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Abstract

A moving-mesh finite-difference solution of a Lotka-Volterra
competition-diffusion model of theoretical ecology is described in which
the competition is sufficiently strong to spatially segregate the two
populations, leading to a two-phase problem with coupling conditions
at the moving interface. The moving mesh approach preserves the
identities of the two species in space and time, so that the parameters
always refer to the correct population. The model is implemented nu-
merically with a variety of parameter combinations illustrating how
the populations evolve through time.

1 Introduction

We apply a moving mesh finite difference method based on conservation [4, 6]
to a problem in population dynamics. A Lotka-Volterra competition model
is considered that describes a two-phase segregated reaction-diffusion system
with a high competition limit such that the species are completely spatially
segregated and only interact using an interface condition [3, 5, 6].

It is shown in [2, 3] that where the competition is strong enough to spa-
tially segregate the two populations the Lotka-Volterra system can be reduced
to a form similar to a Stefan problem in physics [1]. The two major differ-
ences between the Stefan model and the Lotka-Volterra model are firstly, that
there are additional logistic growth terms in the Lotka-Volterra model and
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secondly, there is a parameter in the Lotka-Volterra model of the interface
condition (the equivalent of the latent heat coefficient of the Stefan problem)
which is set equal to zero. Unlike the Stefan problem, one species does not
transform into another, which means that the competition system has an
interface condition that specifies the interface velocity only implicitly.

A moving-mesh approach is an effective way to model this system because
unlike fixed mesh descriptions it provides a framework for keeping particular
mesh nodes attached to particular species rather than particular parts of
space, and the dynamics for any given location are automatically those of
the correct species.

We use the Lotka-Volterra model described by Hilhorst et al. in [3] ap-
proximated by the moving-mesh finite-difference method (MMFDM) of [4].

2 The Lotka-Volterra system

The Lotka-Volterra system is the two-component reaction-diffusion system

∂u1

∂t
= δ1

∂2u1

∂x2
+ f(u1, u2)u1 x ∈ R1(t), t > 0 (1)

∂u2

∂t
= δ2

∂2u2

∂x2
+ g(u1, u2)u2 x ∈ R2(t) t > 0 (2)

where u1(x, t) and u2(x, t) are the population densities of two competing
species in abutting regions R1(t) and R2(t), the parameters δ1, δ2 are constant
diffusion coefficients, and

f(u1, u2) = r1

(
1− u1 +K1u2

k1

)

g(u1, u2) = r2

(
1− u2 +K2u1

k2

)
.

are reaction terms in which K1, K2 are species-specific competition rates,
k1, k2 are the carrying capacities of the species, and r1, r2 are reproductive
rate parameters.

In [3] it is demonstrated that for two species completely segregated the
reaction terms can be reduced to

f(u1, u2) = r1(1− u1/k1)
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g(u1, u2) = r2(1− u2/k2).

so that equations (1) and (2) become

∂u1

∂t
= δ1

∂2u1

∂x2
+

{
r1

(
1− u1

k1

)}
u1 x ∈ R1(t), t > 0 (3)

∂u2

∂t
= δ2

∂2u2

∂x2
+

{
r2

(
1− u2

k2

)}
u2 x ∈ R2(t) t > 0 (4)

The resulting system represents the limit in which the carrying capacities
K1, K2 values are very large, i.e. the competition rate is high enough that
the two species cannot coexist in space and interact only through the interface
boundary.

Initial conditions on u1 and u2 are selected such that one species is in
growth and the other in decline. These are shown in figure (1).

Zero Neumann boundary conditions ∂u1/∂x = 0 and ∂u2/∂x = 0 are
applied at fixed external boundaries away from the interface.

2.1 The interface conditions

At the interface between the two species there is a condition in [3] that
gives the relationship between their fluxes. In essence, the species both flow
into the interface and annihilate each other in a ratio determined by the
competition coefficient µ. This condition is given as

µδ1
∂u1

∂x
= −δ2

∂u2

∂x
(5)

where µ = K2/K1 is the interspecies competition rate. Because the annihi-
lation is complete we also have zero Dirichlet conditions u1 = u2 = 0 at the
interface.
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Figure 1: Initial conditions for the competition system, with population den-
sity u1 of species 1 (on the left) and u2 of species 2 (on the right). The
interface node has zero population and must always satisfy the interface con-
dition.

3 The MMFDM conservation method

3.1 A relative conservation principle

Define the total population of species p as

θp(t) =

∫
Rp(t)

up(x, t) dx

(p = 1, 2). Then by Leibnitz’ Integral Rule,

θ̇p =
dθp
dt

=
d

dt

∫
Rp(t)

up(x, t) dx =

∫
Rp(t)

∂up
∂t

dx+ [upvp]Rp(t)

The final term vanishes by the boundary and interface conditions, so

θ̇p =

∫
Rp(t)

∂up
∂t

dx (p = 1, 2).

From (3) and (4),

θ̇p =

∫
Rp(t)

(
δp
∂2up
∂x2

+

{
rp

(
1− up

kp

)}
up

)
dx (p = 1, 2) (6)

which can be integrated in time to give θp.
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We now suppose that population fractions c(Ωp) in each moving subdo-
main Ωp(t) are independent of time, so that θp(t) and up(x, t) satisfy the
relative conservation principle

1

θp(t)

∫
Ωp(t)

up(x, t) dx = c(Ωp), (p = 1, 2), (7)

Since the population fractions c(Ωp) are constant in time, they are determined
by the conditions at the initial time t0, i.e.

c(Ωp) =
1

θp(t0)

∫
Rp(t0)

up(x, t
0) dx

Writing (7) as∫
Ωp(t)

up(x, t) dx = c(Ωp)θp(t), (p = 1, 2). (8)

and differentiating the left hand side of (8) with respect to time using Leibnitz
Integral Rule,

d

dt

[∫
Ωp(t)

up(x, t)dx

]
=

∫
Ωp(t)

(
∂up
∂t

+
∂

∂x
(upvp)

)
dx, (p = 1, 2)

where vp is the velocity of points of the domain. Therefore, by (8), given
the population fractions c(Ωp), the velocity vp and rate of change of the total
mass θ̇p satisfy the equations

c(Ωp)θ̇p −
∫

Ωp(t)

∂

∂x
(upvp)dx =

∫
Ωp(t)

∂up
∂t

dx, (p = 1, 2),

where the θ̇p are given by (3) or (4), giving

c(Ωp)θ̇p − [upvp]Ωp(t) = δp

[
∂up
∂x

]
Ωp(t)

+ rp

∫
Ωp(t)

up(x, t)

(
1− up(x, t)

kp

)
dx,

(9)
We let the subdomains Ω1(t) in the region R1(t) consist of the interval

(a, x(t)) where a is a fixed boundary and x(t) is any point in the region
R1(t). Similarly the subdomains Ω2(t) in the region R2(t) consist of the
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interval (x(t), b) where b is a fixed boundary and x(t) is any point in the
region R2(t).

The boundary conditions at the external boundaries a and b are ∂u1/∂x =
∂u2/∂x = 0, and also v1 = v2 = 0 because the boundaries are fixed. Together
with the condition that u1 = u2 = 0 at the interface boundary, equations (9)
for the velocities v1 and v2 and the rates of change of the total mass θ̇1 and
θ̇2 become

c1(x)θ̇1 − (u1v1)|x(t) = δ1
∂u1

∂x

∣∣∣∣
x(t)

+ r1

∫ x(t)

a

u1(x, t)

(
1− u1(x, t)

k1

)
dx (10)

and

c2(x)θ̇2 + (u2v2)|x(t) = −δ2
∂u2

∂x

∣∣∣∣
x(t)

+ r2

∫ b

x(t)

u2(x, t)

(
1− u2(x, t)

k2

)
dx (11)

respectively, where

θ1 =

∫ xm(t)

0

u(x, t) dx, θ2 =

∫ 1

xm(t)

u(x, t) dx

and

c1(x) =
1

θ1(t)

∫ x(t)

0

u(x, t) dx, c2(x) =
1

θ2(t)

∫ 1

x(t)

u(x, t) dx

From (6),

θ̇1 = δ1
∂u1

∂x

∣∣∣∣
xm(t)

+ r1

∫ xm(t)

a

u1(x, t)

(
1− u1(x, t)

k1

)
dx (12)

and

θ̇2 = −δ2
∂u2

∂x

∣∣∣∣
xm(t)

+ r2

∫ b

xm(t)

u2(x, t)

(
1− u2(x, t)

k2

)
dx (13)

3.2 The interface condition

Since the population density u = 0 at the interface and the population densi-
ties either side of the interface are positive, the density function is ’V’ shaped
at the interface.

6



From [3] the interface condition is given by (5). Whilst the interface ve-
locity is not given explicitly by (5) this equation does determine the location
of the interface implicitly. Thus, if we know ∂u/∂x adjacent to the interface
in each region we may use the condition that u = 0 at the interface to in-
fer an interface position such that the values of δp∂up/∂x either side of the
interface are in the ratio −µ.

We now describe a finite difference numerical method for the solution of
the problem.

4 Numerical solution

Let the domain (a, b) be (0, 1). At time level t = tn define time-dependent
mesh points

0 = x0 < xn1 < ... < xnm−1 < xnm < xnm+1 < ... < xnN < xnN+1 = 1

where xnm is the node at the moving interface, and let uni , (0 ≤ i ≤ N + 1),
approximate u(x, t) by uni at these points.

The total mass approximations θn1 ≈ θ1(t) and θn2 ≈ θ2(t) of (12) and (13)
are estimated by the composite trapezium rule

θn1 =
m∑
i=1

1

2
(ui−1 + ui)(xi− xi−1), θn2 =

N∑
i=m

1

2
(ui + ui+1)(xi+1− xi), (14)

and the constant-in-time relative masses c1,i and c2,i in the interval (xni−1, x
n
i )

by

c1,i =
1

θ1

1

2
(u0

i−1 + u0
i )(x

0
i − x0

i−1), (0 ≤ i < m− 1), (15)

c2,i =
1

θ2

1

2
(u0

i + u0
i+1)(x0

i+1 − x0
i ), (m+ 1 < i ≤ N + 1), (16)

at the initial time t = t0.
For the initial conditions we take the x0

i to be equally spaced and the u0
i

pointwise from the initial function
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u(x, 0) = 30, (0 ≤ x ≤ 0.34)

u(x, 0) = (x− 0.2)(0.5− x)× 170× 7.85, (0.35 ≤ x ≤ 0.5)

u(x, 0) = 0, (x = 0.51)

u(x, 0) = (x− 0.65)(0.5− x)× 170× 94, (0.52 ≤ x ≤ 0.58)

u(x, 0) = 90, (0.59 ≤ x ≤ 1)

chosen to resemble the one in [2] (see figure 1).

4.1 Rates of change of the total populations

The rates of change of the total populations θ̇1, θ̇2 of (6) are approximated
by composite trapezium rules, in region 1,

θ̇1 = δ1

(
unm − unm−1

xnm − xnm−1

)

+r1

m∑
i=1

1

2

{
uni−1

(
1−

uni−1

k1

)
+ uni

(
1− uni

k1

)}
(xi − xi−1) (17)

from (12), and in region 2,

θ̇2 = −δ2

(
unm+1 − unm
xnm+1 − xnm

)

+r2

N∑
i=m

1

2

{
uni

(
1− uni

k2

)
+ uni+1

(
1−

uni+1

k2

)}
(xi+1 − xi) (18)

from (13).

4.2 Approximating the velocities

From (10), using the composite trapezium rule, the velocity vni in region 1
satisfies,

c1,iθ̇
n
1 + uni v

n
i = δ1

∂u

∂x

∣∣∣∣i
m
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+r1

i∑
j=2

1

2

{
unj−1

(
1−

unj−1

k1

)
+ unj

(
1−

unj
k1

)}
(xj−xj−1), (1 < i < m−1),

where we have taken the subdomain Ωn
1 to be the interval (xn, xnm). Similarly,

from (11),the velocity vn2 in region 2 satisfies

c2,iθ̇
n
2 + uni v

n
i = −δ2

∂u

∂x

∣∣∣∣i
m

+r2

N∑
j=i

1

2

{
unj

(
1−

unj
k2

)
+ unj+1

(
1−

unj+1

k2

)}
(xj+1−xj), (m+1 < i < N).

where we have taken the subdomain Ωn
2 to be the interval (xnm, x

n).

4.3 Time-stepping

We adopt an explicit Euler time-stepping approach. Given the ui, we update
the total masses θp from the equation θ̇p = dθp/dt, (p = 1, 2) using (17) and
(18) by

θn+1
p = θnp + ∆t θ̇np (19)

(p = 1, 2), where ∆t is the time step, and the mesh points xni are updated
from the equation dxi/dt = vi by

xn+1
i = xni + ∆t vni (i 6= m), (20)

The updates are first-order accurate in time and subject to limitations on
the time step to preserve node ordering.

Note that in case of a fixed mesh there is the following well-known suffi-
cient condition on a time step ∆t in the explicit scheme to prevent the un+1

i

(and hence the local mass in an interval) going negative,

δp∆t

(∆xmin)2
≤ 1

2
, (p = 1, 2) (21)

Here we take (21) as a guide for a safe time step in the moving mesh case.
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4.4 The population densities

In order to determine the approximate population densities ui at the new
time step t = tn+1 from the θn+1

p and xn+1
i we approximate the relative

conservation principle (7) as

1

θp
(xn+1

i+1 − xn+1
i−1 )un+1

i = cp,i (p = 1, 2), (22)

where from (15) and (16) the constants

cp,i =
1

θ0
p

(x0
i+1 − x0

i−1)u0
i (p = 1, 2), (23)

are independent of time.
Thus, once the xn+1

i have been found, in region 1

un+1
i =

c1,iθ
n+1
1

(xn+1
i+1 − xn+1

i )
, (0 ≤ i ≤ m− 2), (24)

and in region 2

un+1
i =

c2,iθ
n+1
2

(xn+1
i − xn+1

i−1 )
(m+ 1 ≤ i ≤ N + 1). (25)

while un+1
m = 0 from the interface condition.

Note that the values of un+1
m±1 determined by (22) depend on xn+1

m , which is
not yet known at tn+1. This value can however be found using the one-sided
approximations

un+1
m−1 =

c1θ1

1
2
(xn+1

m−1 − xn+1
m−2)

, un+1
m+1 =

c2θ2

1
2
(xn+1

m+2 − xn+1
m+1)

where from (15) and (16))

c1 =
1

2
u0
m−1(x0

m−1 − x0
m−2), c2 =

1

2
u0
m+1(x0

m+2 − x0
m+1)

4.4.1 Approximating the interface

The interface condition (5) is approximated by

µδ1
um − um−1

xm − xm−1

= −δ2
um+1 − um
xm+1 − xm

, (26)
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where the subscript m denotes the interface node and the xm±1, um±1 are
adjacent node positions and solution values. Since um = 0, from (26) an
approximation to the position of the interface node xn+1

m in terms of adjacent
nodal values at m± 1 is

xn+1
m =

(
µδ1u

n+1
m−1x

n+1
m+1 + δ2u

n+1
m+1x

n+1
m−1

µδ1u
n+1
m−1 + δ2u

n+1
m+1

)
. (27)

Thus, once the other xn+1
i , un+1

i have been updated, xn+1
m can be found from

(27).

4.5 Algorithm

In summary, the moving mesh finite difference solution of the competition-
diffusion problem given by equations (3) and (4) with the interface condition
(5) on the moving mesh in 1-D is given by the following algorithm.

From the initial mesh and the initial condition compute the initial values
θp(0), (p = 1, 2) of the total populations of the species from (14) and the
values of the relative masses cp,i and cp,i from (15), (16) and (23).

Then for each time step:

1. Find the rates of change θ̇1, θ̇2 of the total masses from (17) and (18),

2. Calculate the nodal velocities vi from (10) and (11),

3. Update θ1 and θ2 from θ̇1 and θ̇2 using the explicit Euler scheme (19),

4. Generate the nodal values xi at the next time-step from the vi using
the explicit Euler scheme (20),

5. Update the population densities ui at the next time level in each region
from (24) and (25),

6. Update the new position of the interface node xm at the next time level
from (27).
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5 Results

We find that the model is stable and robust. Even using the explicit Euler
integration scheme we observe minimal oscillations affecting the smoothness
of the results. in [1].

5.1 A parameter choice

In the body of work concerning Lotka-Volterra equations there is a vast range
of parameter values in use because there are so many varied but suitable
examples of the type of competition that are described here. We select a
conservatively representative set of parameters, chosen to demonstrate some
of the behaviour that this model is able to describe.

For the first example we choose a set of parameters that favour species 1,
namely δ1 = δ2 = 0.01, k1 = k2 = 100, r1 = r2 = 1 and µ = 3. In this case we
see an increasing interface velocity in the initial stages (figure 2), followed by
a change in direction where the interface velocity is approximately constant
(figure 3). As we approach the annihilation of species 2, the interface velocity
increases again due to the low mass of species 2 affecting its ability to grow.
We see the interface increase in velocity after a slower initial phase where
both species are experiencing population growth (figure 4). The interface
accelerates as we approach an annihilation event. The movement of the
interface is shown in figure 5.
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Figure 2: Result of competition model at t = 1.5. Here we use δ1 = δ2 = 0.01,
k1 = k2 = 100, r1 = r2 = 1 and µ = 3. We run the model with a time
step of 0.00001 for 150000 iterations and plot the results every 0.01.We see
the internal dynamics of the species driving the population densities and
interface fluxes, and the position of the interface responding to those fluxes.
The domain is 0 < x < 1. The initial conditions are shown in red, with
species 1 in blue and species 2 in green.
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Figure 3: Result of competition model at t = 4.5. Here we use δ1 = δ2 = 0.01,
k1 = k2 = 100, r1 = r2 = 1 and µ = 3. We run the model with a time
step of 0.00001 for 450000 iterations and plot the results every 0.01. The
interface continues to evolve and the masses of the species are now limited
by the respective carrying capacities. The domain is 0 < x < 1. The initial
conditions are shown in red, with species 1 in blue and species 2 in green.
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Figure 4: Result of competition model at t = 8. Here we use δ1 = δ2 = 0.01,
k1 = k2 = 100, r1 = r2 = 1 and µ = 3. We run the model with a time step
of 0.00001 for 800000 iterations and plot the results every 0.01. We observe
that whilst species 2 initially grew in mass, it will now be wiped out by
competition with species 1.The domain is 0 < x < 1. The initial conditions
are shown in red, with species 1 in blue and species 2 in green.
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Figure 5: Movement of the interface position xm against time for the compe-
tition model with parameters δ1 = δ2 = 0.01, k1 = k2 = 100, r1 = r2 = 1 and
µ = 3. We run the model with a time step of 0.00001 for 800000 iterations.
We see the interface velocity accelerate as we approach an annihilation event.
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5.2 Other parameter choices

5.2.1 Carrying capacities

We now investigate alternative parameter choices. We restrict the growth of
species 1 by lowering its carrying capacity and observe that in this scenario
neither species is dominant, even though all the competition and diffusion
characteristics are unchanged. Here we use δ1 = δ2 = 0.01, k1 = 50, k2 = 150,
r1 = r2 = 1 and λ = 3. With these differently chosen carrying capacities we
find the interface position is approximately steady and the two species are in
balance. This scenario is shown in Figure 6.
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Figure 6: Result of competition model at t = 9, considering the effect of
altered carrying capacities. Here we use δ1 = δ2 = 0.01, k1 = 50, k2 = 150,
r1 = r2 = 1 and µ = 3. We run the model with a time step of 0.00001 for
150000 iterations and plot the results every 0.01. The figure shows the rapid
territorial gains The initial conditions are shown in red, with species 1 in
blue and species 2 in green. The domain is 0 < x < 1.
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5.2.2 Diffusion characteristics

Alternatively we may adjust the diffusion characteristics of the system. By
allowing species 2 to diffuse at a higher rate, we observe that species 2 is
able to make territorial gains due to this property alone (figure 7). Here we
use δ1 = 0.01, δ2 = 0.05, k1 = k2 = 100, r1 = r2 = 1 and µ = 3. Due to
the growth characteristics we can see interesting temporal effects. Here the
interface velocity has actually reversed directions as the system changes from
diffusion dominated to growth dominated. We observe that species 2 is able
to make territory gains initially due to its high diffusion rate, even though
the competition rate is unaltered. However, as time goes on, the growth and
competition characteristics become increasingly important. We see species
1 becoming more dominant over time, so that the interface velocity actually
reverses direction.

Figure 8 shows the evolution of the system at t = 11, and figure 9 shows
the movement of the interface with the direction reversal.
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Figure 7: Result of competition model at t = 1.5, considering the effect of
an increased diffusion rate for species 2. Here we use δ1 = 0.01, δ2 = 0.05,
k1 = k2 = 100, r1 = r2 = 1 and µ = 3. We run the model with a time step
of 0.00001 for 150000 iterations, and plot the results every 0.01. The figure
shows the rapid territorial gains of species 2 over species 1 due to its high
diffusion rate. The initial conditions are shown in red, with species 1 in blue
and species 2 in green. The domain is 0 < x < 1.
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Figure 8: Result of competition model at t = 11, considering the effect of
an increased diffusion rate for species 2. Here we use δ1 = 0.01, δ2 = 0.05,
k1 = k2 = 100, r1 = r2 = 1 and µ = 3. We run the model with a time
step of 0.00001 for 1100000 iterations, and plot the results every 0.01. We
see that the initial diffusion-driven gains by species 2 are reversed, and that
the overall growth characteristics are dominating so that species 1 is gaining
territory. The initial conditions are shown in red, with species 1 in blue and
species 2 in green. The domain is 0 < x < 1.

These illustrations give confidence that the model is likely to be able to
satisfy the requirements of modelling a wide variety of competition systems.
It is stable to a large choice of set-up parameters and is able to produce
complex behaviours without problems.
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Figure 9: Position of interface xm against time, showing interface movement
for the competition model at up to t = 11, considering the effect of an
increased diffusion rate for species 2. Here we use δ1 = 0.01, δ2 = 0.05,
k1 = k2 = 100, r1 = r2 = 1 and µ = 3. We run the model with a time
step of 0.00001 for 1100000 iterations. Due to the growth characteristics we
can see interesting temporal effects. Here the interface velocity has actually
reversed direction as the system changes from diffusion-dominated to growth-
dominated.

6 Summary

In this paper we have applied the moving mesh finite difference method based
on a conservation principle (MMFDM) of [4] to a two-phase Lotka-Volterra
competition system with a high competition limit [3], such that the species
are completely spatially segregated and interact solely through an interface
condition based on this limit.

In section 2 the model is described in detail. In section 3 the MMFDM
implemented. In section 4 numerics. In section 5 illustrations are given for
a variety of parameter combinations, observing the various behaviours that
dominate as the species evolve through time.

For a set of parameters that favour species 1 we see an increasing interface
velocity in the initial stages followed by a long steady phase where the inter-
face velocity is approximately constant. Although the population of species
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2 initially grows it is eventually wiped out by the competition with species 1.
As the annihilation of species 2 is approached, the interface velocity increases
again. The interface continues to evolve and the populations of the species
are then limited by the respective carrying capacities. This is due to the low
population of species 2 affecting its ability to grow.

If the growth of species 1 is restricted by lowering its carrying capacity
we observe that neither species is dominant, even though all the competition
and diffusion characteristics are unchanged. Increasing the diffusion rate for
species 2, this species is able to make initial territorial gains, even though the
competition rate is unaltered However, as time goes on, growth and compe-
tition characteristics become increasingly important and species 1 becomes
more dominant, so the interface velocity reverses direction.

A natural extension is to two dimensions along the lines described in [1],
a first attempt appearing in reference [5] which foundered on stability issues.
In further work it would be interesting to compare the behaviour of the model
against an empirical data set. The model lends itself to alterations to the
logistic terms and changes to parameters without the need for any further
development. The aim should be to understand the requirements from both
a mathematical and quantitative perspective.

Acknowledgements: The authors wish to acknowledge the work of Watkins
[5] (see also [6]) using finite elements in the motivation for this work.
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