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A MINIMISATION PROBLEM IN L∞ WITH PDE AND

UNILATERAL CONSTRAINTS

NIKOS KATZOURAKIS

Abstract. We study the minimisation of a cost functional which measures

the misfit on the boundary of a domain between a component of the solution to
a certain parametric elliptic PDE system and a prediction of the values of this

solution. We pose this problem as a PDE-constrained minimisation problem

for a supremal cost functional in L∞, where except for the PDE constraint
there is also a unilateral constraint on the parameter. We utilise approxi-

mation by PDE-constrained minimisation problems in Lp as p → ∞ and the

generalised Kuhn-Tucker theory to derive the relevant variational inequalities
in Lp and L∞. These results are motivated by the mathematical modelling of

the novel bio-medical imaging method of Fluorescent Optical Tomography.

1. Introduction

Let Ω ⊆ Rn be an open bounded set with C1 boundary ∂Ω and let also n ≥ 3.
Consider the next Robin boundary value problem for a pair of coupled linear elliptic
systems:

(1.1)


(a) −div(DuA) + Ku = S, in Ω,

(b) −div(DvB) + Lv = ξMu, in Ω,

(c) (DuA)n + γu = s, on ∂Ω,

(d) (DvB)n + γv = 0, on ∂Ω,

where u, v : Ω −→ R2 are the solutions, n : ∂Ω −→ Rn is the outer unit normal
vector field on ∂Ω and the coefficients A,B,K,L,M, s, S, ξ, γ satisfy γ > 0 and

(1.2)


u, v, S : Ω −→ R2, Du, Dv : Ω −→ R2×n,

K, L, M : Ω −→ R2×2, A, B : Ω −→ Rn×n+ ,

s : ∂Ω −→ R2, ξ : Ω −→ [0,∞).

Here the matrix-valued maps K,L are assumed to have the form

(1.3) K :=

[
k1 −k2

k2 k1

]
, L :=

[
l1 −l2
l2 l1

]
.

We will suppose that there exists a0 > 0 such that

(1.4)

A,B ∈ VMO(Rn;Rn×n+ ), σ(A), σ(B) ⊆
[
a0,

1

a0

]
,

K,L,M ∈ L∞(Ω;R2×2), k1, ≥ a0, l1 ≥ a0.

Key words and phrases. Absolute minimisers; Calculus of Variations in L∞; PDE-Constrained

Optimisation; Generalised Kuhn-Tucker theory; Lagrange Multipliers; Fluorescent Optical To-

mography, Robin Boundary Conditions.
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2 NIKOS KATZOURAKIS

We note that our general notation will be either standard or self-explanatory, as
e.g. in the textbooks [24, 41]. The PDE problem above (where the coefficient ξ is
considered as a parameter) arises in Fluorescent Optical Tomography, which is a
new and evolving bio-medical imaging method with wider industrial applications.
Optical tomography is being very intensely studied, as it presents some pros over
standard imaging methods which use X-rays, Gamma-rays, electromagnetic radia-
tion and ultrasounds. In particular, it is less harmful for living organisms and more
precise. In this setting, the coefficients take the form

A(x) = B(x) =
1

3
(
µai(x) + µ′s(x) + ξ(x)

) I3,

K(x) = L(x) =

 µai(x) + ξ(x) −ω
cω

c
µai(x) + ξ(x)

 ,
M(x) =


φ

1 + (ωτ)2
− φωτ

1 + (ωτ)2

φωτ

1 + (ωτ)2

φ

1 + (ωτ)2

 ,
where I3 is the identity matrix in R3. In the above, the coefficients A,B describe
the diffusion of photons, µ′s is the reduced scattering coefficient, φ is the quantum
efficiency of the fluorophore, µai is the absorption coefficient due to the endogenous
chromophores, τ is the fluorophore lifetime, ξ is the absorption coefficient due to
the exogenous fluorophore and ω is the modulated light frequency and c the speed
of light. Finally, S, s are light sources.

Technically, the aim of optical tomography is to reconstruct ξ in the domain from
measurements of light intensity on the boundary. A fluorescent dye is injected into
Ω. In order to determine the dye concentration ξ, Ω is illuminated by a light source
s = s(x) placed on the boundary ∂Ω. The light diffuses inside Ω, and wherever
dye is present, infrared light is emitted that can then be detected again on the
boundary through appropriate sensors. The goal is then to reconstruct ξ from the
obtained boundary images. For more details we refer to [1, 3, 11, 12, 13, 25, 27, 31,
34, 35, 49, 51].

In this paper, motivated by the problem of optical tomography and by the recent
developments in Calculus of Variations in L∞ appearing in the papers [38, 39, 40],
we consider the problem of minimising over the class of all admissible parameters
ξ a certain cost functional which measures the deviation of the solution v on the
boundary ∂Ω from some prediction ṽ of its values. Given the high complexity of
the optical tomography problem, in this work which is the companion paper of [37]
we will make the simplifying assumption that the diffusion coefficients A,B and
the optical terms K,L do not depend explicitly on the dye distribution. On the
other hand, though, we allow for potentially different diffusions and coefficients in
the two systems describing the red and the infrared light. To this end, fix N ∈ N,
m ∈ [n,∞) and p > max {n, 2n/(n− 2)}. Consider Borel sets

(1.5)
{

B1, ...,BN
}
⊆ ∂Ω

and maps

(1.6)
{
s1, ..., sN

}
⊆ L

m
2 (∂Ω;R2),

{
S1, ..., SN

}
⊆ L

nm
2n+m (Ω;R2),
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and let also

(1.7)
{
ṽ1, ..., ṽN

}
⊆ L∞(∂Ω;R2)

be predicted (noisy) values of the solution v of (1.1)(b)-(1.1)(d) on the boundary
∂Ω. Suppose that for any i ∈ {1, ..., N}, the pair (ui, vi) solves (1.1) with coefficiens
(Si, si, ξ). For the N -tuple of solutions (u1, ..., uN ; v1, ..., vN ), we will symbolise(

~u,~v
)
∈ W1,m2 (Ω;R2×N )×W1,p(Ω;R2×N )

and understand (ui)i=1...N and (ui)i=1...N as matrix valued. Similarly, we will see
the corresponding vectors of test functions as(

~φ, ~ψ
)
∈ W1, m

m−2 (Ω;R2×N )×W1, p
p−1 (Ω;R2×N ).

Our aim is to determine some ξ ∈ Lp(Ω, [0,∞)) such that all the misfits∣∣(vi − ṽi)∣∣Bi∣∣
between the predicted approximate solution and the actual solution are minimal.
We will minimise the error in L∞ by means of approximations in Lp for large p
and then take the limit p → ∞. By minimising in L∞ one can achieve uniformly
small cost, rather than on average. Since no reasonable cost functional is coercive
in our admissible class, we will therefore follow two different approaches to rectify
this problem, but in a unified fashion. The first and more popular idea is to add
a Tykhonov-type regularisation term α‖ξ‖ for small α > 0 and some appropriate
norm. The alternative approach is to consider that an a priori L∞ bound is given on
ξ. The latter approach appears to be more natural for applications, as it does not
alter the error functional. For finite p <∞, we can relax this to an Lp bound, but
as we are mostly interested in the limit case p = ∞, we will only discuss the case
of L∞ bound. In view of the above observations, we define the integral functional

(1.8) Ip
(
~u,~v, ξ

)
:=

N∑
i=1

∥∥vi − ṽi∥∥L̇p(Bi)
+ α‖ξ‖L̇p(Ω), (~u,~v , ξ

)
∈ Xp(Ω)

and its supremal counterpart

(1.9) I∞
(
~u,~v, ξ

)
:=

N∑
i=1

∥∥vi − ṽi∥∥L∞(Bi)
+ α‖ξ‖L∞(Ω) (~u,~v , ξ

)
∈ X∞(Ω),

where the dotted L̇p quantities are regularisations of the respective norms:

(1.10) ‖f‖L̇p(Ω) :=

(
−
ˆ

Ω

(|f |(p))p dLn
)1/p

, ‖g‖L̇p(Bi)
:=

(
−
ˆ

Bi

(|g|(p))p dHn−1

)1/p
.

The slashed integrals denote the average with respect to the Lebesgue measure Ln
and the Hausdorff measure Hn−1 respectively and | · |(p) is a regularisation of the
Euclidean norm away from zero in the corresponding space, given by

(1.11) | · |(p) :=
√
| · |2 + p−2.

The admissible classes Xp(Ω) and X∞(Ω) into which we will minimise (1.8)-(1.9)
are defined by setting

(1.12) X p(Ω) := W1,m2 (Ω;R2×N )×W1,p(Ω;R2×N )× Lp(Ω),
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(1.13)

Xp(Ω) :=



(~u,~v , ξ
)
∈X p(Ω) : for all i ∈ {1, ..., N}, (ui, vi, ξ) satisfies

0 ≤ ξ ≤M a.e. on Ω
and

(a)i −div(DuiA) + Kui = Si, in Ω,

(b)i −div(DviB) + Lvi = ξMui, in Ω,

(c)i (DuiA)n + γui = si, on ∂Ω,

(d)i (DviB)n + γvi = 0, on ∂Ω,

for A,B,K,L,M, Si, si, ξ, γ, p satisfying hypotheses (1.2)-(1.7)


and

(1.14) X∞(Ω) :=
⋂

n<p<∞
Xp(Ω).

Note that X∞(Ω) is a subset of a Frechét space, rather than of a Banach space, but
no difficulties will emerge out of this. We will assume that the pair of parameters
α,M ∈ [0,∞] satisfy either of the two conditions:

a > 0 and M =∞,(1.15)

a = 0 and M <∞.(1.16)

Namely, if we have non-zero regularisation parameter α, then no upper L∞ bound
M is required, but if the parameter α vanishes we need an upper L∞ bound M .

Our first main result concerns the existence of Ip-minimisers in Xp(Ω), the ex-
istence of I∞-minimisers in X∞(Ω) and the approximability of the latter by the
former as p→∞.

Theorem 1 (I∞-misfit minimisers, Ip-misfit minimisers & convergence as p→∞).
(A) The functional Ip has a constrained minimiser (~up, ~vp, ξp) in the admissible
class Xp(Ω):

(1.17) Ip
(
~up, ~vp, ξp

)
= inf

{
Ip
(
~u,~v, ξ

)
:
(
~u,~v, ξ

)
∈ Xp(Ω)

}
.

(B) The functional I∞ has a constrained minimiser (~u∞, ~v∞, ξ∞) in the admissible
class X∞(Ω)

(1.18) I∞
(
~u∞, ~v∞, ξ∞

)
= inf

{
I∞
(
~u,~v, ξ

)
:
(
~u,~v, ξ

)
∈ X∞(Ω)

}
.

Additionally, there exists a subsequence of indices (pj)
∞
1 such that the sequence of

respective Ipj -minimisers
(
~upj , ~vpj , ξpj

)
satisfy as pj →∞ that

(1.19)



ξp −−⇀ ξ∞, in Lq(Ω), for all q ∈ (1,∞),

~up −−⇀ ~u∞, in W1,m2 (Ω;R2×N ),

~up −→ ~u∞, in L
m
2 (Ω;R2×N ),

~vp −−⇀ ~v∞, in W1,q(Ω;R2×N ), for all q ∈ (1,∞),

~vp −→ ~v∞, in C0(Ω;R2×N ),

Ip
(
~up, ~vp, ξp

)
−→ I∞

(
~u∞, ~v∞, ξ∞

)
.
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Given the existence of constrained minimisers established by Theorem 1 above,
the next natural question concerns the existence of necessary conditions in the form
of PDEs governing the constrained minimisers. Unlike the case of unconstrained
minimisation, no analogue of Euler-Lagrange equations is available in this case.
One the one hand, the PDE constraints will give rise to Lagrange multipliers which
are functionals. On the other hand, the unilateral constraint on ξ gives rise to a
variational differential inequality, rather than an equation. This generalised vari-
ational context of extrema with constraints is known as the Kuhn-Tucker theory
(see e.g. [50]). Hence, our next main result regarding the variational inequalities
for finite p is given below.

Theorem 2 (Variational inequalities in Lp). For any p > max{n, 2n/(n − 2)},
there exist Lagrange multipliers(

~φp, ~ψp
)
∈W1, m

m−2 (Ω;R2×N )×W1, p
p−1 (Ω;R2×N )

associated with the constrained minimisation problem (1.17), such that
(
~up, ~vp, ξp

)
∈

Xp(Ω) satisfies the relations

ˆ
Ω

(η − ξp)

(
α

d[µp(ξp)]

dLn
+

N∑
i=1

(
Mupi

)
· ψpi

)
dLn ≥ 0,(1.20)

ˆ
∂Ω

~w : d[~νp(~vp)] =

N∑
i=1

{ˆ
Ω

[
B : (Dw>i Dψpi) +

(
Lwi

)
· ψpi

]
dLn

+

ˆ
∂Ω

(γwi) · ψpi dHn−1

}
,

(1.21)

N∑
i=1

{ ˆ
Ω

[
A : (Dz>i Dφpi) + (Kzi) · φpi

]
dLn +

ˆ
∂Ω

(γzi) · φpi dHn−1

}

=

N∑
i=1

ˆ
Ω

ξp
(
Mzi

)
· ψpi dLn,

(1.22)

for any test functions
(
~v, ~w, η

)
∈ X p(Ω). In (1.20)-(1.21), µp(ξ) is the next ξ-

dependent real Radon measure in M(Ω;R)

(1.23) µp(ξ) :=
(|ξ|(p))p−2ξ

Ln(Ω)
(
‖ξ‖L̇p(Ω)

)p−1L
nxΩ,

and ~νp(~v) is the next ~v-dependent matrix-valued Radon measure in M
(
∂Ω;R2×N)

(1.24) ~νp(~v) :=

N∑
i=1

( (
|vi − ṽi|(p)

)p−2
(vi − ṽi)

Hn−1(Bi)
(∥∥vi − ṽi∥∥L̇p(Bi)

)p−1 ⊗ ei

)
Hn−1xBi .

Note that the measures ~νp(~v) and µp(ξ) are absolutely continuous with respect to
the Hausdorff measure Hn−1x∂Ω and the Lebesgue measure LnxΩ respectively. In
general, µp(ξ) is signed if ξ ∈ Lp(Ω), but due to the constraint we have µp(ξp) ≥ 0.
Further, {e1, ..., eN} symbolises the standard Euclidean basis of RN , “:” symbolises
the standard inner product in R2×N , and d[µp(ξp)]/dLn symbolises the Radon-
Nikodyn derivative of µp(ξp) with respect to Ln. The reason we obtain three
different relations of which one is inequality and two are equations is the following.
If we ignore the PDE constraints in (1.13), then the admissible class is the Cartesian



6 NIKOS KATZOURAKIS

product of two vector spaces (spaces for ~u and ~v), and a convex set (space of ξ,
see also (2.25) that follows). Since the unilateral constraint is only for ξ, the
variational inequality arises only for this variable. The decoupling of these relations
is a consequence of linear independence.

Our final main result is the limiting counterpart of Theorem 2 for the constrained
minimiser of the ∞-problem. To this aim, let us set

C∞ := lim sup
pj→∞

Cp, Cp := ‖~φp‖W1, m
m−2 (Ω)

+ ‖~ψp‖W1,1(Ω),

where
(
~φp, ~ψp

)
are the Lagrange multipliers associated with the constrained min-

imisation problem (1.18) (Theorem 2).

Theorem 3 (Variational inequalities in L∞). If additionally m > n, there exists a
subsequence (pj)

∞
1 and a pair of limiting measures

(µ∞, ~ν∞) ∈M
(
Ω; [0,∞)

)
×M

(
∂Ω;R2×N)

such that

(1.25)
(
µp(ξp), ~νp(~vp)

) ∗−−⇀
(
µ∞, ~ν∞

)
in M(Ω;R)×M

(
∂Ω;R2×N),

as pj →∞. Then:

(I) If C∞ = 0 and α > 0, then ξ∞ = 0 a.e. on Ω and ~ν∞ = ~0.

(II) If C∞ > 0, then there exist (rescaled) limiting Lagrange multipliers(
~φ∞, ~ψ∞

)
∈W1, m

m−2 (Ω;R2×N )× BV
(
Ω;R2×N)

such that

(1.26)
(
C−1
p
~φp , C

−1
p
~ψp
) ∗−−⇀

(
~φ∞, ~ψ∞

)
as pj → ∞, in the space W1, m

m−2 (Ω;R2×N ) × BV(Ω;R2×N ). In this case, the
constrained minimiser

(
~u∞, ~v∞, ξ∞

)
∈ X∞(Ω) satisfies the next three relations:

(1.27)
α

C∞

ˆ
Ω

η dµ∞ +

N∑
i=1

ˆ
Ω

(η − ξ∞)
(
Mu∞i

)
· ψ∞i dLn ≥ α

C∞
‖ξ∞‖L∞(Ω),

1

C∞

ˆ
∂Ω

~w : d~ν∞ =

N∑
i=1

{ˆ
Ω

B : (Dwi)
>d[Dψ∞i] +

ˆ
∂Ω

(
Lwi

)
· ψ∞i dLn

+

ˆ
∂Ω

(γwi) · ψ∞i dHn−1

}
,

(1.28)

N∑
i=1

{ ˆ
Ω

[
A : (Dz>i Dφ∞i) + (Kzi) · φ∞i

]
dLn +

ˆ
∂Ω

(γzi) · φ∞i dHn−1

}

=

N∑
i=1

ˆ
Ω

ξ∞
(
Mzi

)
· ψ∞i dLn,

(1.29)

for any (
~z, ~w, η

)
∈ C1(Ω;R2×N )× C1

0(Ω;R2×N )× C0(Ω; [0,M ]).
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We conclude this lengthy introduction with some comments about the general
variational context we use herein. Calculus of Variations in L∞ is a modern sub-
area of analysis pioneered by Aronsson in the 1960s (see [6]-[9]) who considered
variational problems of supremal functionals, rather than integral functional. For a
pedagogical introduction we refer e.g. to [20, 36]. Except for their endogenous math-
ematical appeal, L∞ cost-error functionals are important for applications because
by minimising their supremum rather than their average (as e.g. in standard L2 ap-
proaches), we obtain improved performance/predictions/fitting. Indeed, minimisa-
tion of the supremum of the misfit guarantees uniform smallness, namely deviation
spikes of small volume are excluded. Interesting results regarding L∞ variational
problems can be found e.g. in [10, 14, 15, 16, 17, 18, 19, 28, 43, 46, 47, 48].

2. Proofs

We begin with an auxiliary result of independent interest, namely the well-
posedness of general Robin boundary value problems for linear systems.

Theorem 4 (Well-posedness in W1,2 and W1,p). Let Ω b Rn be a domain with C1

boundary and let n : ∂Ω −→ Rn be the outer unit normal. Consider the boundary
value problem

(2.1)

{
−div(DuA) + Ku = f − divF, in Ω,

(DuA− F )n + γu = g, on ∂Ω,

where γ > 0. We suppose there exists a0 > 0 such that

(2.2)


A ∈ L∞(Ω;Rn×n+ ), a0|z|2 ≤ A : z ⊗ z ≤ 1

a0
|z|2 ∀ z ∈ Rn,

K ∈ L∞(Ω;R2×2), K :=

[
k1 −k2

k2 k1

]
and k1 ≥ a0.

If

(2.3) f ∈ L2(Ω;R2), F ∈ L2(Ω;R2×n), g ∈ L2(∂Ω;R2),

then, (2.1) has a unique weak solution in W1,2(Ω;R2) satisfying

(2.4)


ˆ

Ω

[
A : (Du>Dφ) + (Ku) · φ

]
dLn +

ˆ
∂Ω

[
γu · φ

]
dHn−1

=

ˆ
Ω

[
f · φ + F : Dφ

]
dLn +

ˆ
∂Ω

[
g · φ

]
dHn−1,

for all φ ∈W1,2(Ω;R2). In addition, exists C > 0 depending only on the coefficients
such that

(2.5) ‖u‖W1,2(Ω) ≤ C
(
‖f‖L2(Ω) + ‖F‖L2(Ω) + ‖g‖L2(∂Ω)

)
.

If additionally for some p > 2n/(n− 2) we have

A ∈ VMO(Rn;Rn×n+ ), f ∈ L
np
n+p (Ω;R2), F ∈ Lp(Ω;R2×n), g ∈ Lp(∂Ω;R2),

then, the weak solution of (2.1) lies in the space W1,p(Ω;R2). In addition, there
exists C > 0 depending only on the coefficients and p such that

(2.6) ‖u‖W1,p(Ω) ≤ C
(
‖f‖

L
np
n+p (Ω)

+ ‖F‖Lp(Ω) + ‖g‖Lp(∂Ω)

)
.



8 NIKOS KATZOURAKIS

In the proofs that follow we will employ the standard practice of denoting by C
a generic constant whose value might change from step to step in an estimate.

Proof. The aim is to apply of the Lax Milgram theorem. (Note that the matrix K
is not symmetric, thus this is not a direct consequence of the Riesz theorem.) We
define the bilinear functional

B : W1,2(Ω;R2)×W1,2(Ω;R2) −→ R,

B[u, ψ] :=

ˆ
Ω

[
A : (Du>Dψ) + (Ku) · ψ

]
dLn +

ˆ
∂Ω

[
γu · ψ

]
dHn−1.

Since A,K are L∞, by Hölder inequality we immediately have∣∣B[u, ψ]
∣∣ ≤ C‖u‖W1,2(Ω)‖ψ‖W1,2(Ω)

for some C > 0 and all u, ψ ∈W1,2(Ω;R2). Further, since

(Ku) · u = [u1, u2]

[
k1 −k2

k2 k1

] [
u1

u2

]
= k1|u|2 ≥ a0|u|2,

we estimate

B[u, u] ≥ a0

(
‖Du‖2L2(Ω) + ‖u‖2L2(Ω)

)
+ γ‖u‖2L2(∂Ω),

for any u ∈ W1,2(Ω;R2). Hence, the bilinear form B is continuous and coercive,
thus the hypotheses of the Lax-Milgram theorem are satisfied (see e.g. [24]). Hence,
for any Φ ∈ (W1,2(Ω;R2))∗, exists a unique u ∈W1,2(Ω;R2) such that

B[u, ψ] = 〈Φ, ψ〉, for all ψ ∈W1,2(Ω;R2).

Next, we show that the functional Φ given by

〈Φ, ψ〉 :=

ˆ
∂Ω

[
g · ψ

]
dHn−1 +

ˆ
Ω

[
f · ψ + F : Dψ

]
dLn

lies in (W1,2(Ω;R2))∗ and we will also establish the L2 and the Lp estimates. Indeed,
by the trace theorem in W1,2(Ω;R2), there is a C > 0 which allows to estimate∣∣〈Φ, ψ〉∣∣ ≤ ‖g‖L2(∂Ω)‖ψ‖L2(∂Ω) +

(
‖f‖L2(Ω) + ‖F‖L2(Ω)

)
‖ψ‖W1,2(Ω)

≤ C
(
‖f‖L2(Ω) + ‖F‖L2(Ω) + ‖g‖L2(∂Ω)

)
‖ψ‖W1,2(Ω).

The particular choice of ψ := u together with Young inequality yield∣∣〈Φ, u〉∣∣ ≤ ε‖u‖2W1,2(Ω) +
C2

4ε

(
‖f‖L2(Ω) + ‖F‖L2(Ω) + ‖g‖L2(∂Ω)

)2
.

We conclude with the claimed L2 estimate by combining the above estimate with
our lower bound on B[u, u].

Now we turn to the higher integrability of the weak solution. The main ingredient
is to apply a well-know estimate for the Robin boundary value problem which
has the form (2.6), but applies to the scalar version of (2.1) for K ≡ 0, see e.g.
[5, 21, 23, 29, 33, 42, 44, 45]. Hence, we need to show that it is still true in the
general case of (2.1). To this end, we rewrite (2.1) componentwise as{

−div(DuiA) =
{
fi −

(
Ku)i

}
− divFi, in Ω,

(DuiA− Fi)>n + γui = gi, on ∂Ω,
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for i = 1, 2. By applying the estimate to the each of the components separately, we
have

‖ui‖W1,p(Ω) ≤C
(
‖K‖L∞(Ω)‖u‖

L
np
n+p (Ω)

+ ‖fi‖
L
np
n+p (Ω)

+ ‖Fi‖Lp(Ω) + ‖gi‖Lp(∂Ω)

)
,

(2.7)

for i = 1, 2. Note now that since we have assumed p > 2n/(n− 2), we have
2 < np/(n+ p) < p. Hence, by the Lp interpolation inequalities, we can estimate

‖u‖
L
np
n+p (Ω)

≤ ‖u‖λL2(Ω) ‖u‖
1−λ
Lp(Ω), for λ =

2p

n(p− 2)
.

By Young’s inequality

(2.8) ab ≤
{
r − 1

r
(εr)

1
1−r

}
b

r
r−1 + εar,

which holds for a, b, ε > 0, r > 1 and r/(r−1) = r′, the choice r := 1/(1−λ) yields

1− λ =
n(p− 2)

p(n− 2)− 2n
, r =

n(p− 2)

p(n− 2)− 2n
,

r

r − 1
=
n(p− 2)

2p
,

and hence we can estimate

‖u‖
L
np
n+p (Ω)

≤
(
‖u‖Lp(Ω)

) p(n−2)−2n
n(p−2)

(
‖u‖L2(Ω)

) 2p
n(p−2)

≤
((
‖u‖Lp(Ω)

) p(n−2)−2n
n(p−2)

)r
+

[
r − 1

r
(εr)

1
1−r

]((
‖u‖L2(Ω)

) 2p
n(p−2)

) r
r−1

(2.9)

= ε‖u‖Lp(Ω) +

 2p

n(p− 2)

(
εn(p− 2)

p(n− 2)− 2n

)− p(n−2)−2n
2p

 ‖u‖L2(Ω).

By (2.7) and (2.9) and by choosing ε > 0 small, we infer

‖u‖W1,p(Ω) ≤ C
(
‖u‖L2(Ω) + ‖f‖

L
np
n+p (Ω)

+ ‖F‖Lp(Ω) + ‖g‖Lp(∂Ω)

)
.

The estimate (2.6) follows by combining the above with the L2 estimate (2.5),
together with Hölder inequality and the fact that min

{
p, np/(n + p)

}
> 2. The

theorem has been established. �

As a consequence of our result above, we show that the (forward) Robin problem
(1.1) is well posed.

Corollary 5 (Well-posedness of (1.1)). Consider (1.1) and suppose that the coef-
ficients A,B,K,L,M, ξ, s, S satisfy (1.2)-(1.4). We further assume that for some
m ≥ n we have

(2.10) S ∈ L
nm

2n+m (Ω;R2), s ∈ L
m
2 (∂Ω;R2), ξ ∈ Lp(Ω),

for some p > max {n, 2n/(n− 2)}. Then, the problem (1.1) has a unique weak
solution

(u, v) ∈ W1,m2 (Ω;R2)×W1,p(Ω;R2)

which for any pair of test maps

(φ, ψ) ∈ W1, m
m−2 (Ω;R2)×W1, p

p−1 (Ω;R2)
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it satisfies
(2.11)

ˆ
Ω

[
A : (Du>Dφ) +

(
Ku− S

)
· φ
]

dLn +

ˆ
∂Ω

[
(γu− s) · φ

]
dHn−1 = 0,

ˆ
Ω

[
B : (Dv>Dψ) +

(
Lv − ξMu

)
· ψ
]

dLn +

ˆ
∂Ω

[
γu · ψ

]
dHn−1 = 0.

In addition, exists C > 0 depending only on the data such that

(2.12)

 ‖u‖
W1,m

2 (Ω)
≤ C

(
‖s‖

L
m
2 (∂Ω)

+ ‖S‖
L

nm
2n+m(Ω)

)
,

‖v‖W1,p(Ω) ≤ C‖ξ‖Lp(Ω) ‖u‖Lm(Ω).

Proof. By Theorem 4 applied to the Robin problem (1.1)(a)-(1.1)(c) for p = m/2
and by recalling that

m

2
≥ n

2
>

2n

n− 2
,

for any s ∈ L
m
2 (∂Ω;R2) and S ∈ L

nm
2n+m (Ω;R2) exists a unique u ∈ W1,m2 (Ω;R2)

satisfying the u-system in (2.11) for all φ ∈W1, m
m−2 (Ω;R2), as well as the estimate

(2.12) for u. Fix now ξ ∈ Lp(Ω). By Theorem 4 applied to the Robin boundary
value problem (1.1)(b)-(1.1)(d), it will follow there exists a unique v ∈W1,p(Ω;R2)

satisfying the v-system in (2.11) for all ψ ∈ W1, p
p−1 (Ω;R2), once we have verified

that ξMu ∈ L
np
n+p (Ω). By (2.6) and Hölder’s inequality, we estimate

‖v‖W1,p(Ω) ≤ C‖ξMu‖
L
np
n+p (Ω)

≤ C‖ξ‖
L
npr
n+p (Ω)

‖u‖
L
npr′
n+p (Ω)

,

for a new C > 0 and any r > 1. We select r := (n+ p)/p to obtain

npr′

n+ p
=

np

n+ p

p+ n

p
= n.

Hence, we conclude that

‖v‖W1,p(Ω) ≤ C‖ξ‖Lp(Ω)‖u‖Ln(Ω) ≤ C‖ξ‖Lp(Ω)‖u‖Lm(Ω),

because m ≥ n. The proof is complete. �

Now we establish Theorem 1. Its proof is a consequence of the next two propo-
sitions, utilising the direct method of Calculus of Variations ([21]).

Proposition 6 (Ip-minimisers). In the context of Theorem 1, the functional Ip has
a constrained minimiser

(
~up, ~vp, ξp

)
∈ Xp(Ω), as per (1.17).

Proof. Note that Xp(Ω) 6= ∅, and in fact Xp(Ω) is a weakly closed subset of the
reflexive Banach space X p(Ω) with cardinality greater or equal to that of Lp(Ω).
Further, there is an a priori energy bound for the infimum of Ip, in fact uniform in
p. Indeed, for each i ∈ {1, ..., N} let (u0i, v0i) be the solution to (1.1) with ξ ≡ 0
and (Si, si) as in (1.6). Then, by Corollary 5, we have v0i ≡ 0. Therefore, by
(1.9)-(1.10) we infer that (

~u0,~0, 0
)
∈ Xp(Ω)
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for all p ∈ [n,∞], and also, by Hölder inequality and (1.7)-(1.11), we obtain

Ip
(
~u0,~0, 0

)
≤ N + 1

p
+ E∞

(
~u0,~0, 0

)
≤ N + 1

n
+

N∑
i=1

∥∥ṽi∥∥L∞(Bi)
< ∞.

Fix p and consider now a minimising sequence (~uj , ~v j , ξ j )∞j=1 of Ip in Xp(Ω). Then,
for any large enough j ∈ N we have

0 ≤ Ip
(
~u j , ~v j , ξ j

)
≤ N + 1

n
+

N∑
i=1

∥∥ṽi∥∥L∞(Bi)
+ 1.

By Corollary 5, we have the estimates

(2.13)


∥∥~u j∥∥

W1,m
2 (Ω)

≤ C max
i=1,...,N

(
‖Si‖L nm

2n+m(Ω)
+ ‖si‖Lm2 (∂Ω)

)
,∥∥~v j∥∥

W1,p(Ω)
≤ C ‖ξ j‖Lp(Ω)

∥∥~u j∥∥
W1,m

2 (Ω)
.

If (1.15) is satisfied, then by all the above and (1.8) we have the estimate

‖ξ j‖Lp(Ω) ≤ ‖ξ j‖L̇p(Ω) ≤
1

α

(
N + 1

n
+

N∑
i=1

∥∥ṽi∥∥L∞(Bi)
+ 1

)
.

If on the other hand (1.16) is satisfied, then we readily have

‖ξ j‖Lp(Ω) ≤ ‖ξ j‖L∞(Ω) ≤ M.

Hence, in both cases of either (1.15) or (1.16), we have the uniform bound

(2.14) sup
j∈N
‖ξ j‖Lp(Ω) < ∞.

By the estimates (2.13)-(2.16) and standard weak and strong compactness argu-
ments, there exists a weak limit in the Banach space

(~up, ~vp, ξp
)
∈X p(Ω)

and a subsequence (jk)∞1 such that as jk →∞ we have

ξ j −−⇀ ξp, in Lp(Ω),

~u j −−⇀ ~up, in W1,m2 (Ω;R2×N ),

~u j −→ ~up, in L
m
2 (Ω;R2×N ),

~v j −−⇀ ~vp, in W1,p(Ω;R2×N ),

~v j −→ ~vp, in C0(Ω;R2×N ).

Note that in this paper we utilise the standard practice of passing to subsequences
as needed perhaps without explicit mention. To show that (~up, ~vp, ξp

)
lies in Xp(Ω),

we argue as follows. First we show that for any M ∈ [0,∞] the constraint

0 ≤ ξ j ≤ M a.e. on Ω,

is weakly closed in Lp(Ω), namely

(2.15) Lp(Ω; [0,M ]) =
{
η ∈ Lp(Ω) : 0 ≤ η ≤ M a.e. on Ω

}
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is weakly closed. To this aim, let ξ j −−⇀ ξp in Lp(Ω) as jk → ∞. Then, for any
measurable set E ⊆ Ω with positive measure Ln(E) > 0, by integrating the last
inequality over E, the averages satisfy

0 ≤ −
ˆ
E

ξ j dLn ≤ M

and therefore

−
ˆ
E

ξp dLn = lim
jk→∞

(
−
ˆ
E

ξ j dLn
)
∈ [0,M ].

By selecting E := Bρ(x) for x ∈ Ω and ρ ∈ (0,dist(x, ∂Ω)), the Lebesgue differen-
tiation theorem allows us to infer

ξp(x) = lim
ρ→0

(
−
ˆ
Bρ(x)

ξp dLn
)
∈ [0,M ], for a.e. x ∈ Ω.

To conclude that (~up, ~vp, ξp
)
∈ Xp(Ω), we must pass to the weak limit in the

equations (a)i − (d)i in (1.13). The only convergence that needs to be justified
that of the nonlinear source term ξMui in (b)i. To this end, note that by our
assumption p > 2n

n−2 , we have the inequality

p

p− 1
<

n

2
≤ m

2
.

Thus, since u ji −→ upi in L
m
2 (Ω;R2) as jk →∞, we have that

u ji −→ upi in L
p
p−1 (Ω;R2)

as jk →∞. Hence, since ξ j −−⇀ ξp in Lp(Ω), it follows thatˆ
Ω

(
ξ j Mu ji

)
· φdLn −→

ˆ
Ω

(
ξp Mupi

)
· φdLn

for any φ ∈ C∞c (Ω;R2) as jk →∞, as a consequence of the weak-strong continuity

of the duality pairing between Lp(Ω) and L
p
p−1 (Ω). In conclusion, we infer that

indeed (~up, ~vp, ξp
)
∈ Xp(Ω) by passing to the weak limit in the equations (a)i− (d)i

defining (1.13).
We now show that (~up, ~vp, ξp

)
∈ Xp(Ω) is indeed a minimiser of Ip. To this

aim, note that for any α ∈ [0,∞) the functional α‖ · ‖L̇p(Ω) is convex and strongly

continuous on the reflexive space Lp(Ω), by (1.10)-(1.11). Thus, it is weakly lower
semi-continuous. Similarly, note that for each index i ∈ {1, ..., N} the functional
‖ · − ṽi‖L̇p(Bi)

is strongly continuous on Lp(Bi). In conclusion, we have

Ip
(
~up, ~vp, ξp

)
= α‖ξp‖L̇p(Ω) +

N∑
i=1

∥∥vpi − ṽi∥∥L̇p(Bi)

≤ lim inf
jk→∞

{
α‖ξ j‖L̇p(Ω) +

N∑
i=1

∥∥v ji − ṽi∥∥L̇p(Bi)

}
= lim inf

jk→∞
Ip
(
~u j , ~v j , ξ j

)
= inf

{
Ip(~u,~v, ξ

)
: (~u,~v, ξ

)
∈ Xp(Ω)

}
.

The proposition ensues. �
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Our next result below establishes the existence of minimisers for I∞ and the
approximation by minimisers of the Ip functionals as p→∞, therefore completing
the proof of Theorem 1.

Proposition 7 (I∞-minimisers). The functional I∞ given by (1.9) has a con-
strained minimiser (~u∞, ~v∞, ξ∞) ∈ X∞(Ω), as in (1.18). Additionally, exists a sub-
sequence (pj)

∞
1 such that the Ipj -minimisers

(
~upj , ~vpj , ξpj

)
satisfy (1.19) as j →∞.

Proof. We continue from the proof of Proposition 6. The map (~u0,~0, 0) constructed
therein provides an energy bound uniform in p and in view of (1.13)-(1.14) we also

have (~u0,~0, 0) ∈ X∞(Ω). Fix q > n and p ≥ q. By Hölder inequality and minimality,
we estimate

Iq
(
~up, ~vp, ξp

)
≤ Ip

(
~up, ~vp, ξp

)
≤ Ip(~u0,~0, 0)

≤ I∞(~u0,~0, 0) +
N + 1

n

≤
N∑
i=1

∥∥ṽi∥∥L∞(Bi)
+
N + 1

n
,

which is uniform in p. If (1.15) is satisfied, then by the above estimate we have

‖ξp‖Lq(Ω) ≤ ‖ξp‖L̇p(Ω) ≤
1

α

( N∑
i=1

∥∥ṽi∥∥L∞(Bi)
+
N + 1

n

)
.

If on the other hand (1.16) is satisfied, then we immediately have

‖ξp‖Lq(Ω) ≤ ‖ξp‖L∞(Ω) ≤ M.

Hence, in both cases of either (1.15) or (1.16), we have the uniform bound

(2.16) sup
p≥q
‖ξp‖Lq(Ω) < ∞.

By the above estimates, Corollary 5 (see (2.13)) and standard compactness argu-
ments yield that there exists a subsequence (pj)

∞
1 and a limit

(~u∞, ~v∞, ξ∞
)
∈

⋂
n<q<∞

Wq(Ω)

such that (1.19) holds true as j → ∞. In addition, under either assumptions
(1.15) or (1.16) we have that ξ∞ ∈ L∞(Ω). Indeed, under (1.15) by integrating the
constraint 0 ≤ ξp ≤M on a measurable set E ⊆ Ω of positive measure we have

0 ≤ −
ˆ
E

ξp dLn ≤ M

and therefore

−
ˆ
E

ξ∞ dLn = lim
pj→∞

(
−
ˆ
E

ξp dLn
)
∈ [0,M ].

Then, for E := Bρ(x), x ∈ Ω and ρ ∈ (0,dist(x, ∂Ω)) we deduce

ξ∞(x) = lim
ρ→0

(
−
ˆ
Bρ(x)

ξ∞ dLn
)
∈ [0,M ], for a.e. x ∈ Ω,
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for any M > 0. If on the other hand (1.15) is satisfied, then by the weak lower-
semicontinuity of the functional ‖ · ‖L̇q(Ω) on Lq(Ω), we have

‖ξ∞‖L∞(Ω) = lim
q→∞

‖ξ∞‖L̇q(Ω)

≤ lim inf
q→∞

(
lim inf
pj→∞

‖ξp‖L̇q(Ω)

)
≤ lim inf

q→∞

(
lim inf
pj→∞

1

α

N∑
i=1

∥∥ṽi∥∥L∞(Bi)

)

=
1

α

N∑
i=1

∥∥ṽi∥∥L∞(Bi)
.

Further, by passing to the limit as pj → ∞ in (a)i − (d)i of (1.13) as in the proof
of Proposition 6, we see that the limit (~u∞, ~v∞, ξ∞

)
lies in X∞(Ω). It remains to

prove that (~u∞, ~v∞, ξ∞
)

is a minimiser of I∞ and that the energies converge. Fix

an arbitrary (~u,~v, ξ
)
∈ X∞(Ω). Since pj ≥ q for large j ∈ N, by minimality we have

I∞
(
~u∞, ~v∞, ξ∞

)
= lim

q→∞
Iq
(
~u∞, ~v∞, ξ∞

)
≤ lim inf

q→∞

(
lim inf
pj→∞

Iq
(
~up, ~vp, ξp

))
≤ lim inf

pj→∞
Ip
(
~up, ~vp, ξp

)
≤ lim sup

pj→∞
Ip
(
~up, ~vp, ξp

)
≤ lim sup

pj→∞
Ip
(
~u,~v, ξ

)
= I∞

(
~u,~v, ξ

)
,

for any (~u,~v, ξ
)
∈ X∞(Ω). Therefore,

(
~u∞, ~v∞, ξ∞

)
is a minimiser of I∞ in X∞(Ω).

The choice (~u,~v, ξ
)

:=
(
~u∞, ~v∞, ξ∞

)
in the above inequality implies

I∞
(
~u∞, ~v∞, ξ∞

)
−→ Ip

(
~up, ~vp, ξp

)
,

as j →∞. The proof of Proposition 7 is complete. �

Before proving Theorem 2, we use it to obtain an additional piece of information
on the variational inequality (1.20).

Corollary 8. In the setting of Theorem 2, in the case under assumption (1.15)
(where M = ∞ and α > 0) the variational inequality (1.20) for the constrained
minimiser implies the next test-function-free relations:

N∑
i=1

(
Mupi

)
· ψpi ≥ 0, a.e. on {ξp = 0},(2.17)

α
|ξp|p−2

(p) ξp

Ln(Ω)‖ξp‖p−1

L̇p(Ω)

+

N∑
i=1

(
Mupi

)
· ψpi = 0, a.e. on {ξp > 0}.(2.18)
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Proof. To see (2.17), note that if M = ∞, then by testing in (1.20) against η :=
ξp + θ where θ ∈ Lp(Ω; [0,∞)), we obtain

ˆ
Ω

θ

(
α

d[µp(ξp)]

dLn
+

N∑
i=1

(
Mupi

)
· ψpi

)
dLn ≥ 0,

for any θ ∈ Lp(Ω, [0,+∞)), which yields

(2.19) α
|ξp|p−2

(p) ξp

Ln(Ω)‖ξp‖p−1

L̇p(Ω)

+

N∑
i=1

(
Mupi

)
· ψpi ≥ 0, a.e. on Ω.

From the above inequality we readily deduce (2.17). To see (2.18), we fix a point
x ∈ {ξp > 0}, t > 0 small and ρ ∈ (0,dist(x, ∂Ω) and test against the function

η := ξp − tχ{ξp>t}∩Bρ(x) ∈ Lp(Ω; [0,∞).

Then, by (1.20) we get

t

ˆ
Bρ(x)

χ{ξp>t}

(
α

d[µp(ξp)]

dLn
+

N∑
i=1

(
Mupi

)
· ψpi

)
dLn ≤ 0,

which by diving by tLn(Bρ(x)), letting t → 0, using the Dominated Convergence
theorem and letting ρ→ 0 yields

lim
ρ→0

−
ˆ
Bρ(x)

χ{ξp>0}

(
α

d[µp(ξp)]

dLn
+

N∑
i=1

(
Mupi

)
· ψpi

)
dLn ≤ 0.

Now, (2.18) follows as a consequence of the Lebesgue differentiation theorem and
(2.19). The proof is complete. �

The proof of Theorem 2 consists of a few sub-results. We begin by computing
the derivative of Ip.

Lemma 9. The functional Ip : X p(Ω) −→ R is Frechét differentiable and its
derivative

dIp : X p(Ω) −→
(
X p(Ω)

)∗
which maps

(~u,~v, ξ) 7→
(
dIp
)

(~u,~v,ξ)

is given for all (~u,~v, ξ), (~z, ~w, η) ∈X p(Ω) by the formula

(2.20)
(
dIp
)

(~u,~v,ξ)
(~z, ~w, η) = p

ˆ
∂Ω

~w : d[~νp(~v)] + αp

ˆ
Ω

η d[µp(ξ)].

Proof. The Frechét differentiability of Ip follows from well-known results on the
differentiability of norms on Banach spaces and our p-regularisations in (1.10)-
(1.11). To compute the Frechét derivative, we use directional differentiation. For
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any fixed (~u,~v, ξ), (~z, ~w, η) ∈X p(Ω), we have

1

p

(
dIp
)

(~u,~v,ξ)
(~z, ~w, η) =

1

p

d

dε

∣∣∣
ε=0

Ip

(
(~u,~v, ξ) + ε(~z, ~w, η)

)
=

1

p

N∑
i=1

d

dε

∣∣∣
ε=0

(
−
ˆ

Bi

(∣∣vi + εwi − ṽi
∣∣
(p)

)p
dHn−1

)1
p

+ α
1

p

d

dε

∣∣∣
ε=0

(
−
ˆ

Ω

(
|ξ + εη|(p)

)p
dLn

)1
p

=

N∑
i=1

(
−
ˆ

Bi

(∣∣vi − ṽi∣∣(p))p dHn−1

)1
p−1

�

�−
ˆ

Bi

(
|vi − ṽi|(p)

)p−2
(vi − ṽi) · wi dHn−1

+ α

(
−
ˆ

Ω

(
|ξ|(p)

)p
dLn

)1
p−1

−
ˆ

Ω

(|ξ|(p))p−2ξ η dLn.

Hence, (2.20) follows in view of (1.23)-(1.24). The lemma ensues. �

In order to derive the variational inequality that any p-minimiser as in (1.17)
satisfies, we define a mapping which expresses the PDE constraints of the admissible
class in (1.13). Thus, we set

(2.21) J : X p(Ω) −→
[(

W1, m
m−2 (Ω;R2)

)∗ × (W1, p
p−1 (Ω;R2)

)∗]N
,

〈
J(~u,~v, ξ), (~φ, ~ψ )

〉
:=



〈
J1

1(~u,~v, ξ), φ1

〉
〈

J2
1(~u,~v, ξ), ψ1

〉
...〈

J1
N (~u,~v, ξ), φN

〉
〈

J2
N (~u,~v, ξ), ψN

〉


∈ R2N ,(2.22)

where, for any j ∈ {1, 2}, and i ∈ {1, ..., N} and any test maps

(φi, ψi) ∈W1, m
m−2 (Ω;R2)×W1, p

p−1 (Ω;R2),

the component Jji of J is given by

(2.23)


〈

J1
i (~u,~v, ξ), φi

〉
:=

ˆ
Ω

[
A : (Du>i Dφi) +

(
Kui − Si

)
· φi
]

dLn

+

ˆ
∂Ω

[
(γui − si) · φi

]
dHn−1

(2.24)


〈

J2
i (~u,~v, ξ), ψi

〉
:=

ˆ
Ω

[
B : (Dv>i Dψi) +

(
Lvi − ξMui

)
· ψi
]

dLn

+

ˆ
∂Ω

[
γvi · ψi

]
dHn−1.
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Let us also define for any M ∈ [0,∞] the following weakly closed convex subset of
the Banach space X p(Ω):

(2.25) X p
M (Ω) := W1,m2 (Ω;R2×N )×W1,p(Ω;R2×N )× Lp(Ω; [0,M ]).

Then, in view of (2.21)-(2.25), we may reformulate the admissible class Xp(Ω) of
the minimisation problem (1.17) as

(2.26) Xp(Ω) =
{(
~u,~v, ξ

)
∈X p

M (Ω) : J
(
~u,~v, ξ

)
= 0
}
.

We now compute the derivative of J above and prove that it is a C1 submersion.

Lemma 10. The map J defined by (2.21)-(2.25) is a continuously differentiable
submersion and its Frechét derivative

dJ : X p(Ω) −→ L

(
X p(Ω),

[(
W1, m

m−2 (Ω;R2)
)∗ × (W1, p

p−1 (Ω;R2)
)∗]N)

,

(2.27)

which maps

(~u,~v, ξ) 7→
(
dJ
)

(~u,~v,ξ)

is given by

〈(
dJ
)

(~u,~v,ξ)
(~z, ~w, η), (~φ, ~ψ )

〉
=



〈(
dJ1

1

)
(~u,~v,ξ)

(~z, ~w, η), φ1

〉
〈(

dJ2
1

)
(~u,~v,ξ)

(~z, ~w, η), ψ1

〉
...〈(

dJ1
N

)
(~u,~v,ξ)

(~z, ~w, η), φN

〉
〈(

dJ2
N

)
(~u,~v,ξ)

(~z, ~w, η), ψN

〉


.(2.28)

In (2.28), for each i ∈ {1, ..., N} and j ∈ {1, 2}, the component
(
dJ1

N

)
(~u,~v,ξ)

of the

derivative is given for any test functions

(~φ, ~ψ ) ∈W1, m
m−2 (Ω;R2×N )×W1, p

p−1 (Ω;R2×N )

by the expressions

(2.29)


〈(

dJ1
i

)
(~u,~v,ξ)

(~z, ~w, η), φi

〉
=

ˆ
Ω

[
A : (Dz>i Dφi) + (Kzi) · φi

]
dLn

+

ˆ
∂Ω

(γzi) · φi dHn−1,

(2.30)


〈(

dJ2
i

)
(~u,~v,ξ)

(~z, ~w, η), ψi

〉
=

ˆ
Ω

[
B : (Dw>i Dψi)

+
(

Lwi −M(ηui + ξzi)
)
· ψi
]

dLn +

ˆ
∂Ω

(γwi) · ψi dHn−1,

and any (~u,~v, ξ), (~z, ~w, η) ∈X p(Ω).

Proof. The mapping J is bounded linear in all arguments except for the products
ξMui appearing in the component J2

i . Therefore, it is quadratic and continuously
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Frechét differentiable in the space X p(Ω). The Frechét derivative can be computed
by using directional differentiation(

dJ
)

(~u,~v,ξ)
(~z, ~w, η) =

d

dε

∣∣∣
ε=0

J
(

(~u,~v, ξ) + ε(~z, ~w, η)
)

and the observation that all the terms are affine except for the quadratic term
M(ξ+εη)(ui+εzi) whose derivative as ε = 0 is M(ηui+ξzi). To conclude, we must
show that J is a submersion, namely for any (~u,~v, ξ) ∈ X p(Ω), the differential at
this point(

dJ
)

(~u,~v,ξ)
: X p(Ω) −→

[(
W1, m

m−2 (Ω;R2)
)∗ × (W1, p

p−1 (Ω;R2)
)∗]N

is a surjective linear map. To this aim, for each i ∈ {1, ..., N} fix a pair of functionals

(Φi,Ψi) ∈
(
W1, m

m−2 (Ω;R2)
)∗ × (W1, p

p−1 (Ω;R2)
)∗
.

By well-known results (see e.g. [2]), it follows that exist{
(fi, Fi) ∈ L

m
2 (Ω;R2)× L

m
2 (Ω;R2×n),

(gi, Gi) ∈ Lp(Ω;R2)× Lp(Ω;R2×n),

such that for any φi ∈W1, m
m−2 (Ω;R2) and ψi ∈W1, p

p−1 (Ω;R2), the next represen-
tation formulas hold true

(2.31)


〈Φi, φi〉 =

ˆ
Ω

(
fi · φi + Fi : Dφi

)
dLn,

〈Ψi, ψi〉 =

ˆ
Ω

(
gi · ψi + Gi : Dψi

)
dLn.

By (2.27)-(2.31), the surjectivity of J′(~u,~v, ξ) is equivalent to the weak solvability
in (zi, wi) of the systems{

−div(DziA) + Kzi = fi − divFi, in Ω,

(DziA− Fi)n + γzi = 0, on ∂Ω,

and {
−div(DwiB) + Lwi =

(
gi + M(ηui + ξzi)

)
− divGi, in Ω,

(DwiB−Gi)n + γwi = 0, on ∂Ω,

for all indices i ∈ {1, ..., N}, some η ∈ Lp(Ω) and with A,B,K,L,M, ui, ξ, γ, fi, Fi,
gi, Gi being fixed coefficients. The solvability of the above systems follows from
Theorem 4 and Corollary 5. The proof is complete. �

Now we derive the variational inequality in Lp by employing the Kuhn-Tucker
theory of generalised Lagrange multipliers.

Proposition 11 (The variational inequality). For any p > 2n/(n− 2), there exist
Lagrange multipliers(

~φp, ~ψp
)
∈W1, m

m−2 (Ω;R2×N )×W1, p
p−1 (Ω;R2×N )
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associated with the minimisation problem (1.17), such that the constrained min-
imiser

(
~up, ~vp, ξp

)
∈ Xp(Ω) satisfies for any (~z, ~w, η) in the convex set X p

M (Ω) that

1

p

(
dIp
)

(~up,~vp,ξp)

(
~z, ~w, η − ξp

)
≥

N∑
i=1

〈(
dJ1

i

)
(~up,~vp,ξp)

(
~z, ~w, η − ξp

)
, φpi

〉

+

N∑
i=1

〈(
dJ2

i

)
(~up,~vp,ξp)

(
~z, ~w, η − ξp

)
, ψpi

〉
.

(2.32)

Proof. By Lemmas 9-10, Ip is Frechét differentiable and J is a continuously Frechét
differentiable submersion on X p(Ω). Also, the set X p

M (Ω) is convex and has non-
empty interior (with respect to the strong topology). Hence, the assumptions of
the generalised Kuhn-Tucker theorem hold true (see e.g. [50, p. 417-418, Corollary
48.10 & Theorem 48B]). Hence, there exists a Lagrange multiplier

Λp ∈
((

W1, m
m−2 (Ω;R2×N )

)∗ × (W1, p
p−1 (Ω;R2×N )

)∗)∗
which can be identified with a pair of functions(

~φp, ~ψp
)
∈W1, m

m−2 (Ω;R2×N )×W1, p
p−1 (Ω;R2×N )

such that,
(
~up, ~vp, ξp

)
satisfies

1

p

(
dIp
)

(~up,~vp,ξp)

(
~z − ~up, ~w − ~vp, η − ξp

)
≥

N∑
i=1

〈(
dJ1

i

)
(~up,~vp,ξp)

(
~z − ~up, ~w − ~vp, η − ξp

)
, φpi

〉

+

N∑
i=1

〈(
dJ2

i

)
(~up,~vp,ξp)

(
~z − ~up, ~w − ~vp, η − ξp

)
, ψpi

〉
,

(2.33)

for any (~z, ~w, η) ∈ X p
M (Ω). Since the convex set X p

M (Ω) can be written as the
cartesian product of the vector spaces

W1,m2 (Ω;R2×N )×W1,p(Ω;R2×N )

with the convex set Lp(Ω, [0,M ]) (see (2.25)), by replacing ~z by ~z + ~up and ~w by
~w+ ~vp in (2.33), we arrive at (2.32). The proof of the Proposition is complete. �

By Proposition 11 we deduce that the variational inequality takes the form (2.34)
below, as a direct consequence of (2.20), (1.23), (1.24), (2.27)-(2.30).

Corollary 12. In the setting of Proposition 11, in view of the form of the Frechét
derivatives of Ip and J, the variational inequality (2.32) takes the formˆ

∂Ω

~w : d[~νp(~vp)] + α

ˆ
Ω

(η − ξp) d[µp(ξp)]

≥
N∑
i=1

{ ˆ
Ω

[
A : (Dz>i Dφpi) + (Kzi) · φpi

]
dLn

+

ˆ
∂Ω

(γzi) · φpi dHn−1

}
+

N∑
i=1

{ˆ
Ω

[
B : (Dw>i Dψpi)

+
(

Lwi −M
(
(η − ξp)upi + ξpzi

))
· ψpi

]
dLn +

ˆ
∂Ω

(γwi) · ψpi dHn−1

}
,

(2.34)
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for any (~z, ~w, η) ∈X p
M (Ω).

We conclude this section by obtaining the further desired information on the
variational inequality (2.34).

Lemma 13. In the setting of Corollary 12, the variational inequality (2.34) for
the constrained minimiser

(
~up, ~vp, ξp

)
is equivalent to the triplet of relations (1.20)-

(1.22).

Proof. The inequality (1.20) follows by setting ~z = ~w = 0 in (2.34), and recalling
the definition of Radon-Nikodym derivative of the absolutely continuous measure
µp(ξp). The identity (1.21) follows by setting η = ξp and ~z = 0 in (2.34) and
by recalling that W1,p(Ω;R2×N ) is a vector space, so the inequality we obtain in
fact holds for both ±w. Finally, the identity (1.22) follows by setting η = ξp and
~w = 0 in (2.34) and by recalling again that W1,m2 (Ω;R2×N ) is a vector space, so
the inequality holds for both ±z. �

We conclude by establishing our last main result.

Proof of Theorem 3. We first show that for any p > n and any

(~v, ξ) ∈W1,p(Ω;R2×N )× Lp(Ω),

we have the next total variations bounds for the measures (1.23)-(1.24):∥∥~νp(~v)
∥∥(∂Ω) ≤ N,(2.35) ∥∥µp(ξ)∥∥(Ω) ≤ 1.(2.36)

To see (2.35)-(2.36), note that for any i ∈ {1, ..., N} by Hölder inequality we have

∥∥νpi(~v)
∥∥(∂Ω) ≤

−
ˆ

Bi

(
|vi − ṽi|(p)

)p−2|vi − ṽi|dHn−1

(
−
ˆ

Bi

(∣∣vi − ṽi∣∣(p))p dHn−1

)p−1
p

≤
−
ˆ

Bi

(
|vi − ṽi|(p)

)p−1
dHn−1

(
−
ˆ

Bi

(∣∣vi − ṽi∣∣(p))p dHn−1

)p−1
p

≤ 1.

Similarly, we estimate

∥∥µp(ξ)∥∥(Ω) ≤
−
ˆ

Ω

(
|ξ|(p)

)p−2|ξ|dLn(
−
ˆ

Ω

(
|ξ|(p)

)p
dLn

)p−1
p

≤
−
ˆ

Ω

(
|ξ|(p)

)p−1
dLn(

−
ˆ

Ω

(
|ξ|(p)

)p
dLn

)p−1
p

≤ 1.

Further, by the sequential weak* compactness of the corresponding spaces of Radon
measures, the estimates (2.35)-(2.36) imply the existence of a subsequence (pj)

∞
1

and of the claimed limiting measures (µ∞, ~ν∞) in (1.25). Note that the non-
negativity of µ∞ follows from that of ξp and hence of µp(ξp).

Next, we prove for later use the estimate

(2.37) lim inf
pj→∞

ˆ
Ω

ξp d[µp(ξp)] ≥ ‖ξ∞‖L∞(Ω).
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To see (2.37), we argue as follows. First, note that if ξ∞ = 0 a.e. on Ω, then by the
positivity of µp and ξp we trivially have

lim inf
pj→∞

ˆ
Ω

ξp d[µp(ξp)] ≥ 0 = ‖ξ∞‖L∞(Ω)

and hence (2.37) ensues. Therefore, we may assume ‖ξ∞‖L∞(Ω) > 0. Next, note
that by (1.11) we have

ˆ
Ω

ξp d[µp(ξp)] = −
ˆ

Ω

(
|ξp|(p)

)p−2 |ξp|2(
‖ξp‖L̇p(Ω)

)p−1 dLn

= −
ˆ

Ω

|ξp|p(p)(
‖ξp‖L̇p(Ω)

)p−1 dLn − 1

p2
−
ˆ

Ω

(
|ξp|(p)

)p−2(
‖ξp‖L̇p(Ω)

)p−1 dLn,

which by Hölder inequality givesˆ
Ω

ξp d[µp(ξp)] = ‖ξp‖L̇p(Ω) −
1

p2

(
‖ξp‖L̇p(Ω)

)1−p −ˆ
Ω

(
|ξp|(p)

)p−2
dLn

≥ ‖ξp‖L̇p(Ω) −
1

p2 ‖ξp‖L̇p(Ω)

.

Hence, for any k ≥ 1 fixed and p ≥ k, we haveˆ
Ω

ξp d[µp(ξp)] ≥ ‖ξp‖L̇k(Ω) −
1

p2 ‖ξp‖L̇k(Ω)

.

Since by Theorem 1 we have ξp −−⇀ ξ∞ in Lk(Ω) for any k ∈ (1,∞), by the weak
lower semi-continuity of the convex functional ‖ · ‖L̇k(Ω) on Lk(Ω), it follows that

lim inf
pj→∞

ˆ
Ω

ξp d[µp(ξp)] ≥ lim inf
pj→∞

‖ξp‖L̇k(Ω) −
(

lim sup
pj→∞

1

p2

)
1

lim inf
pj→∞

‖ξp‖L̇k(Ω)

≥ ‖ξ∞‖L̇k(Ω).

We therefore discover (2.37) by letting k →∞.

Now we proceed with establishing (I) and (II) of the theorem.

(I) Suppose that C∞ = 0. Then, we have

(2.38)
(
~φp, ~ψp

)
−→

(
~0,~0
)

in W1, m
m−2 (Ω;R2×N )× BV(Ω;R2×N )

as pj → ∞, where
(
~φp, ~ψp

)
are the Lagrange multipliers associated with the con-

strained minimisation problem (1.18). In view of (2.37) and (1.19), the inequality
(1.20) implies
(2.39)

α

ˆ
Ω

η d[µp(ξp)] +

N∑
i=1

ˆ
Ω

(η − ξp)
(
Mupi

)
· ψpi dLn ≥ o(1)pj→∞ + α‖ξ∞‖L∞(Ω).

for any η ∈ C0
0(Ω, [0,M ]). Note now that Hölder’s inequality gives

ˆ
Ω

∣∣∣(η − ξp)Mupi

∣∣∣m2 dLn ≤
(ˆ

Ω

∣∣η − ξp∣∣m dLn
) 1

2
(ˆ

Ω

∣∣Mupi
∣∣m dLn

) 1
2

and by (2.12) and (1.19) the right hand side of the above estimate is bounded
uniformly in p. Hence, by (1.25), (2.38) and the weak-strong continuity of the
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duality pairing between L
m
2 (Ω) and L

m
m−2 (Ω), by letting p→∞ along the sequence

(pj)
∞
1 , (2.39) yields

α

ˆ
Ω

η dµ∞ ≥ α‖ξ∞‖L∞(Ω),

for any η ∈ C0
0(Ω, [0,M ]). Hence, if α > 0, we see that ξ∞ = 0 a.e. on Ω. Again by

(1.25) and (2.38), by passing to the limit as pj →∞ in (1.21), we obtain

ˆ
∂Ω

~w : d~ν∞ = 0 = lim
pj→∞

N∑
i=1

{ˆ
Ω

[
B : (Dw>i Dψpi) +

(
Lwi

)
· ψpi

]
dLn

+

ˆ
∂Ω

(γwi) · ψpi dHn−1

}
,

for any ~w ∈ C1
0(Ω;R2×N ). Therefore, ~ν∞ = ~0, as claimed.

(II) Suppose now that C∞ > 0. Then, the desired relations (1.27)-(1.29) would

follow directly from (2.39) and (1.21)-(1.22) by rescaling
(
~φp, ~ψp

)
and passing to

the limit as pj →∞ since the rescaled multipliers
(
~φp/Cp, ~ψp/Cp

)
are bounded in

the product space

W1, m
m−2 (Ω;R2×N )× BV(Ω;R2×N )

and therefore the sequence is sequentially weakly* compact, once we justify the
convergence

(2.40)

ˆ
Ω

ξp
(
Mupi

)
· ψpi
Cp

dLn −→
ˆ

Ω

ξ∞
(
Mu∞i

)
· ψ∞i dLn,

as pj →∞. To this end, we estimate∣∣∣∣ˆ
Ω

ξp
(
Mupi

)
· ψpi
Cp

dLn −
ˆ

Ω

ξ∞
(
Mu∞i

)
· ψ∞i dLn

∣∣∣∣
≤
ˆ

Ω

|ξp|
∣∣∣∣(Mupi

)
· ψpi
Cp
−
(
Mu∞i

)
· ψ∞i

∣∣∣∣dLn
+

∣∣∣∣ˆ
Ω

(ξp − ξ∞)
[(

Mu∞i
)
· ψ∞i

]
dLn

∣∣∣∣.
(2.41)

Note now that by Theorem 1 we have ξp −−⇀ ξ∞ in Lq(Ω) for any q ∈ (1,∞) as
pj → ∞. In view of (2.41), to conclude with (2.40) we need to show that there
exists t > 1 such that ∥∥∥(Mu∞i

)
· ψ∞i

∥∥∥
Lt(Ω)

< ∞,(2.42)

lim
pj→∞

∥∥∥∥(Mupi
)
· ψpi
Cp
−
(
Mu∞i

)
· ψ∞i

∥∥∥∥
Lt(Ω)

= 0.(2.43)

To this end, recall that by Theorem 1 we have upi −−⇀ u∞i in W1,m2 (Ω;R2) as
pj → ∞. Thus, by standard compactness arguments we have upi −→ u∞i in
L
m
2 (Ω;R2) and hence a.e. on Ω as pj →∞ (perhaps up to a further subsequence).

Without loss of generality we suppose that m < 2n. (If m ≥ 2n, replace m by any
number m̃ < 2n.) Since (m

2

)∗
=

nm

2n−m
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by the Sobolev inequalities, we have that (upi)p is bounded in the space L
nm

2n−m (Ω;R2).
By this bound and the a.e. convergence as pj →∞, the Vitali convergence theorem
(e.g. [26]) implies

(2.44) upi −→ u∞i in L
nm(1−ε)
2n−m (Ω;R2) as pj →∞, for any ε ∈ (0, 1).

We now argue similarly for (ψpi/Cp)
∞
pj=1. Since the sequence is bounded and

weakly* convergent in BV(Ω;R2), by the compactness of the embedding of BV in
L1 we have ψpi/Cp −→ ψ∞i in L1(Ω;R2) and hence a.e. on Ω as pj →∞ (perhaps
up to a further subsequence). By the Sobolev inequality, we have that (ψpi/Cp)p
is bounded in the space L

n
n−1 (Ω;R2). By this bound and the a.e. convergence as

pj →∞, the Vitali convergence theorem implies

(2.45)
ψpi
Cp
−→ ψ∞i in L

n(1−ε)
n−1 (Ω;R2) as pj →∞, for any ε ∈ (0, 1).

Fix now r, s ≥ 1. By Hölder’s inequality we have

(2.46)

ˆ
Ω

∣∣∣∣(Mupi
)
· ψpi
Cp

∣∣∣∣r dLn ≤
(ˆ

Ω

∣∣Mupi
∣∣rs dLn

)1/s(ˆ
Ω

∣∣∣ψpi
Cp

∣∣∣rs′ dLn)1/s′

.

We now select

r :=
1

1− ε
and

ε := 1−
√
κ

where

κ := max

{
1− 2

m− n
nm

,
2n−m
nm

}
.

In order to show the above choices are admissible, we need to prove that 0 < κ < 1.
To this aim, we readily have that κ > 0 because m < 2n. Next, note we also have

1− 2
m− n
nm

< 1,

because m > n. Further, we have the equivalence

2n−m
nm

< 1 ⇐⇒ m >
2n

n+ 1

and given that m > n and 2n
n+1 < 2, we deduce that κ < 1. Next, we choose

s :=

(
nm

2n−m

)(
1− ε
r

)
.

Then, our earlier choices of r, ε, κ imply that s is an admissible choice, since

s =
nmκ

2n−m
≥
(

nm

2n−m

)(
2n−m
nm

)
= 1.

Note further that

rs′ ≤ n(1− ε)
n− 1

as the above inequality can be easily seen that is equivalent to

κ ≥ 1− 2
m− n
nm
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and the latter inequality is true by the definition of κ. In conclusion, by Hölder’s
inequality and the above arguments, (2.46) yields
(2.47)
ˆ

Ω

∣∣∣∣(Mupi
)
· ψpi
Cp

∣∣∣∣r dLn ≤
(ˆ

Ω

∣∣Mupi
∣∣nm(1−ε)

2n−m dLn
)1
s

(ˆ
Ω

∣∣∣ψpi
Cp

∣∣∣n(1−ε)
n−1

dLn
)r(n−1)
n(1−ε)

.

In view of (2.44)-(2.45), (2.42) ensues from (2.47) for any t ∈ (1, r). Finally, (2.43)
also follows from (2.47) and the Vitali convergence theorem, as from (2.44)-(2.45)
we already know (

Mupi
)
· ψpi
Cp
−→

(
Mu∞i

)
· ψ∞i a.e. on Ω,

as pj →∞, because M ∈ L∞(Ω;R2×2). The theorem ensues. �
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