bounded and

has a weakly convergent subsequence, converging to a limit u∗. Further, for all w ∈W , (6) gives

a(uW , w) = 〈f,w〉 = a(uWj , w) → a(u∗, w),

as j → ∞ through that subsequence, so that u∗ = uW . By the same argument every subsequence
of (uWj )

∞
j=1 has a subsequence converging weakly to uW , so that (uWj )

∞
j=1 converges weakly to uW .

Finally, we see that

c‖uWj − uW ‖2H ≤ |a(uWj − uW , uWj − uW )| = |〈f, uWj〉 − a(uWj , uW )− a(uW , uWj − uW )| → 0

as j → ∞, by the weak convergence of (uWj )
∞
j=1 and (6).

3 Sobolev spaces

3.1 Main definitions

We now define the Sobolev spaces studied in this paper. Our presentation broadly follows that
of [36].

3.1.1 Distributions, Fourier transform and Bessel potential

Given n ∈ N, let D(Rn) denote the space of compactly supported smooth test functions on Rn,
and for any open set Ω ⊂ Rn let D(Ω) := {u ∈ D(Rn) : suppu ⊂ Ω}. For Ω ⊂ Rn let D∗(Ω)
denote the space of distributions on Ω (anti-linear continuous functionals on D(Ω)). With L1

loc(Ω)
denoting the space of locally integrable functions on Ω, the standard embedding L1

loc(Ω) →֒ D∗(Ω)
is given by u(v) :=

∫
Ω uv for u ∈ L1

loc(Ω) and v ∈ D(Ω). Let S(Rn) denote the Schwartz space of
rapidly decaying smooth test functions on Rn, and S∗(Rn) the dual space of tempered distributions
(anti-linear continuous functionals on S(Rn)). Since the inclusion D(Rn) ⊂ S(Rn) is continuous
with dense image, we have S∗(Rn) →֒ D∗(Rn). For u ∈ S(Rn) we define the Fourier transform
û = Fu ∈ S(Rn) and its inverse ǔ = F−1u ∈ S(Rn) by

û(ξ) :=
1

(2π)n/2

∫

Rn

e−iξ·xu(x) dx, ξ ∈ Rn, ǔ(x) :=
1

(2π)n/2

∫

Rn

eiξ·xu(ξ) dξ, x ∈ Rn.

We define the Bessel potential operator Js on S(Rn), for s ∈ R, by Js := F−1MsF , where Ms is
multiplication by (1 + |ξ|2)s/2. We extend these definitions to S∗(Rn) in the usual way:

û(v) := u(v̌), ǔ(v) := u(v̂), Msu(v) := u(Msv), (Jsu)(v) := u(Jsv), u ∈ S∗(Rn), v ∈ S(Rn).
(9)

Note that for u ∈ S∗(Rn) it holds that Ĵsu = Msû.
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3.1.2 Sobolev spaces on Rn

We define the Sobolev space Hs(Rn) ⊂ S∗(Rn) by

Hs(Rn) := J−s

(
L2(Rn)

)
=

{
u ∈ S∗(Rn) : Jsu ∈

(
L2(Rn)

)}
,

equipped with the inner product (u, v)Hs(Rn) := (Jsu,Jsv)L2(Rn), which makes Hs(Rn) a Hilbert

space and J−s : L
2(Rn) → Hs(Rn) a unitary isomorphism. Furthermore, for any s, t ∈ R, the map

Jt : Hs(Rn) → Hs−t(Rn) is a unitary isomorphism with inverse J−t. Also, D(Rn) is a dense subset
of Hs(Rn) for every s ∈ R. If u ∈ Hs(Rn) then the Fourier transform û ∈ S∗(Rn) lies in L1

loc(R
n);

that is, û can be identified with a locally integrable function. Hence we can write

(u, v)Hs(Rn) =

∫

Rn

(1 + |ξ|2)s û(ξ)v̂(ξ) dξ,

‖u‖2Hs(Rn) = ‖Jsu‖2L2(Rn) =

∫

Rn

(1 + |ξ|2)s|û(ξ)|2 dξ,
u, v ∈ Hs(Rn). (10)

For any −∞ < s < t < ∞, Ht(Rn) is continuously embedded in Hs(Rn) with dense image and
‖u‖Hs(Rn) < ‖u‖Ht(Rn) for all 0 6= u ∈ Ht(Rn). When s > n/2, elements of Hs(Rn) can be identified
with continuous functions (by the Sobolev embedding theorem [36, Theorem 3.26]). At the other
extreme, for any x0 ∈ Rn the Dirac delta function2

δx0
∈ Hs(Rn) if and only if s < −n/2. (11)

Recall that for a multi-index α ∈ Nn0 we have F(∂αu/∂xα)(ξ) = (−iξ)αû(ξ). Then by Plancherel’s
theorem and (10) it holds that

‖u‖2Hs+1(Rn) = ‖u‖2Hs(Rn) +

n∑

j=1

∥∥∥ ∂u
∂xj

∥∥∥
2

Hs(Rn)
∀u ∈ Hs+1(Rn), s ∈ R.

In particular, if m ∈ N0 then, where |α| := ∑n
j=1 αj for α ∈ Nn0 ,

‖u‖2Hm(Rn) =
∑

α∈Nn
0 ,

|α|≤m

(
m

|α|

)(|α|
α

)∥∥∥∂
|α|u

∂xα

∥∥∥
2

L2(Rn)
=

∑

α∈Nn
0 ,

|α|≤m

m!

(m− |α|)!α1! · · ·αn!
∥∥∥∂

|α|u

∂xα

∥∥∥
2

L2(Rn)
.

Similar manipulations show that functions with disjoint support are orthogonal in Hm(Rn) for
m ∈ N0. But we emphasize that this is not in general true in Hs(Rn) for s ∈ R \ N0.

3.1.3 The duality relation between Hs(Rn) and H−s(Rn)

Where Rs : H
s(Rn) → (Hs(Rn))∗ is the Riesz isomorphism, the map Is := RsJ−2s, from H−s(Rn)

to (Hs(Rn))∗, is a unitary isomorphism, so (H−s(Rn),Is) is a unitary realisation of (Hs(Rn))∗, with
the duality pairing given by

〈u, v〉s := Isu(v) = (J−2su, v)Hs(Rn) = (J−su,Jsv)L2(Rn) =

∫

Rn

û(ξ)v̂(ξ) dξ, (12)

u ∈ H−s(Rn), v ∈ Hs(Rn).

This unitary realisation of (Hs(Rn))∗ is attractive because the duality pairing (12) is simply the
L2(Rn) inner product when u, v ∈ S(Rn), and a continuous extension of that inner product for
u ∈ H−s(Rn), v ∈ Hs(Rn). Moreover, if u ∈ H−s(Rn) and v ∈ S(Rn) ⊂ Hs(Rn), then 〈u, v〉s
coincides with the action of the tempered distribution u on v ∈ S(Rn), since (recalling (9))

〈u, v〉s = (J−su,Jsv)L2(Rn) = J−su(Jsv) = u(v), u ∈ H−s(Rn), v ∈ S(Rn). (13)

2To fit our convention that Hs(Rn) ⊂ S
∗(Rn) is a space of anti-linear functionals on S(Rn), we understand the

action of δx0
by δx0

(φ) = φ(x0), φ ∈ D(Rn).
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3.1.4 Sobolev spaces on closed and open subsets of Rn

Given s ∈ R and a closed set F ⊂ Rn, we define

Hs
F :=

{
u ∈ Hs(Rn) : supp(u) ⊂ F

}
, (14)

where the support of a distribution is understood in the standard sense (e.g. [36, p. 66]), i.e. Hs
F =

{u ∈ Hs(Rn) : u(ϕ) = 0 ∀ϕ ∈ D(F c)}. Then Hs
F is a closed subspace of Hs(Rn), so is a Hilbert

space with respect to the inner product inherited from Hs(Rn).
There are many different ways to define Sobolev spaces on a non-empty open subset Ω ⊂ Rn.

We begin by considering three closed subspaces of Hs(Rn), which are all Hilbert spaces with respect
to the inner product inherited from Hs(Rn). First, we have the space Hs

Ω
, defined as in (14), i.e.

Hs
Ω
:=

{
u ∈ Hs(Rn) : supp(u) ⊂ Ω

}
.

Second, we consider

H̃s(Ω) := D(Ω)
Hs(Rn)

.

Third, for s ≥ 0 another natural space to consider is (see also Remark 3.1)

◦
Hs(Ω) :=

{
u ∈ Hs(Rn) : u = 0 a.e. in Ωc

}
=

{
u ∈ Hs(Rn) : m

(
Ωc ∩ suppu

)
= 0

}
.

These three closed subspaces of Hs(Rn) satisfy the inclusions

H̃s(Ω) ⊂ ◦
Hs(Ω) ⊂ Hs

Ω
(15)

(with
◦
Hs(Ω) present only for s ≥ 0). If Ω is sufficiently smooth (e.g. C0) then the three sets coincide,

but in general all three can be different (this issue will be investigated in §3.5).
Another way to define Sobolev spaces on Ω is by restriction from Hs(Rn). For s ∈ R let

Hs(Ω) :=
{
u ∈ D∗(Ω) : u = U |Ω for some U ∈ Hs(Rn)

}
,

where U |Ω denotes the restriction of the distribution U to Ω in the standard sense [36, p. 66]. We
can identify Hs(Ω) with the quotient space Hs(Rn)/Hs

Ωc through the bijection

qs : H
s(Rn)/Hs

Ωc → Hs(Ω) given by qs(U +Hs
Ωc) = U |Ω, U ∈ Hs(Rn).

Recalling the discussion of quotient spaces in and below (4), this allows us to endow Hs(Ω) with a
Hilbert space structure (making qs a unitary isomorphism), with the inner product given by

(u, v)Hs(Ω) := (q−1
s u, q−1

s v)Hs(Rn)/Hs
Ωc

= (U +Hs
Ωc, V +Hs

Ωc)Hs(Rn)/Hs
Ωc

= (QsU,QsV )Hs(Rn),

for u, v ∈ Hs(Rn), where U, V ∈ Hs(Rn) are such that U |Ω = u, V |Ω = v, and Qs is orthogonal
projection from Hs(Rn) onto (Hs

Ωc)⊥, and the resulting norm given by

‖u‖Hs(Ω) = ‖QsU‖Hs(Rn) = min
W∈Hs(Rn)
W |Ω=u

‖W‖Hs(Rn) ∀U ∈ Hs(Rn) such that U |Ω = u. (16)

We can also identifyHs(Ω) with (Hs
Ωc)⊥, by the unitary isomorphism qsQs

−1
/ : (Hs

Ωc)⊥ → Hs(Ω),

where Qs/ : Hs(Rn)/Hs
Ωc → (Hs

Ωc)⊥ is the quotient map defined from Qs, as in §2. In fact, it is

easy to check that qsQs
−1
/ is nothing but the restriction operator |Ω, so

|Ω : (Hs
Ωc)⊥ → Hs(Ω) is a unitary isomorphism (17)
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Hs(Rn)/Hs
Ωc

Hs(Rn) (Hs
Ωc)⊥

Hs(Ω)

Qs

Qs/

qs

|Ω

Figure 2: The maps between Hs(Rn) and Hs(Ω), for s ∈ R and an open Ω ⊂ Rn, as described in
§3.1.4. All the maps depicted are unitary isomorphisms except Qs, which is an orthogonal projection,
and this diagram commutes.

and the diagram in Figure 2 commutes. This means we can study the spaces Hs(Ω) (which, a priori,
consist of distributions on Ω) by studying subspaces of Hs(Rn); this is convenient, e.g., when trying
to compare Hs(Ω1) and H

s(Ω2) for two different open sets Ω1,Ω2; see §3.4.
Clearly

D(Ω) :=
{
u ∈ C∞(Ω) : u = U |Ω for some U ∈ D(Rn)

}

is a dense subspace of Hs(Ω), since D(Rn) is dense in Hs(Rn). The final space we introduce in this
section is the closed subspace of Hs(Ω) defined by

Hs
0(Ω) := D(Ω)

∣∣
Ω

Hs(Ω)
. (18)

H̃s(Ω) and Hs
0(Ω) are defined as closures in certain norms of D(Ω) and D(Ω)|Ω, respectively, so

that the former is a subspace of Hs(Rn) ⊂ S∗(Rn) and the latter of Hs(Ω) ⊂ S∗(Rn)|Ω ⊂ D∗(Ω).
For s > 1/2 and sufficiently uniformly smooth Ω, both H̃s(Ω) and Hs

0(Ω) consist of functions with
“zero trace” (see [36, Theorem 3.40] for the case when ∂Ω is bounded), but this intuition fails for
negative s: if x0 ∈ ∂Ω, then the delta function δx0

lies in H̃s(Ω) for s < −n/2, irrespective of the
regularity of ∂Ω; see the proof of Corollary 3.29(iv) below.

Remark 3.1. We note that for s ≥ 0 the restriction of
◦
Hs(Ω) to Ω is precisely the subspace (not

necessarily closed)

Hs
ze(Ω) :=

{
u ∈ Hs(Ω) : uze ∈ Hs(Rn)

}
⊂ Hs(Ω),

where uze is the extension of u from Ω to Rn by zero. The restriction operator |Ω :
◦
Hs(Ω) → Hs

ze(Ω)
is clearly a bijection for all s ≥ 0, with inverse given by the map u 7→ uze, and if Hs

ze(Ω) is equipped
with the norm ‖u‖Hs

ze(Ω) := ‖uze‖Hs(Rn) (as in e.g. [23, Equation (1.3.2.7)], where Hs
ze(Ω) is denoted

W̃ s
2 (Ω)) then |Ω :

◦
Hs(Ω) → Hs

ze(Ω) is trivially a unitary isomorphism for all s ≥ 0.

For clarity, we repeat a fundamental fact: the natural norm on Hs
F , H̃

s(Ω),
◦
Hs(Ω) and Hs

Ω
is the

Hs(Rn)-norm (defined in (10)), while the norm on Hs(Ω) and Hs
0(Ω) is the minimal Hs(Rn)-norm

among the extensions of u ∈ Hs(Ω) to Rn (defined in (16)).

3.2 Dual spaces

In this section we construct concrete unitary realisations (as Sobolev spaces) of the duals of the
Sobolev spaces defined in §3.1. Our constructions are based on the abstract Hilbert space result of
Lemma 2.2, and are valid for any non-empty open set Ω ⊂ Rn, irrespective of its regularity.

We first note the following lemma, which characterises the annihilators (as defined in (2)) of
the subsets H̃s(Ω) and Hs

Ωc of Hs(Rn), with (Hs(Rn))∗ realised as H−s(Rn) through the unitary
isomorphism Is := RsJ−2s with associated duality pairing (12).
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Lemma 3.2. Let Ω be any non-empty open subset of Rn, and s ∈ R. Then

H−s
Ωc =

(
H̃s(Ω)

)a,H−s(Rn)
and H̃−s(Ω) = (Hs

Ωc)
a,H−s(Rn) . (19)

Furthermore, the Bessel potential operator is a unitary isomorphism between the following pairs of
subspaces:

J2s : H̃
s(Ω) → (H−s

Ωc )
⊥ and J2s : H

s
Ωc → (H̃−s(Ω))⊥.

Proof. From the definition of the support of a distribution, (13), the definition of H̃s(Ω), and the
continuity of the sesquilinear form 〈·, ·〉s, it follows that, for s ∈ R,

H−s
Ωc = {u ∈ H−s(Rn) : supp(u) ⊂ Ωc} = {u ∈ H−s(Rn) : u(v) = 0 for all v ∈ D(Ω)}

= {u ∈ H−s(Rn) : 〈u, v〉s = 0 for all v ∈ D(Ω)} =
(
H̃s(Ω)

)a,H−s(Rn)
,

which proves the first statement in (19). The second statement in (19) follows immediately from the
first, after replacing s by −s, by (3). The final statement of the lemma also follows by (3), noting
that j in (3) is given explicitly as j = (Is)−1Rs = J2s.

Combining Lemma 3.2 with Lemmas 2.1 and 2.2 gives unitary realisations for (H̃s(Ω))∗ and
(H−s(Ω))∗, expressed in Theorem 3.3 below. These unitary realisations, precisely the result that
the operators Is and I∗

s in (21) are unitary isomorphisms, are well known when Ω is sufficiently
regular. For example, in [36, Theorem 3.30] and in [50, Theorem 2.15] the result is claimed for
Ω Lipschitz with bounded boundary. (In fact, [36, Theorems 3.14 and 3.29(ii)] together imply the
result for Ω C0 with bounded boundary, but this is not highlighted in [36].) However, it is not
widely appreciated, at least in the numerical PDEs community, that this result holds without any
constraint on the geometry of Ω.

Theorem 3.3. Let Ω be any non-empty open subset of Rn, and s ∈ R. Then

H−s(Ω) ∼=Is

(
H̃s(Ω)

)∗
and H̃s(Ω) ∼=I∗

s

(
H−s(Ω)

)∗
, (20)

where Is : H−s(Ω) → (H̃s(Ω))∗ and I∗
s : H̃s(Ω) → (H−s(Ω))∗, defined by

Isu(v) = 〈U, v〉s and I∗
s v(u) = 〈v, U〉−s, for u ∈ H−s(Ω), v ∈ H̃s(Ω), (21)

where U ∈ H−s(Rn) denotes any extension of u with U |Ω = u, are unitary isomorphisms. Further-
more, the associated duality pairings

〈u, v〉
H−s(Ω)×H̃s(Ω)

:= Isu(v) and 〈v, u〉
H̃s(Ω)×H−s(Ω)

:= I∗
sv(u),

satisfy
〈v, u〉

H̃s(Ω)×H−s(Ω)
= 〈u, v〉

H−s(Ω)×H̃s(Ω)
, v ∈ H̃s(Ω), u ∈ H−s(Ω).

Proof. By Lemma 3.2, it follows from Lemma 2.2, applied with H = Hs(Rn), H = H−s(Rn) and
V = H̃s(Ω), that Îs : (H−s

Ωc )⊥ → (H̃s(Ω))∗, defined by Îsu(v) = 〈u, v〉s, is a unitary isomorphism.

By Lemma 2.1, Î∗
s : H̃s(Ω) → ((H−s

Ωc )⊥)∗, defined by Î∗
sv(u) = 〈v, u〉−s = Îsu(v) is also a unitary

isomorphism. Thus the dual space of H̃s(Ω) can be realised in a canonical way by (H−s
Ωc )⊥, and vice

versa. But we can say more. Since (cf. (17)) the restriction operator |Ω is a unitary isomorphism
from (H−s

Ωc )⊥ onto H−s(Ω), the composition Is := Îs(|Ω)−1 : H−s(Ω) → (H̃s(Ω))∗ is a unitary

isomorphism. And, again by Lemma 2.1, I∗
s : H̃s(Ω) → (H−s(Ω))∗, defined by I∗

s v(u) := Isu(v) is
also a unitary isomorphism. Hence we can realise the dual space of H̃s(Ω) byH−s(Ω), and vice versa.
Moreover, it is easy to check that Is and I∗

s can be evaluated as in (21). Thus Is and I∗
s coincide

with the natural embeddings of H−s(Ω) and H̃s(Ω) into (H̃s(Ω))∗ and (H−s(Ω))∗, respectively (as
in e.g. [36, Theorem 3.14]).
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The dual of is isomorphic to via the isomorphism

Hs(Rn) H−s(Rn) Is
H̃s(Ω) (H−s

Ωc )⊥ Îs
H−s(Ω) Is

H−s(Rn)/(H−s
Ωc ) Ǐs

Hs(Ω) H̃−s(Ω) I∗
−s

Hs
Ωc (H̃−s(Ω))⊥ Ĩs

(Hs
Ωc)⊥ H̃−s(Ω) Î∗

−s(
H̃s(Ω)

)⊥
H−s

Ωc Ĩ∗
−s

Hs
0(Ω) (H̃−s(Ω) ∩H−s

∂Ω)
⊥,H̃−s(Ω)

Table 1: A summary of the duality relations proved in §3.1.3 and §3.2.

Corollary 3.4. Let F be any closed subset of Rn (excepting Rn itself), and s ∈ R. Then

(
H̃−s(F c)

)⊥ ∼=Ĩs
(Hs

F )
∗ and Hs

F
∼=Ĩ∗

s

((
H̃−s(F c)

)⊥)∗
,

where Ĩs : (H̃−s(F c))⊥ → (Hs
F )

∗ and Ĩ∗
s : Hs

F → ((H̃−s(F c))⊥)∗, defined by

Ĩsu(v) := 〈u, v〉s, and Ĩ∗
sv(u) = 〈v, u〉−s = Ĩsu(v), for u ∈

(
H̃−s(F c)

)⊥
, v ∈ Hs

F ,

are unitary isomorphisms.

Proof. Setting Ω := F c, the result follows from Theorem 3.3 and Remark 2.3.

Remark 3.5. It is also possible to realise (H̃s(Ω))∗ and (Hs
F )

∗ using quotient spaces, by compo-

sition of Îs and Ĩs with the appropriate quotient maps. For example, (H̃s(Ω))∗ can be realised as
(H−s(Rn)/H−s

Ωc , Ǐs), where Ǐs = ÎsQ−s/ = Isq−s, and qs and Qs/ are defined as in §3.1.4.

Remark 3.6. The above results imply that, for a non-empty open set Ω, (H̃s(Ω))∗ and (Hs
Ω
)∗ can

be canonically realised as subspaces of H−s(Rn), namely as (H−s
Ωc )⊥ and (H̃−s(Ω

c
))⊥ respectively.

For s ≥ 0, we know that (
◦
Hs(Ω))∗ can similarly be realised as (X−s(Ω))⊥ ⊂ H−s(Rn), where

H̃−s(Ω
c
) ⊂ X−s(Ω) := (

◦
Hs(Ω))a,H

−s(Rn) ⊂ H−s
Ωc . But as far as we know, providing an explicit

description of the space X−s(Ω) ⊂ H−s(Rn) is an open problem.

The following lemma realises the dual space of Hs
0(Ω) ⊂ Hs(Ω) as a subspace of H̃−s(Ω).

Lemma 3.7. Let Ω be any non-empty open subset of Rn and s ∈ R. Then the dual space of

Hs
0(Ω) can be unitarily realised as (H̃−s(Ω) ∩H−s

∂Ω)
⊥,H̃−s(Ω), with the duality pairing inherited from

H̃−s(Ω)×Hs(Ω).

Proof. Since Hs
0(Ω) is a closed subspace of Hs(Ω), by Lemma 2.2 (Hs

0(Ω))
∗ can be unitarily realised

as a closed subspace of (Hs(Ω))∗, which we identify with H̃−s(Ω) using the operator I∗
−s of The-

orem 3.3. Explicitly, (Hs
0(Ω))

∗ is identified with the orthogonal complement of the annihilator of

Hs
0(Ω) in H̃

−s(Ω), which annihilator satisfies

Hs
0(Ω)

a,H̃−s(Ω) =
(
D(Ω)|Ω

)a,H̃−s(Ω)
= H̃−s(Ω) ∩

(
D(Ω)

)a,H−s(Rn)

= H̃−s(Ω) ∩H−s
Ωc = H̃−s(Ω) ∩H−s

∂Ω.
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D(Ω) D(Rn) S(Rn) L2(Rn)

H̃s(Ω)
◦
Hs(Ω) Hs

Ω
Hs(Rn) = (Hs

Ωc)⊥ ⊕ Hs
Ωc S∗(Rn)

Hs
0(Ω) Hs(Ω) D∗(Ω)

(
H−s(Ω)

)∗
H−s(Rn)

(
H−s(Rn)

)∗ (
H̃−s(Ω)

)∗ (
(H̃−s(Ω))⊥

)∗

ι ι ι

|Ω |Ω
I∗
−s

I−s

Ĩ∗
s

R−s

|Ω

I−sJ2s Î−s

Figure 3: A representation, as a commutative diagram, of the relationships between the Sobolev
spaces and the isomorphisms between them described in §3.1 and §3.2. Here s ∈ R, Ω ⊂ Rn is open,
Ωc := Rn \ Ω, →֒ denotes an embedding, ։ a surjective mapping, →֒→ a unitary isomorphism, and
ι denotes the standard identification of Lebesgue functions with distributions, namely ι : L2(Rn) →
S∗(Rn), with ιu(v) := (u, v)L2(Rn), for u ∈ L2(Rn), v ∈ S(Rn). Note that

◦
Hs(Ω) is defined only when

s ≥ 0, see §3.5. In this diagram the first row contains spaces of functions, the second distributions
on Rn, and the third distributions on Ω.

3.3 s-nullity

In order to compare Sobolev spaces defined on different open sets (which we do in §3.4), and to
study the relationship between the different spaces (e.g. H̃s(Ω),

◦
Hs(Ω) and Hs

Ω
) on a given open set

Ω (which we do in §3.5), we require the concept of s-nullity of subsets of Rn.

Definition 3.8. For s ∈ R we say that a set E ⊂ Rn is s-null if there are no non-zero elements of
Hs(Rn) supported entirely in E (equivalently, if Hs

F = {0} for every closed set F ⊂ E).

We make the trivial remark that if F is closed then F is s-null if and only if Hs
F = {0}.

Remark 3.9. While the terminology “s-null” is our own, the concept it describes has been stud-
ied previously, apparently first by Hörmander and Lions in relation to properties of Sobolev spaces
normed by Dirichlet integrals [27], and then subsequently by other authors in relation to the remov-
ability of singularities for elliptic partial differential operators [33,34], and to the approximation of
functions by solutions of the associated elliptic PDEs [39]. For integer s < 0, s-nullity is referred to
as (−s)-polarity in [27, Definition 2], “2-(−s) polarity” in [33] and “(2,−s)-polarity” in [34, §13.2].
For s > 0 and E closed, s-nullity coincides with the concept of “sets of uniqueness” for Hs(Rn), as
considered in [1, §11.3] and [34, p. 692]. For s > 0 and E with empty interior, s-nullity coincides
with the concept of (s, 2)-stability, discussed in [1, §11.5]. For a more detailed comparison with the
literature see [25, §2.2].

To help us throughout the paper interpret characterisations in terms of s-nullity, the following
lemma collects useful results relating s-nullity to topological and geometrical properties of a set.
The results in Lemma 3.10 are a special case of those recently presented in [25] (where s-nullity
is called (s, 2)-nullity) in the more general setting of the Bessel potential spaces Hs,p(Rn), s ∈ R,
1 < p < ∞. Many results in [25] are derived using the equivalence between s-nullity and the
vanishing of certain set capacities from classical potential theory, drawing heavily on results in [1]
and [34]. [25] also contains a number of concrete examples and counterexamples illustrating the
general results. Regarding point (xv) of the lemma, following [55, §3], given 0 ≤ d ≤ n we call a
closed set F ⊂ Rn with dimH(F ) = d a d-set if there exist constants c1, c2 > 0 such that

0 < c1r
d ≤ Hd(Br(x) ∩ F ) ≤ c2r

d <∞, for all x ∈ F, 0 < r < 1, (22)
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where Hd is the d-dimensional Hausdorff measure on Rn and Br(x) is the open ball of radius r
centred at x. Condition (22) may be understood as saying that d-sets are everywhere locally d-
dimensional. Note that the definition of d-set includes as a special case all Lipschitz d-dimensional
manifolds, d ∈ {0, 1, . . . , n}.

Lemma 3.10 ( [25]). Let E,E′ ⊂ Rn be arbitrary, Ω ⊂ Rn be non-empty and open, and s ∈ R.

(i) If E is s-null and E′ ⊂ E then E′ is s-null.

(ii) If E is s-null and t > s then E is t-null.

(iii) If E is s-null then int(E) = ∅.

(iv) If s > n/2 then E is s-null if and only if int(E) = ∅.

(v) Let E be s-null and let F ⊂ Rn be closed and s-null. Then E ∪ F is s-null.

(vi) If s ≤ 0 then a countable union of Borel s-null sets is s-null.

(vii) If s ≥ 0 and E is Lebesgue-measurable with m(E) = 0, then E is s-null.

(viii) If E is Lebesgue-measurable then E is 0-null if and only if m(E) = 0.

(ix) There exists a compact set K ⊂ Rn with int(K) = ∅ and m(K) > 0, which is not s-null for
any s ≤ n/2.

(x) If s < −n/2 there are no non-empty s-null sets.

(xi) A non-empty countable set is s-null if and only if s ≥ −n/2.

(xii) If −n/2 < s ≤ 0 and dimH(E) < n+ 2s, then E is s-null.

(xiii) If −n/2 ≤ s < 0 and E is Borel and s-null, then dimH(E) ≤ n+ 2s.

(xiv) For each 0 ≤ d ≤ n there exist compact sets K1,K2 ⊂ Rn with dimH(K1) = dimH(K2) = d,
such that K1 is (d− n)/2-null and K2 is not (d− n)/2-null.

(xv) If 0 < d < n and F ⊂ Rn is a compact d-set, or a d-dimensional hyperplane (in which case d
is assumed to be an integer) then F is (d− n)/2-null.

(xvi) If int(Ωc) 6= ∅, then ∂Ω is not s-null for s < −1/2. (In particular this holds if Ω 6= Rn is C0.)

(xvii) If Ω is C0 and s ≥ 0, then ∂Ω is s-null. Furthermore, for n ≥ 2 there exists a bounded C0

open set whose boundary is not s-null for any s < 0.

(xviii) If Ω is C0,α for some 0 < α < 1 and s > −α/2, then ∂Ω is s-null. Furthermore, for n ≥ 2
there exists a bounded C0,α open set whose boundary is not s-null for any s < −α/2.

(xix) If Ω is Lipschitz then ∂Ω is s-null if and only if s ≥ −1/2.

3.4 Equality of spaces defined on different subsets of Rn

The concept of s-nullity defined in §3.3 provides a characterization of when Sobolev spaces defined
on different open or closed sets are or are not equal. For two subsets E1 and E2 of Rn we use the
notation E1 ⊖ E2 to denote the symmetric difference between E1 and E2, i.e.

E1 ⊖E2 := (E1 \E2) ∪ (E2 \ E1) = (E1 ∪ E2) \ (E1 ∩ E2).

The following elementary result is a special case of [25, Proposition 2.11].
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Theorem 3.11 ( [25, Proposition 2.11]). Let F1, F2 be closed subsets of Rn, and let s ∈ R. Then
the following statements are equivalent:

(i) F1 ⊖ F2 is s-null.

(ii) F1 \ F2 and F2 \ F1 are both s-null.

(iii) Hs
F1∩F2

= Hs
F1

= Hs
F2

= Hs
F1∪F2

.

By combining Theorem 3.11 with the duality result of Theorem 3.3 one can deduce a corre-
sponding result about spaces defined on open subsets. The following theorem generalises [34, Theo-
rem 13.2.1], which concerned the case Ω1 ⊂ Ω2 = Rn. The special case where Rn \Ω1 is a d-set was
considered in [57]. (That result was used in [25] to prove item (xv) in Lemma 3.10 above.)

Theorem 3.12. Let Ω1,Ω2 be non-empty, open subsets of Rn, and let s ∈ R. Then the following
statements are equivalent:

(i) Ω1 ⊖ Ω2 is s-null.

(ii) Ω1 \ Ω2 and Ω2 \ Ω1 are both s-null.

(iii) Ω1 ∩Ω2 is non-empty and Hs(Ω1 ∩Ω2) = Hs(Ω1) = Hs(Ω2) = Hs(Ω1 ∪Ω2), in the sense that(
Hs

(Ω1∩Ω2)c

)⊥
=

(
Hs

Ωc
1

)⊥
=

(
Hs

Ωc
2

)⊥
=

(
Hs

(Ω1∪Ω2)c

)⊥
(recall from (17) that (Hs

Ωc)⊥ ∼= Hs(Ω)

for any non-empty open Ω ⊂ Rn).

(iv) Ω1 ∩ Ω2 is non-empty and H̃−s(Ω1 ∩Ω2) = H̃−s(Ω1) = H̃−s(Ω2) = H̃−s(Ω1 ∪Ω2).

Proof. The result follows from Theorem 3.3 and Theorem 3.11 with Fj := (Ωj)
c, j = 1, 2.

Remark 3.13. For non-empty open Ω1,Ω2 ⊂ Rn, the set Ω1 ⊖Ω2 has empty interior if and only if

Ω1 ∩ Ω2 = Ω1 = Ω2 = Ω1 ∪ Ω2. (23)

Hence, by Lemma 3.10(iii),(iv), (23) is a necessary condition for the statements (i)–(iv) of Theorem
3.12 to hold, and a sufficient condition when s > n/2. But sufficiency does not extend to s ≤ n/2:
a counter-example is provided by Ω1 = Rn and Ω2 = Kc, where K is any compact non-(n/2)-null
set (cf. Lemma 3.10(ix)).

For the
◦
Hs(Ω) spaces, s ≥ 0, the following sufficient (but not necessary) condition for equality

is trivial.

Lemma 3.14. If Ω1,Ω2 ⊂ Rn are non-empty and open, withm(Ω2⊖Ω1) = 0, then
◦
Hs(Ω1) =

◦
Hs(Ω2)

for all s ≥ 0.

3.5 Comparison of the “zero trace” subspaces of Hs(Rn)

In §3.1.4 we defined three closed subspaces of Hs(Rn) associated with a non-empty open set Ω ⊂ Rn,
namely Hs

Ω
and H̃s(Ω) (both defined for all s ∈ R) and

◦
Hs(Ω) (defined for s ≥ 0), which can all be

viewed in some sense as “zero trace” spaces. We already noted (cf. (15)) the inclusions

H̃s(Ω) ⊂ ◦
Hs(Ω) ⊂ Hs

Ω
, (24)

for all s ∈ R (with
◦
Hs(Ω) present only for s ≥ 0). In this section we investigate conditions on Ω and

s under which the inclusions in (24) are or are not equalities, and construct explicit counterexamples
demonstrating that equality does not hold in general.

When Ω is a C0 open set, both inclusions in (24) are equalities. The following result is proved
in [36, Theorem 3.29] for C0 sets with bounded boundary; the extension to general C0 sets (as
defined in [23, Definition 1.2.1.1]) follows using a suitable partition of unity, the existence of which
is guaranteed by [36, Theorem 3.21]. We note that a proof of the equality H̃s(Ω) =

◦
Hs(Ω) for s > 0

and Ω a C0 open set can also be found in [23, Theorem 1.4.2.2].
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Lemma 3.15 ( [36, Theorems 3.29, 3.21]). Let Ω ⊂ Rn be C0 and let s ∈ R. Then H̃s(Ω) =
◦
Hs(Ω) = Hs

Ω
(with

◦
Hs(Ω) present only for s ≥ 0).

When Ω is not C0 the situation is more complicated. We first note the following elementary
results concerning the case s ≥ 0, part (i) of which makes it clear that Lemma 3.15 does not extend
to general open Ω.

Lemma 3.16. Let Ω ⊂ Rn be non-empty and open. Then

(i) H̃0(Ω) =
◦
H0(Ω); while

◦
H0(Ω) = H0

Ω
if and only if m(∂Ω) = 0.

(ii) For s ≥ 0, if m(∂Ω) = 0 then
◦
Hs(Ω) = Hs

Ω
.

(iii) For t > s ≥ 0, if
◦
Hs(Ω) = Hs

Ω
then

◦
Ht(Ω) = Ht

Ω
.

Proof. (i) The equality H̃0(Ω) =
◦
H0(Ω) holds because the restriction operator is a unitary iso-

morphism from
◦
H0(Ω) onto H0(Ω) = L2(Ω), in particular ‖u‖L2(Rn) = ‖u|Ω‖L2(Ω) for u ∈ ◦

H0(Ω),
and because D(Ω) is dense in L2(Ω) [2, Theorem 2.19]. The second statement in (i), and (ii), fol-
low straight from the definitions. If the hypothesis of part (iii) is satisfied, then every u ∈ Ht

Ω
⊂

Hs
Ω
∩Ht(Rn) =

◦
Hs(Ω) ∩Ht(Rn) is equal to zero a.e. in Ωc, and hence belongs to

◦
Ht(Ω).

Open sets for which Ω $ int(Ω) are a source of counterexamples to equality in (24). The following
lemma relates properties of the inclusions (24) to properties of the set int(Ω) \ Ω.
Lemma 3.17. Let Ω ⊂ Rn be non-empty and open, and let s ∈ R.

(i) For s ≥ 0, if m(int(Ω) \Ω) > 0 then
◦
Hs(Ω) $ Hs

Ω
.

(ii) For s > n/2,
◦
Hs(Ω) = Hs

Ω
if and only if m(int(Ω) \Ω) = 0.

(iii) If int(Ω) \ Ω is not (−s)-null then H̃s(Ω) $ Hs
Ω
.

(iv) If int(Ω) \ Ω is not (−s)-null, s > 0, and m(int(Ω) \Ω) = 0, then H̃s(Ω) $
◦
Hs(Ω).

(v) If H̃s(int(Ω)) = Hs
Ω

(e.g. if int(Ω) is C0), then H̃s(Ω) = Hs
Ω

if and only if int(Ω) \ Ω is
(−s)-null.

Proof. (i) If m(int(Ω) \ Ω) > 0 then there exists an open ball B ⊂ int(Ω) such that m(B \ Ω) =
ǫ > 0. (To see this first write int(Ω) as the union of balls. Then use the fact that Rn is a
separable metric space, so second countable, so that, by Lindelöf’s theorem (see e.g. [47, p. 100]),
int(Ω) can be written as the union of a countable set of balls, i.e., as int(Ω) =

⋃∞
n=1Bn. Then

0 < m(int(Ω) \ Ω) ≤ ∑∞
n=1m(Bn \ Ω), so that m(Bn \ Ω) > 0 for some n.) Choose χ ∈ C∞

0 (B)

such that 0 ≤ χ ≤ 1 and
∫
χdx > m(B) − ǫ. Then χ ∈ H̃s(int(Ω)) ⊂ Hs

Ω
, but χ 6∈ ◦

Hs(Ω), for if

χ ∈ ◦
Hs(Ω) then χ = 0 a.e. in Ωc, so that

∫
χdx ≤ m(B ∩ Ω) ≤ m(B) − ǫ. (ii) If u ∈ Hs

Ω
then

u = 0 a.e. in Ω
c
. Since s > n/2, the Sobolev embedding theorem says that u ∈ C0(Rn), so u = 0

a.e. in Ω
c
. But Ωc \ Ωc = int(Ω) \ Ω, which has zero measure by assumption. Thus u = 0 a.e. in

Ωc, so u ∈ ◦
Hs(Ω). The “only if” part of the statement is provided by (i). (iii) If int(Ω) \ Ω is not

(−s)-null then, by Theorem 3.12, H̃s(Ω) $ H̃s(int(Ω)) ⊂ Hs
Ω
. Part (iv) follows similarly, by noting

that H̃s(Ω) $ H̃s(int(Ω)) ⊂ ◦
Hs(int(Ω)) =

◦
Hs(Ω), the latter equality following from Lemma 3.14.

(v) Lemma 3.15 (applied to int(Ω)) implies that H̃s(Ω) ⊂ H̃s(int(Ω)) = Hs

int(Ω)
= Hs

Ω
, and the

assertion then follows by Theorem 3.12 (with Ω1 = Ω and Ω2 = int(Ω)).

In particular, Lemma 3.17(v), combined with Lemmas 3.15 and 3.10, provides results about
the case where Ω is an C0 open set from which a closed, nowhere dense set has been removed. A
selection of such results is given in the following proposition.
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Proposition 3.18. Suppose that Ω $ int(Ω) and that int(Ω) is C0. Then:

(i) H̃s(Ω) = Hs
Ω
for all s < −n/2.

(ii) If int(Ω) \Ω is a subset of the boundary of a Lipschitz open set Υ, with int(Ω) \Ω having non-
empty relative interior in ∂Υ, then H̃s(Ω) = Hs

Ω
if and only if s ≤ 1/2. (A concrete example in

one dimension is where Ω is an open interval with an interior point removed. An example in two
dimensions is where Ω is an open disc with a slit cut out. Three-dimensional examples relevant
for computational electromagnetism are the “pseudo-Lipschitz domains” of [3, Definition 3.1].)

(iii) If 0 < d := dimH(int(Ω) \ Ω) < n then H̃s(Ω) = Hs
Ω
for all s < (n − d)/2 and H̃s(Ω) $ Hs

Ω
for all s > (n− d)/2.

(iv) If int(Ω) \ Ω is countable then H̃s(Ω) = Hs
Ω
if and only if s ≤ n/2.

(v) If H̃t(Ω) = Ht
Ω
for some t ∈ R then H̃s(Ω) = Hs

Ω
for all s < t. (Whether the assumption that

int(Ω) is C0 is necessary here appears to be an open question. Lemma 3.16(iii) shows that if
H̃ is replaced by

◦
H the opposite result holds (without assumptions on int(Ω))).

Parts (iii) and (iv) of Lemma 3.17, combined with Lemma 3.16, provide a way of constructing
bounded open sets for which all the spaces considered in this section are different from each other
for s ≥ −n/2. (Note that the statement of Lemma 3.17(iii) is empty if s < −n/2 as int(Ω) \ Ω is
necessarily (−s)-null in this case (cf. Lemma 3.10(iv)). One might speculate that if s < −n/2 then
H̃s(Ω) = Hs

Ω
for every open Ω ⊂ Rn, not just when int(Ω) is C0 (see Proposition 3.18(i) above).

But proving this in the general case is an open problem.

Theorem 3.19. For every n ∈ N, there exists a bounded open set Ω ⊂ Rn such that, for every
s > 0, H̃s(Ω) $

◦
Hs(Ω) $ Hs

Ω
, and for every s ≥ −n/2, H̃s(Ω) $ Hs

Ω
.

Proof. Let Ω1 be any bounded open set for which int(Ω1) \Ω1 has positive measure and is not n/2-
null, for example an open ball minus a compact set of the type considered in Lemma 3.10(ix). Let
Ω2 be any bounded open set for which int(Ω2) \Ω2 has zero measure and is not s-null for any s < 0,

for example an open ball minus the Cantor set F
(n)
n,∞ from [25, Theorem 4.5]. Then, by Lemmas 3.16

and 3.17,

H̃s(Ω1) $ Hs
Ω1
, for all s ≥ −n/2,

◦
Hs(Ω1) $ Hs

Ω1
, for all s ≥ 0,

H̃s(Ω2) $
◦
Hs(Ω2), for all s > 0.

Provided Ω1 and Ω2 have disjoint closure (this can always be achieved by applying a suitable
translation if necessary) the open set Ω := Ω1 ∪ Ω2 has the properties claimed in the assertion.

Remark 3.20. While it may not always be true that H̃s(Ω) = Hs
Ω
, it does hold (cf. [36, Lemma

3.24]) for any non-empty open subset Ω ⊂ Rn that H̃s(Ω) ⊂ Hs
Ω

⊂ H̃s(Ωε) for arbitrary ε > 0,
where Ωε := {x ∈ Rn : dist(x,Ω) < ε}. That is, any element of Hs

Ω
can be approximated to arbitrary

precision in the Hs(Rn) norm by an element of D(Rn) whose support lies within an arbitrarily small
neighbourhood of Ω.

For bounded open sets with Ω = int(Ω), the equality H̃s(Ω) = Hs
Ω
is equivalent to Ω being “(s, 2)-

stable”, in the sense of [1, Definition 11.5.2] and [4, Definition 3.1]. (We note that the space Ls,20 (E)

appearing in [1, Definition 11.5.2] is equal to H̃s(E) when E is open (see [1, Equation (11.5.2)]),
and equal to Hs

E when E is compact (see [1, §10.1]).) Then, results in [1, §11] – specifically, the
remark after Theorem 11.5.3, Theorem 11.5.5 (noting that the compact set K constructed therein
satisfies K = int(K)) and Theorem 11.5.6 – provide the following results, which show that, at least
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for m ∈ N, Ω = int(Ω) is not a sufficient condition for H̃m(Ω) = Hm
Ω

unless n = 1. Part (i) of
Lemma 3.21 also appears in [4, Theorem 7.1]. We point out that references [1] and [4] also collect a
number of technical results from the literature, not repeated here, relating (s, 2)-stability to certain
“polynomial” set capacities (e.g. [1, Theorem 11.5.10] and [4, Theorem 7.6]) and spectral properties
of partial differential operators (e.g. [4, Theorem 6.6]).

Lemma 3.21 ( [1, §11]). (i) If n = 1 and Ω ⊂ R is open, bounded and satisfies Ω = int(Ω), then
H̃m(Ω) = Hm

Ω
for all m ∈ N.

(ii) If n ≥ 2 and m ∈ N, there exists a bounded open set Ω ⊂ Rn for which Ω = int(Ω) but
H̃m(Ω) 6= Hm

Ω
.

(iii) If n ≥ 3 then the set Ω in point (ii) can be chosen so that Ω
c
is connected.

We now consider the following question: if Ω is the disjoint union of finitely many open sets
{Ωℓ}Lℓ=1, each of which satisfies H̃s(Ωℓ) = Hs

Ωℓ
, then is H̃s(Ω) = Hs

Ω
? Certainly this will be the

case when the closures of the constituent sets are mutually disjoint. But what about the general
case when the closures intersect nontrivially? A first answer, valid for a narrow range of regularity
exponents, is given by the following lemma, which is a simple consequence of a standard result on
pointwise Sobolev multipliers.

Lemma 3.22. Let Ω ⊂ Rn be the disjoint union of finitely many bounded Lipschitz open sets
Ω1, . . . ,ΩL. Then H̃s(Ω) = Hs

Ω
for 0 ≤ s < 1/2.

Proof. Let 0 ≤ s < 1/2 and u ∈ Hs
Ω
. By [56, Proposition 5.3] and Lemma 3.15, where χΩℓ

is the

characteristic function of Ωℓ, uχΩℓ
∈ Hs

Ωℓ
= H̃s(Ωℓ) ⊂ H̃s(Ω). Thus

∑L
ℓ=1 uχΩℓ

∈ H̃s(Ω), and
∑L

ℓ=1 uχΩℓ
= u since m(∂Ω) ≤ ∑L

ℓ=1m(∂Ωℓ) = 0.

Lemma 3.22 can be extended to disjoint unions of some classes of non-Lipschitz open sets using
[46, Definition 4.2, Theorem 4.4], leading to the equality H̃s(Ω) = Hs

Ω
for 0 ≤ s < t/2 for some

0 < t < 1 related to the boundary regularity (cf. also [45, Theorem 6] and [43, Theorem 3, p.
216]). However, the technique of Lemma 3.22, namely using characteristic functions as pointwise
multipliers, cannot be extended to s ≥ 1/2, no matter how regular the constituent sets are; indeed,
[46, Lemma 3.2] states that χΩ /∈ H1/2(Rn) for any non-empty open set Ω ⊂ Rn.

We now state and prove a general result, which allows us to prove H̃s(Ω) = Hs
Ω
, for |s| ≤ 1, for

a class of open sets which are in a certain sense “regular except at a finite number of points”.

Theorem 3.23. Let 2 ≤ n ∈ N, Ω ⊂ Rn be open, and |s| ≤ 1. Suppose that there exists a finite set
of points {xℓ}Lℓ=1 ∈ ∂Ω such that, for all ε > 0, there exists an open set Ωε with H̃

s(Ωε) = Hs
Ωε

and

Ω \
L⋃

ℓ=1

Bε(xℓ) ⊂ Ωε ⊂ Ω. (25)

Then also H̃s(Ω) = Hs
Ω
. In particular, if Ω is a finite union of C0 open sets whose closures intersect

only at finitely many points, then H̃s(Ω) = Hs
Ω
for all |s| ≤ 1.

Before giving the proof, we note the following applications of the above result.

Remark 3.24. Theorem 3.23 can be used to prove that H̃s(Ω) = Hs
Ω
, for |s| ≤ 1, for a number of

well-known examples of non-C0 open sets. In particular we note the following examples, illustrated
in Figure 4, all of which are easily shown to satisfy the hypotheses of Theorem 3.23:

1. any finite union of polygons (in R2) or C0 polyhedra (in R3) where the closures of the con-
stituent polygons/polyhedra intersect only at a finite number of points, for example the standard
prefractal approximations to the Sierpinski triangle (see Figure 4(a));
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(a) The first four prefractal approximations to the Sierpinski triangle

(b) Double brick (c) Curved cusps (d) Spiral (e) “Rooms and passages”

Figure 4: Examples of non-C0 open sets to which Theorem 3.23 applies.

2. the double brick domain of [36, p. 91] (see Figure 4(b));

3. sets with “curved cusps”, either interior or exterior, e.g. {(x, y) ∈ R2 : x2 + y2 < 1 and x2 +
(y + 1/2)2 > 1/2} or its complement (see Figure 4(c));

4. spiral domains, e.g. {(r cos θ, r sin θ) ∈ R2 : 2θ/(2π) < r < 3
22
θ/(2π), θ ∈ R} (see Figure 4(d));

5. the “rooms and passages” domain of [21, §2.1] (see Figure 4(e)).

One can also consider open sets which fail to be regular at infinitely many points. For example, if
Ω is such that, for arbitrarily large N ∈ N, BN (0) ∩ Ω is an open set satisfying the hypotheses of
Theorem 3.23, then a standard argument involving multiplication by cut-off functions in D(Rn) (as
in [36, Exercise 3.14]) gives that H̃s(Ω) = Hs

Ω
for |s| ≤ 1.

Our proof of Theorem 3.23, given shortly, is based on a standard argument involving cut-off
functions, and relies on the following lemma, which is inspired by the results in [53, §17].

Lemma 3.25 ( [53, §17]). Let 2 ≤ n ∈ N and R > 0. There exists a sequence (φj)j∈N of continuous
functions defined on Rn such that φj(x) = 0 for |x| < R/j, φj(x) = 1 for |x| > 2R, 0 ≤ φ(x) ≤ 1

for x ∈ Rn, and, for all u ∈ H̃s(BR), with |s| ≤ 1, we have ‖φju‖Hs(Rn) ≤ C‖u‖Hs(Rn) with C > 0

independent of j and u, and ‖u − φju‖Hs(Rn) → 0 as j → ∞. For n ≥ 3 the space H̃s(BR) can be
replaced by Hs(Rn).

Proof. The case n = 2 is the hardest so we start here. When n = 2 we define

φj(x) =





0, |x| ≤ R/j,

1− log(|x|/(2R))
log(1/(2j))

, R/j < |x| ≤ 2R,

1, |x| > 2R,

whose gradient satisfies

∂φj
∂xi

(x) =





0, |x| ≤ R/j,

− xi
|x|2 log(1/(2j)) , R/j < |x| ≤ 2R,

0, |x| > 2R.
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Our strategy is as follows: first we prove the result for s = 1, in fact deriving the result with BR
replaced by B2R. This extra “wiggle-room” allows us to prove the result for BR for s = −1 by a
duality argument. We then obtain the result for s ∈ [−1, 1] by interpolation.

Using the fact that (cf. [53, Lemma 17.4])

∫

B2R

|u|2
|x|2 log2(|x|/(2R)) dx ≤ 4

∫

B2R

|∇u|2 dx, u ∈ H̃1(B2R), n = 2, (26)

one can show that multiplication by φj is a bounded linear operator on H̃1(B2R) (and so a bounded

linear operator on H̃1(BR) ⊂ H̃1(B2R)), with

‖φju‖H1(Rn) ≤
√
5‖u‖H1(Rn), u ∈ H̃1(B2R).

Furthermore, combining (26) with the Lebesgue dominated convergence theorem, one can prove that
‖u−φju‖H1(Rn) → 0 as j → ∞, for all u ∈ H̃1(B2R). It follows from these results that multiplication
by φj is also a bounded linear operator on H1(BR) (note the lack of tilde, and R rather than 2R),
with

‖φju‖H1(BR) ≤ ‖φjψRU‖H1(R2) ≤
√
5(1 + 2/R)‖u‖H1(BR), u ∈ H1(BR). (27)

Here ψR ∈ D(B2R) with ψR(x) = 1, for |x| ≤ R, and 0 ≤ ψ(x) ≤ 1, |∇ψR(x)| ≤ 2/R, for x ∈ R2,

and U ∈
(
H1

(B2R)c

)⊥
is the minimal norm extension of u for which ‖U‖H1(R2) = ‖u‖H1(BR). Using

(27) it follows similarly that ‖φju − u‖H1(BR) → 0 for every u ∈ H1(BR). Then for u ∈ H̃−1(BR)

we define φju ∈ H̃−1(BR) by its action on a test function v ∈ H1(BR) ∼= (H̃−1(BR))
∗, viz.

〈φju, v〉H̃−1(BR)×H1(BR)
:= 〈u, φjv〉H̃−1(BR)×H1(BR)

.

The boundedness and convergence result in H̃−1(BR) is then a consequence of the boundedness and
convergence results proved above in H1(BR). Finally, we deduce the boundedness and convergence
results for s ∈ [−1, 1] by interpolation, noting that H̃s(BR) is an interpolation scale for s ∈ R (see
e.g. [13, Corollary 4.10]).

If n ≥ 3, things are much simpler, and we can take a more standard sequence of cutoff functions,
namely φj(x) = φ(jx), where φ is any element of C∞(Rn) with φ(x) = 0 for |x| < 1, φ(x) = 1 for
|x| > 2 and 0 ≤ φ(x) ≤ 1 for x ∈ Rn. To prove the H1 results one uses instead of (26) the bound
(cf. [53, Lemma 17.1])

∫

Rn

|u|2
|x|2 dx ≤ 2

n− 2

∫

Rn

|∇u|2 dx, u ∈ H1(Rn), n ≥ 3.

Since this result holds on the whole space H1(Rn), the duality and interpolation arguments can also
be carried out on the whole space Hs(Rn).

We are now ready to prove Theorem 3.23.

Proof of Theorem 3.23. Define R := 1
3 min0≤ℓ 6=ℓ′≤L |xℓ − xℓ′ |. Then, by hypothesis, for all j ∈ N,

where ε := R/j, there exists an open set Ωε satisfying H̃
s(Ωε) = Hs

Ωε
and (25), so that

Hs

Ω\
⋃L

ℓ=1BR/j(xℓ)
⊂ Hs

ΩR/j
= H̃s(ΩR/j) ⊂ H̃s(Ω). (28)

Consider the sequence φj of Lemma 3.25 with this choice of R and define φj,ℓ(x) := φj(x − xℓ).
Furthermore, let ψ be any element of D(∪Lℓ=1BR(xℓ)) for which ψ = 1 in ∪Lℓ=1BR/2(xℓ). Then,
given u ∈ Hs

Ω
, we define ũ = ψu. Since u − ũ = (1 − ψ)u is an element of Hs

Ω\
⋃L

ℓ=1
BR/2(xℓ)

, and

hence by (28) an element of H̃s(Ω), to prove the result we need to show that also ũ ∈ H̃s(Ω). To
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do this, we will construct a sequence of elements of H̃s(Ω) converging to ũ. To that end, we define

uj :=
(∏L

ℓ=1 φj,ℓ

)
ũ, which, since φj,ℓ(x) = 0 for |x − xj,ℓ| ≤ R/j, is an element of H̃s(Ω) by (28).

Furthermore, ũ−uj ∈ H̃s
(⋃L

ℓ=1B2R(xℓ)
)
. The closures of the balls B2R(xℓ) are mutually disjoint,

and hence, with χℓ := χ
B2R(xℓ)

, Lemma 3.25 gives

‖ũ− uj‖Hs(Rn) =

∥∥∥∥∥
L∑

ℓ=1

(ũ− uj)χℓ

∥∥∥∥∥
Hs(Rn)

≤
L∑

ℓ=1

‖(ũ − uj)χℓ‖Hs(Rn) =

L∑

ℓ=1

‖ũ− uφj,ℓ‖Hs(Rn)
j→∞−−−→ 0.

Thus (uj)
∞
j=1 ⊂ H̃s(Ω) is a sequence converging to ũ, so that ũ ∈ H̃s(Ω).

To prove the final statement of the theorem, suppose that Ω =
⋃J
j=1Ωj is the disjoint union

of finitely many C0 open sets {Ωj}Jj=1 whose closures intersect only at a finite number of points

{xℓ}Lℓ=1. Given ε > 0, it is straightforward to construct a C0 open set Ωε which satisfies the
hypotheses of the first part of the theorem, by modifying Ω appropriately near each intersection
point. First assume that ε is sufficiently small so that for each intersection point xℓ, the ball
Bε(xℓ) contains no other intersection points, and so that for each j ∈ {1, . . . , J}, if xℓ ∈ ∂Ωj then
Bε(xℓ)∩Ωj = Bε(xℓ)∩Fj,ℓ(Uj,ℓ), where Uj,ℓ = {x = (x̃, xn) ∈ Rn : xn < fj,ℓ(x̃)} for some continuous
function fj,ℓ : Rn−1 → R, and Fj,ℓ : Rn → Rn is a suitable translation and rotation. For each such
pair (j, ℓ) we assume without loss of generality that Fj,ℓ(0) = xℓ, and we choose 0 < δj,ℓ < ǫ/2 such
that |x̃| < δj,ℓ implies |fj,ℓ(x̃) − fj,ℓ(0)| ≤ ε/4. We then modify Uj,ℓ (and hence Ωj) by replacing
fj,ℓ by fj,ℓ − gj,ℓ, where gj,ℓ : Rn−1 → [0, ε/4] is a continuous function such that gj,ℓ(0) > 0 and
gj,ℓ(x̃) = 0 for |x̃| > δj,ℓ. Having made similar modifications at all the intersection points, one
defines Ωε to be the union of all the modified subsets {Ωj}Jj=1. It is clear by construction that Ωε

is C0 (so that H̃s(Ωε) = Hs
Ωε

for all s ∈ R), and satisfies Ω \⋃L
ℓ=1Bε(xℓ) ⊂ Ωε ⊂ Ω. Hence the

first part of the theorem applies, so that H̃s(Ω) = Hs
Ω
for |s| ≤ 1.

We end this section with a result linking the inclusions in (24) to taking complements. This
result generalises [39, Theorem 1.1], where the same result is proved for the special case where s ∈ N
and Ω is the interior of a compact set.

Lemma 3.26. Let Ω ⊂ Rn be open, and let s ∈ R. Then H̃s(Ω) = Hs
Ω
if and only if H̃−s(Ω

c
) = H−s

Ωc .

Proof. Applying Lemma 3.2 twice, and using V
a,Hs(Rn)
2 ⊂ V

a,Hs(Rn)
1 for all closed spaces V1 ⊂ V2 ⊂

H−s(Rn), we have H̃s(Ω) = (H−s
Ωc )a,H

s(Rn) ⊂ (H̃−s(Ω
c
))a,H

s(Rn) = Hs
Ω
. The assertion follows noting

that V
a,Hs(Rn)
1 = V

a,Hs(Rn)
2 if and only if V1 = V2.

Remark 3.27. If int(Ω) \ Ω is (−s)-null (for example if Ω = int(Ω)) then H−s
Ωc = H−s

Ω
c , by Theo-

rem 3.11, and the fact that int(Ω) \ Ω = Ωc \ Ωc. In this case, Lemma 3.26 says that H̃s(Ω) = Hs
Ω

if and only if H̃−s(U) = H−s
U

, where U = Ω
c
.

3.6 When is H
s
0(Ω) = H

s(Ω)?

The space Hs
0(Ω) was defined in (18) as a closed subspace of Hs(Ω). In this section we investigate

the question of when these two spaces coincide, or, equivalently, when D(Ω)|Ω is dense in Hs(Ω).
One classical result (see [23, Theorem 1.4.2.4] or [36, Theorem 3.40]) is that if Ω is Lipschitz and
bounded, then Hs

0(Ω) = Hs(Ω) for 0 ≤ s ≤ 1/2. In Corollary 3.29 we extend this slightly, by
showing that equality in fact extends to s < 0 (in fact this holds for any open set Ω, see parts
(ii) and (ix) below), as well as presenting results for non-Lipschitz Ω. The proofs of the results in
Corollary 3.29 are based on the following lemma, which states that the condition Hs

0(Ω) = Hs(Ω)
is equivalent to a certain subspace of H−s(Rn) being trivial. This seemingly new characterisation
follows directly from the dual space realisations derived in §3.2.
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Lemma 3.28. Let Ω ⊂ Rn be non-empty and open, and let s ∈ R. Then Hs
0(Ω) = Hs(Ω) if and

only if H̃−s(Ω) ∩H−s
∂Ω = {0}.

Proof. This follows from Theorem 3.3 and Lemma 3.7, which together imply that, by duality,

Hs
0(Ω) = Hs(Ω) if and only if (H̃−s(Ω) ∩ H−s

∂Ω)
⊥,H̃−s(Ω) = H̃−s(Ω), which holds if and only if

H̃−s(Ω) ∩H−s
∂Ω = {0}.

Corollary 3.29. Let Ω ⊂ Rn be non-empty, open and different from Rn itself, and let s ∈ R.

(i) If Hs
0(Ω) = Hs(Ω) then Ht

0(Ω) = Ht(Ω) for all t < s.

(ii) If s ≤ 0 then Hs
0(Ω) = Hs(Ω).

(iii) If ∂Ω is (−s)-null then Hs
0(Ω) = Hs(Ω).

(iv) If s > n/2, then Hs
0(Ω) $ Hs(Ω).

(v) For 0 < s < n/2, if dimH∂Ω < n− 2s then Hs
0(Ω) = Hs(Ω).

(vi) If H̃−s(Ω) = H−s
Ω

(e.g. if Ω is C0) then Hs
0(Ω) = Hs(Ω) if and only if ∂Ω is (−s)-null.

(vii) If Ω is C0 then Hs
0(Ω) $ Hs(Ω) for s > 1/2.

(viii) If Ω is C0,α for some 0 < α < 1 then Hs
0(Ω) = Hs(Ω) for s < α/2.

(ix) If Ω is Lipschitz then Hs
0(Ω) = Hs(Ω) if and only if s ≤ 1/2.

Proof. Our proofs all use the characterization provided by Lemma 3.28. (i) holds because, for t < s,
H̃−t(Ω) ⊂ H̃−s(Ω) and H−t

∂Ω ⊂ H−s
∂Ω. (ii) holds because, for s ≤ 0, H̃−s(Ω)∩H−s

∂Ω ⊂ ◦
H−s(Ω)∩H−s

∂Ω =
{0}. (iii) is immediate from Lemma 3.28. To prove (iv), we first note that, for any x0 ∈ ∂Ω, there
exists a sequence of points {yj}j∈N ⊂ Ω such that limj→∞ yj = x0, and the corresponding Dirac

delta functions satisfy δx0
∈ H−s

∂Ω and δyj ∈ H−s
{yj}

⊂ H̃−s(Ω), by (11) and Remark 3.20. Then,

since H̃−s(Ω) ⊂ H−s(Rn) is closed, to show that H̃−s(Ω) ∩ H−s
∂Ω 6= {0} it suffices to prove that

{δyj}j∈N converges to δx0
in H−s(Rn). Recall that the dual space of H−s(Rn) is realised as Hs(Rn),

which (since s > n/2) is a subspace of C0(Rn), the space of continuous functions (see, e.g. [36,

Theorem 3.26]). Hence the duality pairing (13) gives 〈δx0
− δyj , φ〉s = φ(x0) − φ(yj)

j→∞−−−→ 0 for
all φ ∈ Hs(Rn) ⊂ C0(Rn), i.e. {δyj}j∈N converges to δx0

weakly in H−s(Rn). But by [5, Theorem

3.7], H̃−s(Ω) is weakly closed, so δx0
∈ H̃−s(Ω) as required. (v) follows from (iii) and Lemma

3.10(xii). For (vi), note that if H̃−s(Ω) = H−s
Ω

then H̃−s(Ω) ∩H−s
∂Ω = H−s

∂Ω. (vii)–(ix) follow from
(vi), Lemma 3.15, and Lemma 3.10(xvi)–(xix).

Remark 3.30. Parts (i), (ii) and (iv) of Corollary 3.29 imply that for any non-empty open Ω $ Rn,
there exists 0 ≤ s0(Ω) ≤ n/2 such that

H
s−
0 (Ω) = Hs−(Ω) and H

s+
0 (Ω) $ Hs+(Ω) for all s− < s0(Ω) < s+.

We can summarise most of the remaining results in Corollary 3.29 as follows:

• s0(Ω) ≥ sup{s : ∂Ω is (−s)-null}, with equality if Ω is C0.

• If Ω is C0, then 0 ≤ s0(Ω) ≤ 1/2.

• If Ω is C0,α for some 0 < α < 1, then α/2 ≤ s0(Ω) ≤ 1/2.

• If Ω is Lipschitz, then s0(Ω) = 1/2.

Moreover, the above bounds on s0(Ω) can all be achieved: by Corollary 3.29(vi) for the first two
cases, (iii) and (iv) for the third case:
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• For 2 ≤ n ∈ N the bounded C0 open set of [25, Lemma 4.1(vi)] satisfies s0(Ω) = 0.

• For 2 ≤ n ∈ N and 0 < α < 1, the bounded C0,α open set of [25, Lemma 4.1(v)] satisfies
s0(Ω) = α/2.

• If Ω = Rn \ {0}, s0(Ω) = n/2.

To put the results of this section in context we give a brief comparison with the results presented
by Caetano in [7], where the question of when Hs

0(Ω) = Hs(Ω) is considered within the more general
context of Besov–Triebel–Lizorkin spaces. Caetano’s main positive result [7, Proposition 2.2] is that
if 0 < s < n/2, Ω is bounded, and dimB∂Ω < n − 2s, then Hs

0(Ω) = Hs(Ω) (here dimB denotes
the upper box dimension, cf. [20, §3]). Our Corollary 3.29(v) sharpens this result, replacing dimB

with dimH (note that dimH(E) ≤ dimB(E) for all bounded E ⊂ Rn, cf. [20, Proposition 3.4]) and
removing the boundedness assumption. Caetano’s main negative result [7, Proposition 3.7] says
that if 0 < s < n/2, Ω is “interior regular”, ∂Ω is a d-set (see (22)) for some d > n − 2s, then
Hs

0(Ω) $ Hs(Ω). Here “interior regular” is a smoothness assumption that, in particular, excludes
outward cusps in ∂Ω. Precisely, it means [7, Definition 3.2] that there exists C > 0 such that for
all x ∈ ∂Ω and all cubes Q centred at x with side length ≤ 1, m(Ω ∩ Q) ≥ Cm(Q). This result
of Caetano’s is similar to our Corollary 3.29(vi), which, when combined with our Lemma 3.10(xiii),
implies that if 0 < s < n/2 and H̃−s(Ω) = H−s

Ω
(e.g. if Ω is C0) with dimH∂Ω > n − 2s, then

Hs
0(Ω) $ Hs(Ω). In some respects our result is more general than [7, Proposition 3.7] because

we allow cusp domains and we do not require a uniform Hausdorff dimension. However, it is
difficult to make a definitive comparison because we do not know of a characterisation of when
H̃−s(Ω) = H−s

Ω
for interior regular Ω. Certainly, not every interior regular set whose boundary is a

d-set belongs to the class of sets for which we can prove H̃−s(Ω) = H−s
Ω

; a concrete example is the
Koch snowflake [20, Figure 0.2].

3.7 Some properties of the restriction operator |Ω : Hs(Rn) → H
s(Ω)

In §3.5 we have studied the relationship between the spaces H̃s(Ω),
◦
Hs(Ω), and Hs

Ω
⊂ Hs(Rn),

whose elements are distributions on Rn, and in §3.6 the relationship between Hs(Ω) and Hs
0(Ω),

whose elements are distributions on Ω. To complete the picture we explore in this section the
connections between these two types of spaces, which amounts to studying mapping properties of
the restriction operator |Ω : Hs(Rn) → Hs(Ω). These properties, contained in the following lemma,
are rather straightforward consequences of the results obtained earlier in the paper and classical
results such as [36, Theorem 3.33], but for the sake of brevity we relegate the proofs to [26].

Lemma 3.31. Let Ω ⊂ Rn be non-empty and open, and s ∈ R.

(i) |Ω : Hs(Rn) → Hs(Ω) is continuous with norm one;

(ii) |Ω : (Hs
Ωc)⊥ → Hs(Ω) is a unitary isomorphism;

(iii) If Ω is a finite union of disjoint Lipschitz open sets, ∂Ω is bounded, and s > −1/2, s 6∈
{1/2, 3/2, . . .}, then |Ω : H̃s(Ω) → Hs

0(Ω) is an isomorphism;

(iv) |Ω : Hs
Ω
→ Hs(Ω) is injective if and only if ∂Ω is s-null; in particular,

• |Ω : Hs
Ω
→ Hs(Ω) is always injective for s > n/2 and never injective for s < −n/2;

• if Ω is Lipschitz then |Ω : H̃s(Ω) = Hs
Ω
→ Hs(Ω) is injective if and only if s ≥ −1/2;

• for every −1/2 ≤ s∗ ≤ 0 there exists a C0 open set Ω for which |Ω : H̃s(Ω) = Hs
Ω
→ Hs(Ω)

is injective for all s > s∗ and not injective for all s < s∗;

(v) For s ≥ 0, |Ω :
◦
Hs(Ω) → Hs(Ω) is injective; if s ∈ N0 then it is a unitary isomorphism onto

its image in Hs(Ω);
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(vi) For s ≥ 0, |Ω : H̃s(Ω) → Hs
0(Ω) is injective and has dense image; if s ∈ N0 then it is a unitary

isomorphism;

(vii) |Ω : H̃s(Ω) → Hs(Ω) is bijective if and only if |Ω : H̃−s(Ω) → H−s(Ω) is bijective;

(viii) |Ω : H̃−s(Ω) → H−s(Ω) is injective if and only if |Ω : H̃s(Ω) → Hs(Ω) has dense image; i.e. if
and only if Hs

0(Ω) = Hs(Ω);

(ix) The following are equivalent:

• |Ω : H̃s(Ω) → Hs
0(Ω) is a unitary isomorphism;

•
∥∥φ|Ω

∥∥
Hs(Ω)

= ‖φ‖Hs(Rd) for all φ ∈ D(Ω);

• D(Ω) ⊂ (Hs
Ωc)⊥;

(x) If Ω is bounded, or Ωc is bounded with non-empty interior, then the three equivalent statements
in (ix) hold if and only if s ∈ N0;

(xi) If the complement of Ω is s-null, then |Ω : H̃s(Ω) → Hs
0(Ω) is a unitary isomorphism.

Remark 3.32. A space often used in applications is the Lions–Magenes space Hs
00(Ω), defined as

the interpolation space between Hm
0 (Ω) and Hm+1

0 (Ω), where m ∈ N0 and m ≤ s < m + 1, see
e.g. [31, Chapter 1, Theorem 11.7] (the choice of interpolation method, e.g. the K-, the J- or the
complex method, does not affect the result, as long it delivers a Hilbert space, see [13, §3.3]).

Since |Ω : H̃m(Ω) → Hm
0 (Ω) is an isomorphism for all m ∈ N0 by Lemma 3.31(vi) above, Hs

00(Ω)

is the image under the restriction operator of the space obtained from the interpolation of H̃m(Ω)
and H̃m+1(Ω). Thus by [13, Corollary 4.9], Hs

00(Ω) is a subspace (not necessarily closed) of Hs
0(Ω),

for all s ≥ 0 and all open Ω.
Furthermore, if Ω is Lipschitz and ∂Ω is bounded, [13, Corollary 4.10] ensures that {H̃s(Ω) :

s ∈ R} is an interpolation scale, hence in this case we can characterise the Lions–Magenes space
as Hs

00(Ω) = H̃s(Ω)|Ω. In particular, by [36, Theorem 3.33], this implies that Hs
00(Ω) = Hs

0(Ω) if
s /∈ {1/2, 3/2, . . .}. This observation extends [31, Chapter 1, Theorem 11.7], which was stated for
C∞ bounded Ω.

That H
m+1/2
00 (Ω) $ H

m+1/2
0 (Ω) for m ∈ N0 was proved for all C∞ bounded Ω in [31, Chapter 1,

Theorem 11.7]. For general Lipschitz bounded Ω, H
1/2
00 (Ω) $ H

1/2
0 (Ω) because the constant function

1 belongs to the difference between the two spaces, as shown in [38, p. 5].

3.8 Sobolev spaces on sequences of subsets of Rn

We showed in §3.5 that the Sobolev spaces H̃s(Ω),
◦
Hs(Ω) (for s ≥ 0) and Hs

Ω
are in general distinct.

These spaces arise naturally in the study of Fredholm integral equations and elliptic PDEs on rough
(non-Lipschitz) open sets (a concrete example is the study of BIEs on screens, see §4 and [11]).
When formulating such problems using a variational formulation, one must take care to choose the
correct Sobolev space setting to ensure the physically correct solution.

In many cases a “rough” open set Ω can be defined as a nested union of countably many
“smoother” (e.g. Lipschitz) open sets {Ωj}∞j=1. One can also consider closed sets F that are nested
intersections of a collection of closed sets {Fj}∞j=1. Significantly, many well-known fractal sets and
sets with fractal boundary are constructed in this manner as a limit of prefractals. We will apply the
following propositions that consider such constructions to BIEs on sequences of prefractal sets in §4
below. Precisely, we will use these results together with those from §2.2 to deduce the correct fractal
limit of the sequence of solutions to the prefractal problems, and the correct variational formulation
and Sobolev space setting for the limiting solution.
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Proposition 3.33. Suppose that Ω =
⋃∞
j=1Ωj , where {Ωj}∞j=1 is a nested sequence of non-empty

open subsets of Rn satisfying Ωj ⊂ Ωj+1 for j = 1, 2, . . .. Then Ω is open and

H̃s(Ω) =
∞⋃

j=1

H̃s(Ωj). (29)

Proof. We will show below that

D(Ω) =

∞⋃

j=1

D(Ωj). (30)

Then (29) follows easily from (30) because

H̃s(Ω) = D(Ω) =
∞⋃

j=1

D(Ωj) =
∞⋃

j=1

D(Ωj) =
∞⋃

j=1

H̃s(Ωj).

To prove (30), we first note that the inclusion
⋃∞
j=1D(Ωj) ⊂ D(Ω) is obvious. To show the reverse

inclusion, let φ ∈ D(Ω). We have to prove that φ ∈ D(Ωj) for some j ∈ N. Denote K the support
of φ; then K is a compact subset of Ω, thus {Ωj}∞j=1 is an open cover of K. As K is compact there
exists a finite subcover {Ωj}j=j1,...,jℓ. Thus K ⊂ Ωjℓ and φ ∈ D(Ωjℓ).

It is easy to see that the analogous result, with H̃s(Ω) replaced by
◦
Hs(Ω) (with s ≥ 0), or with

H̃s(Ω) replaced by Hs
Ω
, does not hold in general. Indeed, as a counterexample we can take any Ω

which is a union of nested C0 open sets, but for which H̃s(Ω) 6= ◦
Hs(Ω). Then the above result and

(15) gives

∞⋃

j=1

◦
Hs(Ωj) =

∞⋃

j=1

H̃s(Ωj) = H̃s(Ω) $
◦
Hs(Ω) ⊂ Hs

Ω
.

A concrete example is Ω = (−1, 0) ∪ (0, 1) ⊂ R and Ωj = (−1,−1/j) ∪ (1/j, 1), with s > 1/2, for

which H̃s(Ω) 6= ◦
Hs(Ω) = Hs

Ω
by Lemma 3.16(ii), Lemma 3.17(iii) and Lemma 3.10(x).

The following is a related and obvious result.

Proposition 3.34. Suppose that F =
⋂
j∈J Fj , where J is an index set and {Fj}j∈J is a collection

of closed subsets of Rn. Then F is closed and

Hs
F =

⋂

j∈J

Hs
Fj
.

We will apply both the above results in §4 on BIEs. The following remark makes clear that
Proposition 3.33 applies also to the FEM approximation of elliptic PDEs on domains with fractal
boundaries.

Remark 3.35. Combining the abstract theory developed in §2.2 with Proposition 3.33 allows us to
prove the convergence of Galerkin methods on open sets with fractal boundaries. In particular, we
can easily identify which limit a sequence of Galerkin approximations converges to. Precisely, let
Ω =

⋃∞
j=1Ωj, where (Ωj)

∞
j=1 is a sequence of non-empty open subsets of Rn satisfying Ωj ⊂ Ωj+1 for

j ∈ N. Fix s ∈ R. For each j ∈ N, define a sequence of nested closed spaces Vj,k ⊂ Vj,k+1 ⊂ H̃s(Ωj),

k ∈ N, such that H̃s(Ωj) =
⋃∞
k=1 Vj,k, and such that the sequences are a refinement of each other,

i.e. Vj,k ⊂ Vj+1,k. Suppose that a(·, ·) is a continuous and coercive sesquilinear form on some space

H satisfying H̃s(Ω) ⊂ H ⊂ Hs(Rn). Then, for all f ∈ H−s(Rn) the discrete and continuous
variational problems: find uVj,k ∈ Vj,k and u

H̃s(Ω)
∈ H̃s(Ω) such that

a(uVj,k , v) = 〈f, v〉s ∀v ∈ Vj,k, a(uH̃s(Ω), v
′) = 〈f, v′〉s ∀v′ ∈ H̃s(Ω), (31)
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have exactly one solution, and moreover the sequence (uVj,j )
∞
j=1 converges to u

H̃s(Ω)
in the Hs(Rn)

norm, because the sequence (Vj,j)
∞
j=1 is dense in H̃s(Ω). (Here we use Proposition 3.33 and (8).)

As a concrete example, take Ω ⊂ R2 to be the Koch snowflake [20, Figure 0.2], Ωj the prefractal
set of level j (which is a Lipschitz polygon with 3 ·4j−1 sides), s = 1 and a(u, v) =

∫
BR

∇u ·∇vdx the

sesquilinear form for the Laplace equation, which is continuous and coercive on H̃s(BR), where BR
is any open ball containing Ω. The Vj,k spaces can be taken as nested sequences of standard finite
element spaces defined on the polygonal prefractals. Then the solutions uVj,j ∈ Vj,j of the discrete
variational problems, which are easily computable with a finite element code, converge in the H1(R2)
norm to u

H̃1(Ω)
, the solution to the variational problem on the right hand side in (31).

4 Boundary integral equations on fractal screens

This section contains the paper’s major application, which has motivated much of the earlier the-
oretical analysis. The problem we consider is itself motivated by the widespread use in telecom-
munications of electromagnetic antennas that are designed as good approximations to fractal sets.
The idea of this form of antenna design, realised in many applications, is that the self-similar,
multi-scale fractal structure leads naturally to good and uniform performance over a wide range
of wavelengths, so that the antenna has effective wide band performance [20, §18.4]. Many of the
designs proposed take the form of thin planar devices that are approximations to bounded fractal
subsets of the plane, for example the Sierpinski triangle [40] and sets built using Cantor-set-type
constructions [48]. These and many other fractals sets F are constructed by an iterative procedure:
a sequence of “regular” closed sets F1 ⊃ F2 ⊃ . . . (which we refer to as “prefractals”) is constructed
recursively, with the fractal set F defined as the limit F = ∩∞

j=1Fj . Of course, practical engineered
antennae are not true fractals but rather a prefractal approximation Fj from the recursive sequence.
So an interesting mathematical question of potential practical interest is: how does the radiated
field from a prefractal antenna Fj behave in the limit as j → ∞ and Fj → F?

We will not address this problem in this paper, which could be studied, at a particular radiating
frequency, via a consideration of boundary value problems for the time harmonic Maxwell system
in the exterior of the antenna, using for example the BIE formulation of [6]. Rather, we shall
consider analogous time harmonic acoustic problems, modelled by boundary value problems for
the Helmholtz equation. These problems can be considered as models of many of the issues and
potential behaviours, and we will discuss, applying the results of §2.2 and other sections above,
the limiting behaviour of sequences of solutions to BIEs, considering as illustrative examples two of
several possible set-ups.

For the Dirichlet screen problem we will consider the limit Γj → F where the closed set F =
∩∞
j=1Γj may be fractal and each Γj is a regular Lipschitz screen. For the Neumann screen problem

we will consider the limit Γj → Γ where the open set Γ = ∪∞
j=1Γj, and Γ \ Γ may be fractal. In the

Dirichlet case we will see that the limiting solution may be non-zero even when m(F ) = 0 (m here
2D Lebesgue measure), provided the fractal dimension of F is > 1. In the Neumann case we will see
that in cases where Γ∗ := int(Γ) is a regular Lipschitz screen the limiting solution can differ from
the solution for Γ∗ if the fractal dimension of ∂Γ is > 1.

The set-up is as follows. For x = (x1, x2, x3) ∈ R3 let x̃ = (x1, x2) and let Γ∞ = {(x̃, 0) :
x̃ ∈ R2} ⊂ R3, which we identify with R2 in the obvious way. Let Γ be a bounded open Lipschitz
subset of Γ∞, choose k ∈ C (the wavenumber), with k 6= 0 and3 0 < arg(k) ≤ π/2, and consider the
following Dirichlet and Neumann screen problems for the Helmholtz equation (our notation W 1

2 (R
3)

3Our assumption here that k has a positive imaginary part corresponds physically to an assumption of some energy
absorption in the medium of propagation. While making no essential difference to the issues we consider, a positive
imaginary part for k simplifies the mathematical formulation of our screen problems slightly.
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here is as defined in §1):

Find u ∈ C2(R3 \ Γ) ∩W 1
2 (R

3 \ Γ) such that ∆u+ k2u = 0 in R3 \ Γ and

u = f ∈ H1/2(Γ) on Γ (Dirichlet) or

∂u

∂n
= g ∈ H−1/2(Γ) on Γ (Neumann).

Where U+ := {x ∈ R3 : x3 > 0} and U− := R3 \ U+ are the upper and lower half-spaces, by u = f
on Γ we mean precisely that γ±u|Γ = f , where γ± are the standard trace operators γ± : H1(U±) =
W 1

2 (U±) → H1/2(Γ∞). Similarly, by ∂u/∂n = g on Γ we mean precisely that ∂±
n
u|Γ = g, where

∂±
n

are the standard normal derivative operators ∂±
n
: W 1

2 (U±;∆) → H1/2(Γ∞); here W 1
2 (U±;∆) =

{u ∈ W 1
2 (U±) : ∆u ∈ L2(U±)}, and for definiteness we take the normal in the x3-direction, so that

∂u/∂n = ∂u/∂x3.
These screen problems are uniquely solvable: one standard proof of this is via BIE methods

[44]. The following theorem, reformulating these screen problems as BIEs, is standard (e.g. [44]),
dating back to [51] in the case when Γ is C∞ (the result in [51] is for k ≥ 0, but the argument
is almost identical and slightly simpler for the case ℑ(k) > 0). The notation in this theorem is

that [u] := γ+u − γ−u ∈ H
1/2

Γ
⊂ H1/2(Γ∞) and [∂nu] := ∂+

n
u − ∂−

n
u ∈ H

−1/2

Γ
⊂ H−1/2(Γ∞)

(and recall that Hs
Γ
= H̃s(Γ), s ∈ R, since Γ is Lipschitz; see [36, Theorem 3.29] or Lemma 3.15

above). Further, for every compactly supported φ ∈ H−1/2(Γ∞), Sφ ∈ H1(R3) = W 1
2 (R

3) denotes
the standard acoustic single-layer potential (e.g. [9, 36]), defined explicitly in the case that φ is
continuous by

Sφ(x) =
∫

Γ∞

Φ(x,y)φ(y) ds(y), x ∈ R3,

where Φ(x,y) := exp(ik|x−y|)/(4π|x−y|) is the fundamental solution for the Helmholtz equation.
Similarly [9, 36], for compactly supported ψ ∈ H1/2(Γ∞), Dψ ∈ W 1

2 (R
3 \ suppψ) is the standard

acoustic double-layer potential, defined by

Dψ(x) =
∫

Γ∞

∂Φ(x,y)

∂n(y)
ψ(y) ds(y), x ∈ R3 \ suppψ.

Theorem 4.1 (E.g., [44, 51].). If u satisfies the Dirichlet screen problem then

u(x) = −S[∂nu](x), x ∈ R3 \ Γ,

and [∂nu] ∈ H̃−1/2(Γ) is the unique solution of

SΓ[∂nu] = f, (32)

where the isomorphism SΓ : H̃−1/2(Γ) → H1/2(Γ) is the standard acoustic single-layer boundary
integral operator, defined by

SΓφ := γ±Sφ
∣∣
Γ
, φ ∈ H̃−1/2(Γ).

Similarly, if u satisfies the Neumann screen problem then

u(x) = D[u](x), x ∈ R3 \ Γ,

and [u] ∈ H̃1/2(Γ) is the unique solution of

TΓ[u] = −g, (33)

where the isomorphism TΓ : H̃1/2(Γ) → H−1/2(Γ) is the standard acoustic hypersingular integral
operator, defined by

TΓφ := ∂±
n
Dφ

∣∣
Γ
, φ ∈ H̃1/2(Γ).
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The standard analysis of the above BIEs, in particular the proof that SΓ and TΓ are isomorphisms,
progresses via a variational formulation. Recalling from Theorem 3.3 that H−s(Γ) is (a natural
unitary realisation of) the dual space of H̃s(Γ), we define sesquilinear forms aD on H̃−1/2(Γ) and
aN on H̃1/2(Γ) by

aD(φ,ψ) = 〈SΓφ,ψ〉, φ, ψ ∈ H̃−1/2(Γ) and aN(φ,ψ) = 〈TΓφ,ψ〉, φ, ψ ∈ H̃1/2(Γ),

where in each equation 〈., .〉 is the appropriate duality pairing. Equation (32) is equivalent to the
variational formulation: find [∂nu] ∈ H̃−1/2(Γ) such that

aD([∂nu], φ) = 〈f, φ〉, φ ∈ H̃−1/2(Γ). (34)

Similarly (33) is equivalent to: find [u] ∈ H̃1/2(Γ) such that

aN([u], ψ) = −〈g, ψ〉, ψ ∈ H̃1/2(Γ). (35)

These sesquilinear forms (see [18,24,51]) are continuous and coercive in the sense of (5). It follows
from the Lax–Milgram theorem that (34) and (35) (and so also (32) and (33)) are uniquely solvable.

Remark 4.2. It is not difficult to show (see [10, 11] for details) that Theorem 4.1 holds, and the
Dirichlet and Neumann screen problems are uniquely solvable, for a rather larger class of open sets
than the open Lipschitz sets. Precisely, the Dirichlet problem is uniquely solvable, and Theorem 4.1
holds for the Dirichlet problem, if and only if ∂Γ is 1/2-null (as defined in §3.3) and H̃−1/2(Γ) =

H
−1/2

Γ
. In particular, by Lemma 3.10(xvii), (v) and Theorem 3.23, and relevant to our discussion

of prefractals below, these conditions hold in the case that Γ = Γ1 ∪ . . . ∪ ΓM is a finite union of
bounded C0 open sets, Γ1, . . . , ΓM , with Γi ∩ Γj a finite set for 1 ≤ i, j ≤ M . Similarly, the
Neumann problem is uniquely solvable, and Theorem 4.1 holds for the Neumann problem, if and

only if partial Gamma is (−1/2)-null and H̃1/2(Γ) = H
1/2

Γ
; in particular, by Lemma 3.10(xix),

(v) and Theorem 3.23, these conditions hold in the case that Γ = Γ1 ∪ . . . ∪ ΓM is a finite union of
bounded Lipschitz open sets, Γ1, . . . , ΓM , with Γi ∩ Γj finite for 1 ≤ i, j ≤M .

Domain-based variational formulations of screen problems are also standard. In particular, an
equivalent formulation of the Dirichlet problem is to find u ∈ H1(R3) =W 1

2 (R
3) such that γ±u = f

on Γ and such that

adom(u, ψ) :=

∫

R3

(∇u · ∇v̄ − k2uv̄) dx = 0, ∀v ∈ H1
0 (R

3 \ Γ), (36)

with adom(·, ·) continuous and coercive on H1
0 (R

3 \ Γ), so that this formulation is also uniquely
solvable by the Lax–Milgram lemma. In the case that ℜ(k) = 0, so that k2 < 0, adom(·, ·) is also
Hermitian, and the solution to this variational problem is also the unique solution to the minimisation
problem: find u ∈ H1(R3) that minimises adom(u, u) subject to the constraint γ±u = f .

This leads to a connection to certain set capacities from potential theory. For an open set Ω ⊂ Rn

and s > 0 we define the capacity

caps,Rn(Ω) := sup
K⊂Ω

K compact

inf
{
‖u‖2Hs(Rn) : u ∈ D(Rn) and u ≥ 1 in a neighbourhood of K

}
.

Then, in the special case when k = i (so that adom(u, u) = ‖u‖2H1(R3) for u ∈ H1(R3)) and f = 1,

the solution u of the above minimisation problem satisfies (viewing Γ as a subset of R3)

cap1,R3(Γ) = adom(u, u) = aD([∂nu], [∂nu]) = 〈1, [∂nu]〉, (37)

where [∂nu] ∈ H−1/2(Γ) is the unique solution of (34) and u = −S[∂nu] is the unique solution
of (36). Note that in (37) the first equality follows from standard results on capacities (see, e.g.,
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[25, Proposition 3.4, Remark 3.14]), the third from (34), and the second equality follows because
aD(φ, φ) = adom(Sφ,Sφ), for all φ ∈ H̃−1/2(Γ) (cf. the proof of [17, Theorem 2]).

We are interested in sequences of screen problems, with a sequence of screens Γ1,Γ2, . . . converg-
ing in some sense to a limiting screen. We assume that there exists R > 0 such that the open set
Γj ⊂ ΓR := {x ∈ Γ∞ : |x| < R} for every j ∈ N. Let aRD and aRN denote the sesquilinear forms aD
and aN when Γ = ΓR. We note that for any R > 0 and open Γ ⊂ ΓR it holds that

SΓφ = (SΓRφ)|Γ and TΓψ = (TΓRψ)|Γ , for φ ∈ H̃−1/2(Γ) and ψ ∈ H̃1/2(Γ).

Hence
aD(φ,ψ) = aRD(φ,ψ), φ, ψ ∈ H̃−1/2(Γ) ⊂ H̃−1/2(ΓR), (38)

i.e. aD is the restriction of the sesquilinear form aRD from H̃−1/2(ΓR) to its closed subspace H̃−1/2(Γ).

Similarly, aN is the restriction of aRN to H̃1/2(Γ).
Focussing first on the Dirichlet problem, consider a sequence of Lipschitz screens Γ1,Γ2, . . . with

Γ1 ⊃ Γ2 ⊃ . . . (or equivalently Γ1 ⊃ Γ2 ⊃ . . .). Suppose that fj ∈ H1/2(Γj) and let φj denote the
solution [∂nu] to (34) (equivalently to (32)) when Γ = Γj and f = fj. The question we address is
what can be said about φj in the limit as j → ∞. For this question to be meaningful, we need some
control over the sequence fj: a natural assumption, relevant to many applications, is that

there exists f∞ ∈ H1/2(Γ∞) such that fj = f∞|Γj , for j ∈ N. (39)

We shall study the limiting behaviour under this assumption using the general theory of §2.2.
To this end choose R > 0 so that Γ1 ⊂ ΓR, let H = H̃−1/2(ΓR), Wj = H̃−1/2(Γj), so that

H ⊃W1 ⊃W2 ⊃ . . ., and set

W =

∞⋂

j=1

Wj =

∞⋂

j=1

H
−1/2

Γj
=

∞⋂

j=1

H̃−1/2(Γj).

Then, by Proposition 3.34, W = H
−1/2
F , where F = ∩∞

j=1Γj. Further, by (38), and where f = f∞|ΓR ,
we see that φj is the solution of

aRD(φj , ψ) = 〈f, ψ〉, ψ ∈Wj .

Applying Lemma 2.4 we obtain immediately the first part of the following result. The remainder of
the theorem follows from Lemma 3.10(xii) and (xiii).

Theorem 4.3. In the case that (39) holds, ‖φj − φ‖H−1/2(Γ∞) = ‖φj − φ‖H̃−1/2(ΓR) → 0 as j → ∞,

where φ ∈ H−1/2
F is the unique solution of

aRD(φ,ψ) = 〈f, ψ〉, ψ ∈ H
−1/2
F .

Further, if F is (−1/2)-null (which holds in particular if dimH(F ) < 1) then φ = 0. If F is not
(−1/2)-null (which holds in particular if dimH(F ) > 1), then there exists f∞ ∈ H1/2(Γ∞) such that

〈f, ψ〉 6= 0, for some ψ ∈ H−1/2
F , in which case φ 6= 0.

Example 4.4. Theorem 4.3 applies in particular to cases in which F is a fractal set. One such
example is where

Γj =
{
(x̃, 0) : x̃ ∈ E2

j−1

}
,

and Γj = int(Γj), with (cf. [20, Example 4.5]) E0 ⊃ E1 ⊃ . . . the standard recursive sequence
generating the one-dimensional “middle-λ” Cantor set, 0 < λ < 1, so that E2

j ⊂ R2 is the closure

of a Lipschitz open set that is the union of 4j squares of side-length lj = αj , where α = (1− λ)/2 ∈
(0, 1/2). (Figure 5 visualises E2

0 , . . . , E
2
4 in the classical “middle third” case α = λ = 1/3.) In this

case the limit set is
F =

{
(x̃, 0) : x̃ ∈ E2

}
,
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Figure 5: The first five terms in the recursive sequence of prefractals converging to the standard
two-dimensional middle-third Cantor set (or Cantor dust).

where E = ∩∞
j=0Ej is the middle-λ Cantor set and E2 is the associated two-dimensional Cantor

set (or “Cantor dust”), which has Hausdorff dimension dimH(E
2) = 2 log 2/ log(1/α) ∈ (0, 2). It is

known that E2 is s-null if and only if s ≥ (dimH(E
2) − n)/2 (see [25, Theorem 4.5], where E2 is

denoted F
(2)
2 log 2/ log(1/α),∞). Theorem 4.3 applied to this example shows that if 1/4 < α < 1/2 then

there exists f∞ ∈ H1/2(Γ∞) such that the limiting solution φ ∈ H
−1/2
F to the sequence of screen

problems is non-zero. On the other hand, if 0 < α ≤ 1/4 then the theorem tells us that the limiting
solution φ = 0.

It is clear from Theorem 4.3 that whether or not the solution to the limiting sequence of screen
problems is zero depends not on whether the limiting set F , thought of as a subset of Γ∞ which
we identify with R2, has Lebesgue measure zero, but rather on whether this set F is (−1/2)-null.
From a physical perspective this may seem surprising: thinking of the screen as having a certain
mass per unit area, a screen with zero surface Lebesgue measure is a screen with zero mass, in some
sense a screen that is not there! But to those familiar with potential theory (e.g., [1]) this will be
less surprising. In particular from (37), in the case k = i and choosing f∞ so that f∞ = 1 in a
neighbourhood of ΓR, it holds that

cap1,R3(Γj) = 〈1, φj〉.
Taking the limit as j → ∞, and applying elementary capacity theoretic arguments (see, e.g., [25,
Proposition 3.4]), it follows that

cap1,R3(F ) = 〈1, φ〉.
Moreover, for G̃ ⊂ R2, defining G = {(x1, x2, 0) ∈ R3 : (x1, x2) ∈ G̃}, it is clear from the definition of
capacity (which involves smooth functions only) and standard Sobolev trace and extension theorems
(e.g. [36]) that, for some positive constants c1 and c2 independent of G̃,

c1cap1,R3(G) ≤ cap1/2,R2(G̃) ≤ c2cap1,R3(G).

Thus, where F̃ = {(x1, x2) ⊂ R2 : (x1, x2, 0) ∈ F}, it is clear that φ = 0 iff cap1,R3(F ) = 0 iff

cap1/2,R2(F̃ ) = 0, i.e. iff F̃ is (−1/2)-null as a subset of R2, where the latter equivalence follows
from [34, 13.2.2] (restated in [25, Theorem 2.5]).

Turning now to the Neumann problem, consider a sequence of open screens Γ1,Γ2, . . ., with
Γ1 ⊂ Γ2 ⊂ . . ., such that: (i) Γ :=

⋃∞
j=1 Γj is bounded; and (ii) each Γj is either Lipschitz or is

a finite union of Lipschitz open sets whose closures intersect in at most a finite number of points

(the case discussed in Remark 4.2, which ensures, inter alia, that H̃1/2(Γj) = H
1/2

Γj
). Suppose that

gj ∈ H−1/2(Γj) and let φj ∈ Vj := H̃1/2(Γj) = H
1/2

Γj
denote the solution [u] to (35) (equivalently to

(33)) when Γ = Γj and g = gj . Analogously to the Dirichlet case we assume that

there exists g∞ ∈ H−1/2(Γ∞) such that gj = g∞|Γj , for j ∈ N, (40)

and choose R > 0 such that Γ ⊂ ΓR. Then, as noted after (38), and where g = g∞|ΓR , we see that
φj ∈ Vj ⊂ H̃1/2(ΓR) is the solution of

aRN(φj , ψ) = 〈g, ψ〉, ψ ∈ Vj .
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By Proposition 3.33, V :=
⋃
j∈N Vj = H̃1/2(Γ). The first sentence of the following proposition is

immediate from (8), and the second sentence is clear.

Proposition 4.5. In the case that (40) holds, ‖φj − φ‖H1/2(Γ∞) = ‖φj − φ‖H̃1/2(ΓR) = ‖φj −
φ‖H̃1/2(Γ) → 0 as j → ∞, where φ ∈ H̃1/2(Γ) is the unique solution of

aRN(φ,ψ) = 〈g, ψ〉, ψ ∈ H̃1/2(Γ).

Further, if H̃1/2(Γ) 6= H
1/2

Γ
, then there exists g∞ ∈ H−1/2(Γ∞) such that φ 6= φ∗, where φ∗ ∈ H

1/2

Γ
is the unique solution of

aRN(φ
∗, ψ) = 〈g, ψ〉, ψ ∈ H

1/2

Γ
.

Remark 4.6. The question: “for which s ∈ R and open Ω ⊂ Rn is H̃s(Ω) 6= Hs
Ω
” was addressed

in §3.5. From Lemma 3.17 we have, in particular, that if G := int(Γ) \ Γ is not −1/2-null then

H̃1/2(Γ) $ H
1/2

Γ
. Indeed, by Lemma 3.17(v), H̃1/2(Γ) = H

1/2

Γ
if and only if G is −1/2-null, if it

holds that H̃1/2(int(Γ)) = H
1/2

Γ
, in particular if int(Γ) is C0. And, by Lemma 3.10(xii) and (xiii),

G is −1/2-null if dimH(G) < 1, while G is not −1/2-null if dimH(G) > 1.
As a specific example, consider the sequence of closed sets F0 ⊃ F1 ⊃ . . . that are the prefractal

approximations to the Sierpinski triangle F :=
⋂∞
j=0 F [20, Example 9.4]. F0 is a (closed) triangle

and Fj is the union of 3j closed triangles; the first four sets F0, . . . , F3 in this sequence are
shown in Figure 4(a). For j ∈ N let Γj := F0 \ Fj , and let Γ :=

⋃
j∈N Γj, so that Γ = F0 and

∂Γ = Γ \ Γ = F . Then, using standard results on fractal dimension (e.g., [20]), dimH(∂F0) = 1
while dimH(F ) = log 3/ log 2, so that also dimH(int(Γ) \ Γ) = dimH(F \ ∂F0) = log 3/ log 2 > 1,

which implies that H̃1/2(Γ) $ H
1/2

Γ
. On the other hand, since Γ∗ := int(Γ) is C0, H

1/2

Γ
= H̃1/2(Γ∗),

and φ∗ ∈ H̃1/2(Γ∗) (defined in Proposition 4.5) is the solution [u] to (33) in the case when the screen
is Γ∗ and g in (33) is the restriction of g∞ to Γ∗.

This specific example illustrates that the limit of the solutions φj ∈ H̃1/2(Γj) to the BIE for the

Neumann problem when the screen is Γj can be different to the solution φ∗ ∈ H̃1/2(Γ∗) when the
screen is Γ∗. It is surprising that this happens even though Γj → Γ∗ in a number of senses. In
particular, Γj can be viewed as the screen Γ∗ with “holes” in it, but with the size of these holes, as
measured by the 2D Lebesgue measure m(Γ∗ \ Γj), tending to 0 as j → ∞.
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[38] R. H. Nochetto, E. Otárola, and A. J. Salgado, A PDE approach to fractional diffusion
in general domains: a priori error analysis, Found. Comput. Math., 15 (2015), pp. 733–791.

[39] J. C. Polking, Approximation in Lp by solutions of elliptic partial differential equations, Am.
J. Math., 94 (1972), pp. 1231–1244.

[40] C. Puente-Baliarda, J. Romeu, R. Pous, and A. Cardama, On the behavior of the
Sierpinski multiband fractal antenna, IEEE T. Antenn. Propag., 46 (1998), pp. 517–524.

[41] L. G. Rogers, Degree-independent Sobolev extension on locally uniform domains, J. Funct.
Anal., 235 (2006), pp. 619–665.

[42] W. Rudin, Functional Analysis, McGraw-Hill, 2nd ed., 1991.

[43] T. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and non-
linear partial differential equations, De Gruyter, 1996.

[44] S. A. Sauter and C. Schwab, Boundary Element Methods, vol. 39 of Springer Series in
Computational Mathematics, Springer-Verlag, Berlin, 2011. Translated and expanded from the
2004 German original.

[45] W. Sickel, On pointwise multipliers for F sp,q(R
n) in case σp,q < s < n/p, Ann. Mat. Pura

Appl. (4), 176 (1999), pp. 209–250.

35



[46] , Pointwise multipliers of Lizorkin-Triebel spaces, in The Maz’ya anniversary collection,
Vol. 2 (Rostock, 1998), vol. 110 of Oper. Theory Adv. Appl., Birkhäuser, Basel, 1999, pp. 295–
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